Cryogenic Adiabatic Transistor Circuits (CATC) for Quantum Computer Control

Workshop on Low Temperature Electronics WOLTE 14, April 14, 2021

Erik P. DeBenedictis
Zettaflops, LLC
Summary

• Enabling idea:
 – CMOS means (1) transistors and (2) a circuit
 – Let us use the same transistors in a different circuit

• Benefits:
 – ~1/1,000 energy or heat in the cryostat
 – Lower noise in terms of power/amplitude
 – Noise can be below qubit control at frequencies
 – Example cryo FPGA hybrid (e. g. reconfigurable logic)

• See https://zettaflops.org/q2lal
 – Preprint of extended abstract; Q2LAL circuit paper
Use Case: Classical Control of Quantum Computers

• Some classical function should be near qubits
 – Set to $|0\rangle$ by measure and conditional NOT
 – Quantum error correction
 – Magic state factories

• Example from talk
 – Magic state factory

Adiabatic Circuits

- Energy/op vs. clock period
- CMOS constant energy/op
- Adiabatic energy per op drops with clock period
- 1000× energy efficiency increase reasonable
Quiet 2 Level Adiabatic Logic

Q2LAL power-clocks
- Ramped power-clocks charge transistors gates
- No abrupt charging

Q2LAL power train
- Power-clocks charge transistor gates) and then leave by reflection

(a) Power-clock subsystem
(b) Filter detail

1. Transmission lines
2. Power-clock generators
3. Cryostat
Even-load Adiabatic Logic Family Based on Cyber Security

(a) Circuit reference

(b) S2LAL signaling

(c) S2LAL + inverter

(d) Q2LAL signaling

(e) Q2LAL + inverter
CMOS vs. CATC noise

- CMOS noise from delta functions with frequencies determined by devices
- CATC Noise from clock
- Below same vertical but 15× expanded horizontal scale
Single Flux Quantum (SFQ) and CATC Hybrid

• CATC vs. JJ/SFQ
 ② – CATC 1000× smaller
 – Same energy
 – CATC 1000× slower

• Why would you want JJs plus a lot of slow transistors?
 ③ – Memory
 – Complex logic

Same scale; JJs are larger but very energy efficient
Transistors/JJ Hybrid Exploits Energy-Delay-Size Tradeoffs

Reconfigurable Josephson junction (FPGA) and analog mixers

Superconductor layer

Semiconductor layer

CATC configuration memory

1. Configuration shift register storage: $\phi_0, \phi_1, \phi_2, \phi_3, \phi_0$

2. Semiconductor layer

3. CLB

4. μ Wave SPST Switch

Adiabatic waveform storage
Conclusions

• Adiabatic circuits not new, but use case is new
 – First part of this talk could have been made 30 years ago
 – But the use case didn’t exist, i.e. bypass the cryostat

• Benefits today:
 – 99% - 99.9% heat bypasses the refrigerator, permit scaleup
 – Lower noise in terms of power, noise, and bandwidth

• Future
 – Physical demo in quantum control use case

• For more information see https://zettaflops.org/q2lal
 – Preprint of extended abstract; Q2LAL circuit paper