
IEEE Catalog No. 82CH1808·5
Library of Congress No. 82-82293
Computer Society Order No. 444

~ IEEE COMPUTER SOCIETY

DIGEST OF PAPERS

1982 INTERNATIONAL
TEST CONFERENCE

NOVEMBER 15-18, 1982
Presented by: The Test Technology Committee

The International Test Formation

Sponsored by:
IEEE Computer Society

IEEE Philadelphia Section

+INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS

TESTING AND STRUCTURED DESIGN

Erik P. DeBenedictis and Charles L. Seitz

Computer Science
California Institute of Technology

This paper describes part of an integrated circuit
testing project carried out at Cal tech between 1979
and 1982. The central theme and result of the
project is a language or notation for describing
tests for complex integrated circuits. The
evolution of this test language has been guided by
many considerations, including (1) its implementa­
tion in a working, interactive test system called
FIFI, (2) its fit to ideas about the architecture
of high-performance test instruments, and (3) its
expressivity for a design-for-testability strategy
for chip designs structured in the general style
presented by Mead and Conway [lJ.

The scope of this paper is limited, however, to a
discussion of the design-far-testability strategy.
The test language is not described formally here,
but is used in examples with explanations that
should suffice to illustrate some of its
capabilities and features. A technical report on
the project is available from Caltech [21.

The design-far-testability strategy discussed in
this paper may appear to be somewhat more abstract
than others because it is directed not at the tasks
of testing combinational logic, RAMs i ROMs, state
machines, and so on, but at the task of testing the
compositions of such parts given the primitive
tests for each of them. By formalizing the
testability attributes of the parts and
compositions of a structured design, the design of
tests becomes structured also. The formalism
discussed here is also an executable language. The
FIFI test system is a test language interpreter
that, when presented with primitive tests and the
system representations discussed In this paper, can
test the system.

1. Definition of a Structured System
We are concerned with the problem of testing
systems composed of parts. To test such a system,
it is sufficient (1) to test each of the parts, and
(2) to verify the integrity of the "glue," the
wiring and possibly logic that connects the parts.
Figure 1 illustrates such a system. Without loss
of generality we can discuss testing only one part
of a system and all of its associated glue, with
the understanding that the testing task is repeated
for each part.

Each part may be composed of other parts, invoking
the definition recursively. Ultimately, some parts
will not be further divided, and these parts are
called eLements. It is assumed that tests are
available for all of the elements in a system.

These tests are called primitive tests, and an
tests that could be applied if the element were
directly accessible to the pins of a tester. Tbe
difficult part of testing a complex system, and til
purpose of the work described here, is the testi.
of oln otherwise testable part when it is embeddei
in a system.

external environment

internal I part

Itest I
external

test

II part 2
Il gl ue ll element

Figure 1: A Structured System

2. Actions Performed Upon Ports
The connection points of the tester, the systel
under test, and the parts of the system, are called
ports. A port is a connection to an electrical
node (or set of electrical nodes such as a bus or
other parallel signals), and all ports connected to
the same node have the same name. The vatu,
associated with the port is normally a volta~

interpreted as being in one of at least two ranges.
Each port may perform one of the following actions:

force- The port drives a value onto the node. For
example, a conventional output forces a value.

feeL- The port senses the voltage on a node for I

specifiedvalue. The value is required to b.
static for the entire duration of the feel. If I

feel is performed by a tester and a value other
than the specified value is sensed at any time, II
error flag is set.

undefined- A port performing the undefined acttol
upon a node has one of two meanings: (l) the part
is neither forcing nor feeling the port (tri-stat.
condition for outputs, or the value is irrelevant
for inputs) or (2) the part is forcing an unkno..
value onto the port (perhaps a spurio~

transition) •

Paper 3.2
58

1982 IEEE Test Conference

CH1808-5/8210000/0058$OO_75 © 1982 m

Even "combinational ll parts exhibit time-dependent
behavior that must be accounted for in representing
their behavior. The follOWing behavior graph is
one reRresentation (rather conservative with
respect to spurious transitions) of the behavior of
a two-input AND gate with inputs A and B, and
output C:

It iii ll1portant to realize that force and feel, as
..Uoed here, are dual actions that are each
lIIOCiated with values. Feel does not have the
....i08 of "sense and report, II but rather "sense
lid co.pare. 1I In a valid test, or in a valid
npresentation of the behavior of a part, the parts
couected to a port are performing complementary
ec:t1ons at all times. For example, when one part
ta feeling the value on a port, some other part
_It be forcing. Specifically, there are three
cabiDations of actions that match, and are
therefore legal:

*[A>a. B>b;
C<a&b;
C<null ;
A<null, B<null;)

'[] indicates indefinite
iteration

output becomes undefined

4. The inputs become undefined.

The behavior consists of an endless cycle of the
four actions:

A<a. B<b;
C>a&b;
C<null;

2. Some short time after the inputs become defined,
the output becomes defined (possibly after spurious
transitions) to the AND function of a and b.

(stabilize.
with the

two inputs become defined
after spurious transitions)

and b.

1. The
possibly
values a

A<null and B<null are omitted because a tester has
no real need or mechanism for driving the A and B
ports to an undefined value. However, the C<null
statement, occurring cyclically befor.e the input
changes, has the important meaning to a tester that
C may not be expected to be In a defined state when
the inputs are changed. This behavior graph then
represents the structure of the test vector
sequences that would appear in the test of an AND
gate, and an actual test would consist of invoking
this behavior graph as a procedure a number of
times with the variables bound at the call to
appropriate values. The way the AND gate test
would be defined in the test language is:

The behavior denoted above represents the action
the AND gate performs upon its ports. A test for
an AND gate is the action that a tester performs
upon the ports of the device. A test of the AND
gate can accordingly be obtained simply
interchanging all force and feel operators, which
results in the following test:

3. In a real AND gate, the output, if it was to
change at all in response to an input transition,
would start to change only after the. input started
to change. However, from the standpoint of another
part connected to the output node) one would not
ordinarily depend on this value being retained once
the inputs have become undefined. In this sense of
use, the output can be thought of as becoming
undefined in anticipation of the input changes, and
so it is represented as becoming undefined
immediately before the inputs become undefined.
The precise time relations and tolerances between
actions combined with ";" may be defined by
language features not discussed here.

2. Force matches undefined a'1d the values are
irrelevant. This is the condition in which one
part sends a signal that is irrelevant to and
lpored by another part.

I. Force matches feel and the values are the same.
lllia is the normal condition in which one part
1IId8 a signal that another part receives.

.. action by a part upon a port is described in the
teat language by a notation of the form P01't
Clpfl'atOl' exp1'ession. The symbols used in the test
laDguage for operators are: < for force, > for
feel, and a force followed by the expression
"U," <null, for undefined. For example, clk<l
1Ddicates that the elk port is driven to a 1 state.
U (and> are visualized as arrows, the arrows
IOlnt in the direction of signaL f1.ow, but
"eratand that infol'mation fLow in test language
-.criptions and implementations is strictly one
.)': frCD the tester to the device pins, from the
pia to the parts, and so on, regardless of the
Urectlon of signal flow. The syntax of the test
1aD&uage enforces this rule in that (I) only port
Identifiers are permitted to the left of an
operator, and (2) the expression on the right of
tbe operator may contain constants or variables,
but not port identifiers. Thus it is not possible
11th the operators described here to create a test
,rograll that senses and assigns to some variable
the value on one pin in order to apply that value
liter to another pin. This usual feature of
Ulorithmic progranming notations is unnecessary
for describing non-adaptive tests, and is
I""capatible with the pipelining employed in high­
perfon.ance test instruments.

3. Undefined matches undefined and the values are
Irrelevant. Usually this corresponds to one part
lIDding an indeterminate value that is irrelevant
to and Ignored by another part.

3. Su11 Examples
tile dme-dependent behavior of the parts and
.)'.U.s we would like to describe consist of a
lIquence of actions. The test language denotes the
,.rtial ordering of these actions with a
character-based syntax. A group of partially
ordered actions is called a behavio1' gmph. As is
aual with programming notations, the separator
character 11; II is used to denote sequence, and has
lovest precedence. Actions separated by tt; It would
be parts of sequential test steps. Actions
aeparated by tt,If occur concurrently.

Paper 3.2
59

The AND gate test would be invoked as follows:

define procedure andtest
var a b;

A<a, B<b;
C>a&b; C<null;

end

(call and test a<O, b<O;
a<O, b<l;
a<l, b<O;
a<l, b<I;)

exhaustive test consists
of four vectors

4. Compositions
When a test is applied to the pins of a chip in
order to test a particular part of the chip,
pattern of signals at the pins is altered by
composition before being applied to the part.
composition is analogous to a filter between
pins and the part. As illustrated in figure 2, the
filter is composed of the entire system, excepting
the part where testing is directed. The input tol

the filter is from the tester and the output of the
filter is directed to the part being tested.
Multilevel compositions correspond to the cascading
of several filters.

Now, this example, deliberately simple as it is,
may appear to be a bit silly -- the gnat and
sledgehammer syndrome. Observe, though, that the
procedure defined for a complex system containing a
large number of parts can be as complex as the
interconnections between these parts requires, and
can call other procedures for the individual parts.
Thus the "partsll abstraction used in structured
design as defined here is mapped into the
procedural abstraction in the test language. This
mapping might be described as of an "inside-out ll

character.

T2

TO

H2

system

HI H2 T2

Hi

part

T2

element

The behavior of devices with state presents no
difficulties. For example, the following
represents the behavior of a O-type flip-flop with
ports: elk, clock input; 0, data input; and Q,
output.

Signals in real systems can be generically
classified into two categories: (1) signals that
make clean transitions from one state to another,
and (2) signals with spurious transitions. Clock
signals characteristically require a clean
transition, whereas inputs and outputs of
combinational logic may have spurious transitions.

*[O>x;
elk> I ;
clk>O, O<null, Q<x; I

input becomes valid
clock 0-1
three actions may happen

in any orner

Figure 2: Filter Representation of a Test

The testing task consists of applying known tests
to the elemental parts. The difficulty is that the
tests must be applied from the ports of the entire
system. Following the filter analogy, if the
output of the last filter is given, an input to the
first filter which will produce the required
output, must be found. In test language terms, the
inverse filter is called an access procedure, and
takes as its argument a primitive test that is to
be applied to one particular part. The concept 0

an access procedure can be applied repeatedly to a
multi-level composition of parts. The result of
the access procedure is a test that can be applied
to the entire composition of parts and will result
in the primitive test being applied to the part.

If one examines the cyclic actions on the same port
in the behavior graph above, one observes that the
o input alternates between the actions of O>x and
O<null. When the O<null action is effective, port
D may experience any behavior, including an
arbitrary number of transitions. This notational
description corresponds to the 0 input needing to
be defined only for a short period of time
surrounding the rising edge of the clock. The clk
port alternates between the actions clk>l and
clk>O, with no indication that the clock input may
have spurious transitions. The Q port simply
assumes successive values, Q<x, and because there
is no case in which Q<null, the transitions are
represented as clean ones. Purely combina tional
logic is tolerant of spurious transitions. These
spurious transitions are compatible with, for
example, the LSSD [3] scan path structure that
applies shifted versions of each test vector to
combinational logic during the test vector loading
and unloading phase. In the formalization of the
behavior of a scan path, the output of the scan
path would be stated as undefined while the vector
is shifting.

Paper 3.2
60

Of course for some notorious designs, such an
access procedure may be practically impossible to
compute, too lengthy to apply economically, or
both, in which case the testability of the design,
even though it is composed of individually testable
parts, is lacking. Specific testing styles or
disciplines -- LSSO is a particularly good example
-- provide systematic ways of assuring that access
procedures exist, are short and scale well with:
complexity, and are easy to compute.

There are ways of deriving access procedures for
more general classes of compositions, and one of
these approaches will now be outlined.

The transfer function of a filter can be described
as pairs of behavior graphs. Each pair represents
the actions on the external ports and corresponding
actions on the internal ports. Each pair may
contain variables, allowing it to describe many
distinct tests.

An access procedure is defined by two behavior
graphs, called an external and internal test. An

"II procedure is invoked by presenting it with a
....'lor graph of actions to be performed on the
wernal ports. If the behavior graph matches the
laternal test, the external test can be returned as
tilt result of the procedure. The capability of an
ICce,1 procedure derived in this way from a single
aternal behavior and resultant response is
U.lted: it can work only if presented with
.....'lor graph very similar to its internal test.
for practical testing, each part may have several
acel. procedures that utilize its structure in
tifferent ways. When composing a system of
otIIervise testable parts, two things are necessary:
(1) the system have an access procedure for each
,.rt, and (2) the internal test of the access
flOCedures match the required external tests of the
..rts. If these two criteria are met, the tests of
tbe parts can be translated by means of the access
procedure to tests that can be applied to the
atlre composition.

'DIe second criterion is the basis for design
lIdependence in the generation of testable systems.
BIt design of a part and design of a composition
COIt.loing that part can be carried out
1adependently if the test behavior at the interface
"t.een these parts is specified.

5. Example
Condder testing an elementary part when it is
c.posed with another part, a triple D flip-flop,
II shown In figure 3. (We will later use and AND
lite for the elementary part.) Note that the
tleaentary part is completely surrounded by the
triple flip-flop, so that none of its terminals are
ICcessible from the ports of the composition.

Ai flops A2 internal
ql a device

B2
q2 b

C2
c

elk----'

Figure 3: System Consisting of Flip Flops and an
Internal Part

external ports:

*[ADa, BDb;
elk> 1;
Cl<c, Al<null, Bl<null, clk>O; J

internal ports:

*[CDc;
A2<a, B2<b, C2<null; J

Several <null actions are meaningless and have been
removed. The two behavior graphs shown above
represent an access procedure. The access
procedure is able to apply any test of the form
shown for internal ports by applying the program
shown for the external ports. The necessary
computation required to generate the external test
is just variable substitution. If the triple D
flip-flop were directly accessible to a tester,
this access procedure could be executed by applying
the dual of the behavior graph shown above under
"external ports:".

We can now specify that the elementary part is an
AND gate. A test for an AND gate was described
above. Two repetitions of the behavior graph shown
above are required to match one test of the AND
gate. This matching is shown below:

internal test AND gate test
(two repetitions)

C2>c;
A2<a, B2<b, C2<nul1; A<a, B<b;
C2>c; C>a&b;
A2<a, B2<b, C2<null; C<null;

In the example above two (different) applications
of the internal test are required to perform one
AND gate test. In both applications, the ports A2,
82, and C2 are matched with ports A, B, and C. In
the first application, the variables a and bare
matched with the variables of the same name. In
the second application, the variable c is matched
with a&b.

The test language code that represents the access
procedure is:

define procedure tripleflop
var abc;

Al<a, Bl<b;
elk<l;
CDc, elk<O;

end

The testing of the AND gate is basically the
application of the primitive tests for the AND gate
to the access procedure. The timing can be
abstracted away, however. The testing of the AND
gate is performed as follows:

tbe behavior of the triple f lip-flop with common
clock can be represented by the following behavior
graph:

*[ADa, Bl>b, C2>c;
elk>l;
A2<a, B2<b, Cl<c,
Al<null, Bl<null, C2<null, clk>O;

tbis behavior is a simple extension of that
presented for a D flip-flop.

(call and test a<O, b<O, c>O;
a<O, b<l, c>O;
a<l, b<O. c>O;
a<l, b<l. c>l;)

exhaustive test
consists of fouY'
vectors

AD access procedure
program by separating
and external ports, as

can be derived from this
the ac tions on the internal
follows :

Paper 3.2
61

6. Conclusions The method described in this paper
allows the generation of tests for hierarchically
composed systems to be approached in a structured
manner. The applications of this method can cover
a spectrum of design disciplines.

At one end of the spectrum, a catalog could be made
consisting of parts and their testability
attributes. Systems made using only the parts in
the catalog would be guaranteed testable, and a
test language system (such as the rIFI system
developed by the authors) would perform the
testing.

At the other end of the spectrum, a designer could
customize the design of all the parts in his
system. The testability formalism developed here
would aid the designer in partitioning the design
task, aid in documentation, and provide an
efficient manner of testing the system.

If a system is not testable, or if the test
designer does not know an efficient manner of
testing a system, this method will not help. The
method described here merely provides a manner of
formally describing the testability attributes of a
design. The designer must understand the
testability attributes before they can be
formalized.

7. References
[1) Carver A. Mead and Lynn A. Conway, Introduction

to VLSI Systems, Addison-Wesley, 1980.

[2) Erik P. DeBenedictis, "Techniques for Testing
Integrated Circuits, II Caltech Computer
Science Technical Report #4777 (PhD
thesis), August 1982.

[3] E. Eichelberger and T. Williams, "A Logic
Design System for VLSI Testability,"
Proceedings of the 14th Design Automation
Conference, pp 462-468, 1977.

Paper 3.2
62

	IC 82 058
	IC 82 059
	IC 82 060
	IC 82 061
	IC 82 062
	IC 82 063

