
Rebooting Computing, computing, instruction set-architecture, 

codesign, architectural simulation, von Neumann architecture, 

feedback loop, simulation, architecture optimization, computational 

accelerator, accelerator 

Editor: Erik P. DeBenedictis, Sandia National Laboratories; epdeben@sandia.gov 

Rebooting Computing 

Computer Architecture’s Changing Role in 

Rebooting Computing1 

Erik P. DeBenedictis, Sandia National Laboratories 

Researchers are now considering alternatives to the von Neumann 

computer architecture as a way to improve performance. The 

current approach of simulating benchmark applications favors 

continued use of the von Neumann architecture, but architects can 

help overcome this bias. 

Windows 95 started the Wintel era, in which Microsoft Windows running on Intel x86 

microprocessors dominated the computer industry and changed the world. Retaining the x86 

instruction set across many generations let users buy new and more capable microprocessors 

without having to buy software to work with new architectures. 

Today’s more complex applications and consumers’ shift to mobile devices have increased 

the critical need for energy efficiency and for smoothing the software-upgrade process. This 

has deeper implications for instruction sets and architectures than many people realize. 

Microprocessor vendors are now able to change architectures even at the instruction-set 

level if they first remotely upgrade users’ software to make it compatible with both the current 

and new architectures. A computer’s architecture has served as a communication interface 

between architects and programmers. Architects minimized changes to avoid forcing 

programmers to perform costly rewriting. However, freezing the instruction set reduces the 

architect’s flexibility when trying to increase energy efficiency. It would be more effective for 

architects to develop more energy-efficient architectures with less regard to instruction-set 

changes and let the marketplace decide whether the energy savings outweigh the cost of 

rewriting software. 

                                                           
1 Sandia National Laboratories approved for unlimited unclassified release SAND2017-9063 J 

Published as DeBenedictis, Erik P. "Computer Architecture's Changing Role in Rebooting 

Computing." Computer 50.4 (2017): 96-99. DOI: 10.1109/MC.2017.99 

 

https://doi.org/10.1109/MC.2017.99


This illustrates the need to change the process of optimizing architectures for existing 

software to one that can find new architectures. 

Computer Architecture Simulations 

Computer architects extensively use simulations to optimize architectures for consistent 

performance across a suite of benchmarks or test applications. Architects use a feedback loop 

on architectural parameters such as clock rate and cache size to find their optimal values, as 

Figure 1a shows. Simulations or measurements on test hardware measure a hypothetical 

computer’s speed and energy efficiency, yielding a continuous quality value. For example, a 

simulation might estimate the performance over a suite of benchmarks to be 57.8 computations 

per second. Architects would then feed the quality value back into the process as they adjust a 

parameter, such as cache size. A subsequent simulation might improve the rate to 59.3 

computations per second. The architect repeats the loop until the values are close to optimal.  

 

 

 

 

 

 

 

 

 

Figure 1. Architectural simulation as an analog feedback loop. Simulations or measurements test 

a computer architecture’s ability to execute software over a range of changes to parameters 

such as clock rate and cache size, leading to iterative architectural changes. (a) The traditional 

approach tests architectures over a range of continuous-valued parameters, favoring ongoing 

use of the system’s original, typically von Neumann, architecture. (b) An alternative approach 

would work over a range of discrete (noncontinuous) algorithms and architectures, which better 

enables discovery of non–von Neumann architectures. 

Each benchmark or test application originates with a widely used program, so each test 

embodies the best algorithms for the current architecture. Some simulations go a step further 

and use instruction traces collected from existing code’s inner loops, meaning the results are 

- 

+ 

- 

+ 

Various algorithms for von 

Neumann architecture 

Converges on best 

balanced 

von Neumann 

architecture for 

test set 

State variables are parameters, 

e. g. supply voltage, cache size 

Best algorithms for a problem, 

not specific to any architecture 

State variable is architecture, 

e. g. register description 

Average 

result 

Best 

result 

(a) Traditional approach 

(b) Preferable future approach 

Simulation/measurement 

Simulation/measurement 

Feedback 

converges on 

best architecture-

algorithm 

combination 

Simulation/meas

urement 



based on the instruction set of the computer that created the trace. However, carrying artifacts 

of the current architecture into simulations inhibits change. 

To illustrate the problem, microprocessor benchmark sites such as CPUBoss 

(www.cpuboss.com) show that comparing the software benchmark performance of a modern 

laptop’s microprocessor with one that is five years old has barely improved. Computer 

performance has actually increased substantially during this time, but the performance gain is 

mostly for new code running on new processors. Because benchmarks are usually run only when 

a processor is first introduced, results for new code are not listed for older processors. 

Computer architectures and algorithms include discrete structures that aren’t amenable to 

continuous parameter optimization. A computer’s architecture and each algorithm that runs on 

it can be depicted as a graph with computations in boxes and data movement shown by lines. 

Typical hardware boxes contain processors, caches, and memory, as well as lines that represent 

buses or other interconnects. Algorithm graphs are more specific, with boxes containing 

mathematical calculations, sorting operations, or storage operations for specific data structures. 

Execution efficiency depends on the way the algorithm’s graph maps to the hardware graph. 

While Figure 1a’s feedback loop can optimize continuous parameters, finding new 

architectures and algorithms involves higher-level intellectual processes that have resisted 

automation. For example, Alan Turing and John von Neumann used the exclusively human 

resource of brainpower to devise the discrete, graph-level representation of today’s computers 

and algorithms. 

Figure 1b includes two changes to Figure 1a’s process to create an approach that finds new 

non–von Neumann architectures. 

First, simulations should run a broad range of algorithms for a particular problem without the 

testers downselecting the algorithms to fit specific architectures. For example, a test set could 

include multiple algorithms for sparse matrix multiplication instead of a specific algorithm or 

instruction trace. Applying the feedback process to the best algorithm for a dataflow or 

processor-in-memory architecture should optimize those architectures instead of converting 

them back to the von Neumann style. 

Second, changing the feedback position between Figures 1a and 1b lets the process find the 

best architecture for a specific problem instead of finding the architectural compromise that 

yields the best average results over multiple problems without excelling at any single one. Figure 

1b’s process finds accelerators,1 rather than general-purpose processors. With the Moore’s 

law–enabled growth in transistor count, today’s computers contain accelerators—which are 

specialized functional units for graphics, encryption, radio, and so forth—in addition to a von 

Neumann processor. Once Figure 1b’s process defines suitable accelerators for important tasks, 

architects would use Figure 1a’s continuous variable optimization process to determine the 

resources that should be devoted to each accelerator, ultimately yielding a hybrid of a von 

Neumann processor and several accelerators. 



Example: Sparse Matrix Multiply 

Realizing the benefits of the process illustrated in Figure 1b requires a technology advance best 

suited to a new architecture. Otherwise, the process will unhelpfully rediscover an existing 

architecture. A suitable advance is 3D stacked memory, whose best known examples are hybrid 

memory cube (HMC) and high-bandwidth memory (HBM). Academic visionaries see stacked 

memory as an intermediate step toward systems with fully integrated logic and memory.2 We’ll 

use HBM’s second generation—HBM2—in subsequent examples. 

First, we’ll illustrate the performance potential of stacked memory on a sparse matrix 

multiply problem. Sparse matrix multiply is the most important step in some important scientific 

codes, such as multigrid solutions to partial differential equations. The task is to compute C = 

AB, with A, B, and C being sparse matrices. 

In matrix notation, a matrix M is comprised of elements mrc, where r and c are the row and 

column indices, respectively. Elements of the matrix product cij are a sum of products, 

sometimes called the dot or inner product, of a row of A multiplied by a column of B, cij = k 

aikbkj. This dense matrix multiply is executed efficiently as vectors. 

If the matrix is sparse, perhaps 99.999 percent of the products aikbkj are zero, due to one or 

both variables being absent and assumed to be zero. As a result, the terms used to compute a 

specific cij occur at different times interleaved with the calculation of other cij instances, which 

requires looking up the partially summed cij instances in memory before adding to them. While 

this may sound easy, it leads to billions of essentially random memory updates out of a 

gigabyte-size pool of memory, as Figure 2a illustrates. This makes sparse matrix multiplication 

on a von Neumann computer inefficient due to resource-intensive random-access memory 

activity. 



Figure 2. (a) and (b) Two von Neumann architecture implementations for sparse matrix multiply. (c) The 

corresponding discrete architectural representation of the architecture and algorithm. (d) An integrated 

processor-memory architecture. (e) A different discrete representation, using the Expand-Sort-Compress 

(ESC) algorithm, that is more suitable to the integrated architecture. 

A Sandia National Laboratories study benchmarked a series of sparse matrix multiply 

algorithms on various types of hardware, including a system based on Intel Knight’s Landing 

processors. This system had double data rate synchronous DRAM (DDR SDRAM) channels and 

3D HBM stacked memory, as illustrated in Figure 2b. HBM’s wider data buses, resulting from the 

use of high-density vias running through the silicon rather than PC board traces, increases the 

processor-memory bandwidth about 10 times, from DDR SDRAM’s 25 GBps to 250 GBps. Both 

systems used the same discrete structure illustrated in Figure 2c. 

A New and Different Approach 

While 3D memory increases bandwidth and eases the memory bottleneck, fully integrating logic 

and memory like the structure shown in Figure 2d eliminates it entirely. 2 

DRAM refresh requires each bit to be read and rewritten every 64 ms. DRAM is organized as 

banks of 8,192 rows, requiring about 0.25 ms for a full memory refresh. The DRAM’s internal 

data rate of reading and rewriting HBM2’s maximum 8-Gbyte memory stack in 0.25 ms is 

equivalent to 32,000 GBps, which is 1,200 times faster than DDR SDRAM and 120 times faster 

than the stacked memory shown in Figure 2b. 

The recent Sandia Labs study benchmarked the Expand-Sort-Compress (ESC) algorithm,3 

whose block diagram is shown in Figure 2e. In lieu of executing the statement cij = cij+aikbkj all at 

once, the ESC algorithm streams records { i, j, aikbkj } produced after the multiplies are 

(a) Von Neumann 

Processor Memory 

DDR Bus (DDR4):  

200 wires 20 GB/sec 

(d) Fully integrated2 

Sort and add 

Memory Array 

16,000 GB/sec 

(b) Stacked 

Planar connection:  

8×128 via connections 

250 GB/sec 

High-bandwidth 

memory 

Logic  

Memory Multiply 

and add 

Bus and 

decode 

(c) Algorithm for von Neumann 

architecture 

(e) ESC Algorithm for Processor- 

in-Memory 

Add and 

Memory 

Multiply 

 

Sort 



performed into a memory array. The array is then sorted using i, j as the key, arranging records 

so that the ones with the same index are next to each other. The additions are then performed 

in an efficient array scan. This alternative algorithmic approach uses more bandwidth yet is 

more efficient because it has a regular access pattern. The approach is not very effective on the 

standard von Neumann architecture shown in Figure 2a because of its memory bottleneck, but 

is more effective with the increased bandwidth available from the 3D memory in Figure 2b. 

Current DRAM architectures can’t alter data during refresh and as a result cannot perform 

sorting or addition for these algorithms. However, the fully integrated architecture of Figure 2d 

would support the algorithms and yield higher performance.2 

Comparing Approaches 

The type of continuous variable optimization in Figure 1a can iteratively adjust clock rate or 

cache size to achieve an architecture that is well balanced across an entire application suite. 

However, optimizing continuous variables can’t separate the addition and multiply operations 

found in a single box in Figure 2c into the two boxes shown in Figure 2e, thus preventing 

discovery of the new architecture in Figure 2e, which could offer higher performance. Only 

humans can create such block diagrams because designing architectures and algorithms uses 

higher-level intelligence. Genetic programming is perhaps the only artificial-intelligence method 

that could approach this task, but it currently works only for trivial problems due to poor scaling. 

3D memory as shown in Figure 2b could evolve into integrated logic and memory as shown in 

Figure 2d in a decade or more, repeatedly optimizing the architecture for rebooting computing 

by creating a path to continued scaling. However, this approach’s credibility is based on 3D 

memory, which became available only in the last few years. Applying architecture tools to any 

such recent system would just point back to the von Neumann architecture. 

Continued computing advances depend on finding energy-efficient alternatives to the von 

Neumann architecture. Current methods and simulation tools miss the target because they 

retain artifacts of the von Neumann architecture. However, I suggest the method can and 

should be adapted to test new architecture–algorithm combinations. This would create a hybrid 

human–computer system in which humans create architectures and algorithms using 

brainpower, and then computer simulation assesses the quality of each combination. 

Acknowledgments 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned 

subsidiary of Lockheed Martin Corp., for the US Department of Energy’s National Nuclear Security Administration 

under contract DE-AC04-94AL85000. 



References 

1. E.P. DeBenedictis and R.S. Williams, “Help Wanted: A Modern-Day Turing,” Computer, vol. 49, no. 10, 2016, 

pp. 76–79. 

2. M.M. Sabry Aly et al., “Energy-Efficient Abundant-Data Computing: The N3XT 1,000X,” Computer, vol. 48, 

no. 12, 2015, pp. 24–33. 

3. Dalton, L. Olson, and N. Bell, “Optimizing Sparse Matrix—Matrix Multiplication for the GPU,” ACM Trans. 

Mathematical Software, vol. 41, no. 4, 2015, pp. 1–20. 

Erik P. DeBenedictis is a technical staff member at Sandia National Laboratories’ Center for Computing 

Research. Contact him at epdeben@sandia.gov. 


