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The National Strategic Computing Initiative will inevitably produce new computer 

hardware, but what about software? 

The US National Strategic Computing Initiative’s (NSCI’s) ambitious goal to dramatically increase 

computer hardware performance opens the door for a complementary software effort. NSCI white 

papers discussing technology R&D for increased energy efficiency1 also include a new emphasis on 

machine learning.2 However, to reap the new hardware’s benefits, computer scientists will need to 

develop a model of computation for the new energy-efficient programming primitives. And 

programmers will need to learn to use the new model to efficiently implement diverse algorithms. 

Machine learning might be the most promising option to satisfy NSCI objectives “into the middle of 

this century” 1 but will require an enlightened model of computation that includes machine learning. 

More Pain, More Gain 

Figure 1 shows the NSCI white papers’ technology options organized into three stages by the 

corresponding amount of software change. The options align according to the principle of “more pain, 

more gain.”1,2 New physics inside the computer will improve its capability and energy efficiency by 

varying degrees, but greater gain at runtime goes hand in hand with greater programming and computer 

architecture effort. No stage is fundamentally better or worse than any other, but each stage will apply 

in its own set of circumstances. 

Figure 1. Progress in computing based on the principle of “more pain, more gain.” 
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Programmers’ pain or effort can be viewed as an opportunity. The US Office of Science and 

Technology Policy (OSTP) has challenged the technical community to develop a computer that can 

“solve unfamiliar problems using what it has learned,”3 which is a programmer’s task. In lieu of seeing 

programmer effort as undesirable overhead, stage 3 will use machine learning to assist the programmer. 

Stage 1: CMOS Accelerators 

Programmers will have a critical role in augmenting today’s computer architecture with performance-

boosting accelerators.2 Scaling semiconductor line width produced a straightforward result, but 

designing accelerators is different because it affects subsequent programming. 

Today’s microprocessors dissipate just a few percentage points of their energy for arithmetic—and 

often much less. The remaining energy consists of overhead from the von Neumann architecture’s 

instruction processing and programmed data movement. The overhead can be recovered by replacing 

programmed behavior with hardwired paths, yet leads to a specialized processor for just a few similar 

programs. Recent research projects provide a vastly more energy-efficient substrate for the resulting 

non–von Neumann architecture.4 The emergence of 3D memory such as memristors and flash creates a 

new opportunity to include large amounts of data in the accelerators. 

Designing and fabricating a different accelerator for every algorithm would be prohibitively 

expensive. To control costs, we must design a few accelerator “building blocks” that provide functional 

diversity when combined and, when they’re accompanied by a run time cost metric, define a new 

model of computation.5 A model of computation is a set of primitives that programmers combine to 

create algorithms and applications. Each primitive imposes an energy or time cost when used. The best 

model would have highly expressive programming primitives that can be combined into many 

algorithms efficiently so run time costs are low. 

For stage 1, the community should open up the programming primitive ecosystem to a broader 

audience and encourage innovation in finding the best primitives. The communications fabric within a 

computer could be based on a plug and play open standard that enables innovators to create and try out 

accelerator designs in different environments. IEEE could create an accelerator standard. 

Figure 2 shows the accelerated architecture. The system is a von Neumann computer at the top level, 

containing a processor and regular memory connected by a bus. However, the bus also contains a non–

von Neumann accelerator. If appropriate to its function, the accelerator could contain gigabytes of 

memory. This example’s accelerator stores a sparse matrix or graph in its memory and accelerates a 

handful of programming primitives on the stored data. 

Figure 2. Stage 1’s CMOS accelerator architecture. 

An accelerator can be represented as an object in the sense of object-oriented programming, shown 

as class SparseMatrixOrGraph with instance acc. The acc data structure holds the data that’s manipulated by 

Processor 

(CPU) 

Memory 

and 

operations 

Regular 

memory 

class SparseMatrixOrGraph {} acc; 

acc.Set(2, 3, 3.1415); 

acc.MatrixInvert(); 

acc.TransitiveClosure() 

Address and Data Bus 

accel.Set(2, 3, 3.1415); 

accel.Invert(); 

accel.TransitiveClosure() 



 3 

member functions. For sparse matrices, the accelerator has Set and MatrixInvert functions. Set has 

arguments that specify a row and column in the matrix and the value to store there. MatrixInvert inverts 

the matrix internally, changing both the sparsity pattern and data values. 

The accelerator as described thus far could be a C++ class with no special hardware. Such a software 

implementation would improve neither speed nor energy efficiency, but it might be the best way to 

assess the model of computation. Programmers could use the accelerator to write a broad variety of 

algorithms, such as matrix and vector algebra algorithms, and answer the critical question about how 

efficiently the functions can be combined into algorithms. Let’s assume the set of member functions Set 

and MatrixInvert in Figure 2 is expanded to a workable set for matrix computations, adding member 

functions for readout, vector–matrix operations, and so forth. 

Because accelerators will be expensive to build, they should have many uses. Sparse matrices are 

similar to graphs, so designers will likely face business pressure to add support for common graph 

algorithms. Calculating transitive closure is common in graph algorithms but unusual in matrix 

algorithms. Let’s say TransitiveClosure is added to the accelerator’s design to expand its usefulness, but 

each addition’s complexity counteracts the efficiency gain; thus, the number of these additions must be 

controlled. 

This discussion illustrates the opportunity for programmers. In 1960, Fortran defined the basic building 

blocks of programs as expressions, loops, and subroutines. These followed naturally from Turing’s and 

von Neumann’s computing models. The current need is to create other sets of primitives that harness 

the energy-efficiency improvements in technology that will become available over the next decade.4 

These primitives will likely be of much heavier weight than just arithmetic operations, raising 

efficiency via economies of scale. For example, Fortran scalar expressions giving way to matrix 

operations on gigabytes of data. The programming primitives will also likely be domain-specific; that 

is, a supercomputer might need different primitives than an Internet server. 

Stage 2: Devices with New Behaviors 

If computer scientists can make effective CMOS accelerators, repeating this activity for new physical 

devices should yield large performance gains. Quantum computers are best known for their 

astronomical upside potential in prime factorization, yet other physical devices offer advantages over a 

broader range of applications. Stage 2 is defined to be accelerators or entire computers for which a key 

information processing primitive is based on an innovative device. This stage’s devices would work 

differently than transistors and have orders of magnitude higher speed and/or lower energy for an 

equivalent amount of information processing. In this way, stage 2 meets NSCI’s requirements for 

“computing beyond Moore’s law.”1 

The hardware community is planning to control factors such as crosstalk and power density so that 

device properties remain stable as the system scales.2 But this isn’t enough. Consider an N × N crossbar 

array used as a memory or a neural network. Scaling up N only makes a bigger crossbar. Compare the 

crossbar to a group of arbitrarily wired logic gates. The number of possible behaviors scales 

exponentially with the number of gates in this latter case. The opportunity here is to create a new model 

of computation that’s based on the new device properties yet have the flexibility of the AND-OR-NOT 

basis of Boolean logic. Possible new devices are memristors,6 spin-based devices,2 and reversible 

gates.7 

Stage 3: Neural Networks 

Stage 3 will require more expansive programmer involvement than the other stages. OSTP has urged 
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the technical community to create a learning computer that operates with the energy efficiency of the 

human brain,3 thereby directing human-created computational systems toward machine learning and/or 

AI. 

Attempts to apply our understanding of brain function, incomplete as it is, have nonetheless led to 

computing breakthroughs, such as the AlphaGo program that beat the best human Go player, Lee Sedol, 

four times out of five.8 Key parts of AlphaGo weren’t programmed by humans at all but learned by 

playing training matches with itself, intending to duplicate the way human Go players learn to play. 

Because a model of computation doesn’t depend on details of a specific implementation, the models of 

computation used by biology and the AlphaGo software running on the GPU cluster might be the same. 

Neuromorphic computing, a related branch of interest, attempts to create physical work-alikes to the 

neurons, but based on precisely defined behaviors. The challenge for computer scientists and 

programmers will be to develop a model of computation for the hardware resulting from government 

R&D interest2 in both GPU-based neural networks and neuromorphic computing. 

The current mandate is to improve computers’ energy efficiency, yet energy efficiency can’t 

improve indefinitely. To maintain continuity of the computer industry, we would be prudent to 

anticipate future direction changes.9 Perhaps, for this reason, the US government’s initiative includes a 

branch on energy-efficient machine learning. If the community follows NSCI’s research agenda, the 

quest to make computers more energy efficient could yield to a quest to make computers smarter. After 

all, the purpose of computers isn’t to use energy but to find answers. 

Our discussion presents a staged participation opportunity for computer scientists and programmers. 

The door is open for CMOS-based supercomputer accelerators. This could lead to accelerators based 

on novel devices, yet manufacturing these novel devices will delay commercial availability. If neurons 

are classed as devices, they also ought to have a model of computation; deep learning–type systems 

offer a glimpse of what such a model might look like. 

Turing greatly contributed to the computing field through the invention of his namesake machine that 

can solve all computable problems. However, the Turing machine has very little control over resource 

usage such as running time or energy consumption—and, in addition, won’t solve any problem at all 

unless programmed. There’s government and community interest in more efficient computer hardware, 

but its benefits will need new theory to enable real-world application. Machine learning entered the 

picture unexpectedly, raising the tantalizing possibility that computing might transition smoothly into AI. 

However, this would require an even more challenging theory of computation that includes the 

computer learning to compute and doing so with controlled resource usage. Turing made quite a name 

for himself with the original theory of computation; would any reader consider updating it? 
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