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We have calculated the mass of the 0 + glueball in SU(2) pure gauge theory in 4 dimensions, 
with very high statistics. The computation was done on an array of microprocessors with 
nearest-neighbor connections which run concurrently. We discuss, in detail, the implementation of 
the pure gauge algorithm for SU(2) and SU(3) and also the algorithm for calculating arbitrarily 
shaped Wilson loops on the array. The extension of these algorithms to the inclusion of dynamical 
fermions is also discussed. Finally, we present the results of our variational calculation of glueball 
masses which are in agreement with published results. 

1. Introduct ion  

A numerica l  approach to the solut ion of q u a n t u m  field theories via Monte  Carlo 

s imulat ions of the lattice versions of these theories has recently proven to be quite 

fruitful [1]. It has become increasingly clear, however, that computers  with orders of 

magni tude  more power are needed in order for this field to progress much further. 

The reasons for this include the statistical na ture  of the convergence of the numer ica l  

estimates, the need to calculate exponent ial ly  small quant i t ies  which are rapidly lost 

in this statistical noise (e.g. glueball  mass calculations),  and  the need to go to much  

larger lattices to remove spurious finite-size effects [2]. 

F u n d a m e n t a l  limits on  computa t iona l  speed and  feature size in VLSI technologies 

suggest that significant increases in performance will come not  f rom pushing current  

designs yet further, bu t  instead from new computer  architectures uti l izing m a n y  

* Work supported in part by the US Department of Energy under contract no. DE-AC03-8 I-ER40050. 
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computers in parallel: concurrent processing [3,4]. A simple design for such a 
computer is a "homogeneous machine": a regular array of (independent) processors 
with a small number of interconnections per processor [5]. Such a machine is 
actually being built at Caltech and consists of a 4 x 4 x 4 array of microprocessors 
wired as a 3-dimensional (periodic) cube and has a total CPU power of 10 VAX 
11/780's. We have found that the homogeneous machine design is ideal for use on 
many computationally intensive problems in the physical sciences such as partial 
differential equations, matrix inversion, and fast fourier transforms [6]. 

In this paper we concentrate on the applications of this type of machine to lattice 
gauge theories. In sect. 2 we describe the hardware and programming environment 
of the machine. In sect. 3, we discuss how the local nature of the action leads to a 
straightforward implementation of pure gauge Monte Carlos on the homogeneous 
machine. The details of this algorithm are given in sect. 4. In sect. 5, we present 
various figures of merit for the SU(2) and SU(3) algorithms, such as the inter- 
processor communication overhead and the speed through phase space. In sect. 6, 
after a brief discussion of the variational method to calculate glueball masses, we 
discuss at length an algorithm to calculate Wilson loops of arbitrary shape on the 
HM, and we present our results for the 0 + SU(2) glueball mass. Sect. 7 discusses an 
alternative algorithm for the pure gauge update and suggests how it may be useful 
for the incorporation of dynamical fermions. Summary and conclusions appear in 
sect. 8. 

2. Hardware and programming environment 

This application was programmed on the four-element prototype array which was 
built to test the hardware and software for the 64-element microprocessor array 
currently being constructed. The four-element prototype is configured as shown in 
fig. 2. The processors labeled (0-3) are the nodes of the array which have bidirec- 
tional communication paths shown by solid lines. Each of these processors is based 
on the Intel 8086/8087 microprocessor. This microcomputer* has about ½th the 
power of the Host VAX 11/780 in typical scientific computing. Each microprocessor 
board has 128k bytes of memory, 6 bidirectional data channels which allow 
communication with other processors in the array and a simple monitor in ROM 
which allows down-loading of programs through any of the communication chan- 
nels. 

Each bidirectional channel allows the transmission of fixed length (64 bit) packets 
and is implemented with two independent data paths, one for each direction. Each 
data path is implemented with two 64-bit FIFO buffers, one on each micro-processor 
board, and the necessary wiring between them to provide for asynchronous transmis- 
sion of a packet from one FIFO to the other. The hardware bandwidth of this 

* For an 8086-8087 processor running at 5 MHz. 
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channel is about 2 megabits/sec. The actual transmission time for a 4-word message, 
the time between the call to send a packet and the return of a pending read on the 
receiving end, is about 150 micro-seconds. This yields an effective (including 
software overhead) bandwidth of about a half a megabit/sec. 

The machine labeled IH is the intermediate host. It is also an Intel 8086/8087 
based processor which functions as the computer which controls the array. This 
could have been done with the host VAX directly but a separate microprocessor was 
used for two reasons. 

(i) The array would typically require instructions much more often than our 
VAX11/780 could provide them. The host VAX is fully loaded providing services to 
an average load of 20-40 users. 

(ii) The floating point formats for the Intel 8087/8087 and the VAX11/780 differ 
leading to conversion problems on the communication line between them. This 
conversion overhead would further reduce throughput if the VAX was used as the 

controlling computer. 
The two problems mentioned above were neatly side stepped by having an Intel 

based microcomputer serve as an "intermediate host". 
The application and system programming for the homogeneous machine is all 

performed on a VAX with a cross compiler producing 8086 code which is then 
loaded into the array. Currently all our programs are written in the high-level 
language C although a PASCAL environment is in the process of being developed. 
The programming model for our machine is that of independent processes com- 
municating via messages. This can be formulated in a rather general and powerful 
fashion; the language CSP [7] and more sophisticatedly the "actor"  formalism of 
Hewitt [8] and the SIMULA based work of Lang [9] are possible implementations of 
this general idea. The reader is referred to sect. 4 where the usage of our current 
operating system is described for the lattice gauge theory problem. We note that for 
this class of application (which we will call crystalline) we only need to implement 
some of the simplest features of the general systems. Currently, only one process per 
processor is allowed and messages are passed only between processors which have a 
direct hard wired link. A more general system is being planned but the current 
implementation [10,6] should handle differential equations, short- and long-range 
particle dynamics and fast fourier transform applications. As described in [6], these 
cover a wide range of important scientific problems. 

We emphasize that we have not found the programming either hard or inefficient. 
The suspicion of many that concurrent processors are impossible to program does 
not seem well founded. 

3. Pure gauge theories on the homogeneous machine 

The locality of the actions used in Monte Carlo simulations of gauge theories 
implies that these computations can be concurrently processed in a straightforward 
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way. In the standard Metropolis procedure, for instance, the change in the action 
due to the move of a link variable, AS, involves only nearby link variables coupled 
to the one in question through plaquettes. This means that sets of decoupled links 
(links which nowhere appear in the same plaquette) can be simultaneously updated 
via the standard procedure, and the gauge field configurations will be generated 
according to the correct distribution, i.e. 

P({U/}) = e - ~ s ~ u )  . 

This is because for each update, the AS's  computed will not feel the effects of the 
other links being updated at the same time (they are decoupled) and so they will be 
exactly the same as for the usual sequential update algorithm. The simultaneous 
update of N decoupled finks is exactly equivalent to the sequential update, in 
arbitrary order, of these same N links. 

The maximum number of decoupled links which can exist on the lattice at any 
given time is zNtot, where Nto t is the total number of links of the lattice. The 

(a) 

(b) 

(c) 

Fig. 1. Maximal set of decoupled links in (a) 2 dimensions, (b) 3 dimensions and (c) 4 dimensions. 
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structure of this maximal set of decoupled links is illustrated in fig. 1, for 2, 3 and 4 
dimensions. 

Beyond the simultaneous update of all the elements of a set of decoupled links, 
one could simultaneously update more than one link in a given plaquette. One must 

be careful, however, to use a procedure which generates the correct multi-link 

probability distribution, and not merely the product of the simple one-link distribu- 

tions. As an example, suppose we wanted to simultaneously update 2 links, both of 

which are in the same plaquette. Using the Metropolis method, one could proceed as 

follows. Move each of the link matrices: U l ~ U I + 8U1, U 2 ~ U 2 + 8U 2. Then 
compute the total change in the action, 

A s  = s ( u ,  + 8u, ,  u2 +  u2) - s ( u , ,  u2). 

Now, if A S  is < 0, or if e ~as > r with r a random number ~ [0, 1], accept both 

moves, 8U l and 8U 2. Otherwise, reject both moves, and return the matrices to U 1 and 
U 2. The above method satisfies the constraint of detailed balance and can of course 
be generalized to more than 2-1ink matrices. Currently, we are not running in this 
multi-link update mode: we are simultaneously updating sets of decoupled links. 

4. Implementat ion on a 4-node machine 

We will now discuss some of the details of 4-dimensional pure gauge algorithms 
on a 4-node concurrent processor. This machine illustrates all of the essential 
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features of larger machines. In particular, the algorithms developed for this machine 
will run on the 64-node machine with a few minor modifications. The lattice is 
divided up among the computers so that neighboring variables of the lattice are 
either in the same node or in neighboring nodes. For the 2 × 2 square, the 
4-dimensional lattice is divided up in 2 of its dimensions, the other 2 dimensions are 
"squashed" into the processors: if the total lattice is 4 x 4 x 4 x 4, each node stores 
a 2 × 2 x 4 x 4 subcell of the lattice. 

To illustrate how the algorithm for gauge theories works on a homogeneous 
machine we will outline the steps required to update a link residing in one of the 
subcells of the lattice. To be definite, suppose we are updating the link labeled A in 
fig. 3a. This link is chosen to be on the surface of the subcell in order to illustrate the 
inter-processor communication required. For the sake of simplification only a 
two-dimensional example is discussed. To update link A, the matrices BC-  ]D- 1 and 
E-1F-~G must be constructed and passed to processor 1. As will become clear, the 
algorithm is written in such a way so as to keep the processors synchronized: that is, 
the situation is actually as shown in fig. 3b. At the same time that processor 1 is 
updating link AI, processor 0 is updating link A0, and so on. The corresponding 
matrices, BiC ~- ]DTl and E 7 iF/-~G~, must be constructed and passed to processor i. 
The first step in the algorithm is for the B matrices to be exchanged between 
processors 0 and 2, 1 and 3. All such communications are done via a polled-mailbox 
scheme. Taking the 1,3 exchange as an example, processor 3 sends the matrix BI to 
the "mai lbox"  (an internal buffer) of processor 1 across the bidirectional channel 
"vchan"  (vertical channel). After putting the matrix in the mailbox, the "f lag"  of the 
mailbox is set, indicating to processor 1 that the mailbox is ready to be read. 
Processor 1 likewise sends matrix B 3 to  the mailbox of processor 3 and sets the flag. 
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Each processor then polls its mailbox--checking the flag to see if there is something 
there to be read. If the flag indicates the mailbox is full, the processor empties the 
buffer, resets the flag to the "empty"  position and proceeds to its next instruction. If 
the flag indicates that the mailbox is still empty, the processor effectively halts: it 
polls the flag indefinitely until the mailbox is filled. This is how the processors are 
kept synchronized; if processor 3 is lagging behind 1, when 1 gets to the instruction 
to read its mailbox, it will stop at that point in its instruction sequence until 3 writes 
to it. 

Once this B exchange is finished, the matrices B~ reside in the same processors as 
C~ and D~, so the products BiC 7 ~D71 are formed and are ready to be used for the 
update. The products E/-IF~-~G~ are a bit more difficult since the matrices E~ are in 
the next-nearest-neighbor processor to the one containing A~. In order to minimize 
communication time, we adopt the strategy of passing E 1 to processor 0, forming the 
product E?IF~ID~ in processor 0, and passing only the resultant product to 
processor 1. The same is, of course, simultaneously done for E 0' E 2 and E 3. The 
matrices are again passed via the polled-mailbox scheme as described above for the 
matrices B~. Once all this is accomplished, the processors all update their A i and then 
proceed to the next link, staying in step due to the nature of the communications 
software. 

The above may seem complicated to implement but in reality it is not. Once the 
fundamental matrix exchange subroutines are written, all that is required beyond the 
usual Metropolis update algorithm is a few logical " i f"  statements which are needed 
to detect if the matrices B,, etc. need to be communicated from a neighboring 
processor. In fact, the entire coding and debugging for SU(2) in 4 dimensions 
required only about 20 hours of (human) time: a modest investment for the 
computer power which is gained. 

5. SU(2)  on a 4-node machine 

We have implemented pure gauge SU(2) on the 4-node machine, using the 
120-element icosahedral subgroup method to speed up the computation [11]. Since 
we work with a finite subgroup, only integers labeling the members of the subgroup 
need to be communicated between the processors; actual matrices are not passed. 
Each node of the machine stores the entire group multiplication table of 14400 
integers. As a partial check of the correctness of the algorithm, we have verified that 
the usual average plaquette results were obtained (see fig. 4). 

Since the speed of each node is ½th VAX, one would naively expect the 
performance of the 4-node machine to be that of ½ of a VAX 11/780. This is, of 
course, degraded by the communications overhead present in a homogeneous 
machine, but not in a normal, sequential computer. This overhead was measured by 
timing the program, and then timing a version of the program in which all 
communications were done twice, doubling the communication overhead. The 
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Fig. 4. Average plaquette as a function of coupling for SU(2) gauge theory in 4 dimensions. 

difference in these timings then gave the time spent in interprocessor communica-  
tion. The results are shown in fig. 5 for various lattice sizes, and are given in terms of 

percentage of  total time spent in communicat ions.  Since this percentage is governed 
by the surface area to volume ratio of the subcells residing in each node, one expects 
the overhead to be worse for smaller subcells. This is apparent  in fig. 5, where the 

worst case of  a 2 × 2 × 4 × 4 subcell gave a communicat ions  percentage of 25%. 

The fact that  the overhead grows slowly as the subcell is made smaller and that the 

"wors t  case" overhead is still a reasonably small fraction is important .  We want  to 
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add more nodes (the 64-node machine) and run on lattices of 83 × 16, for example, 
so the subcells in each node will always be fairly small. The 25% figure means that 
the performance of these larger machines will not be severely degraded by communi- 
cations overhead, at least for this icosahedral version of SU(2). The overheads given 
can actually be improved upon; we have not yet fully optimized our communications 
software. 

One may worry that in a more realistic gauge theory, i.e. SU(3), one will have to 
pass full 3 × 3 complex matrices between the nodes so that the communication 
overhead may become quite large. This turns out not to be the case, however. The 
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reason is that although the communication time does indeed grow, the computat ion 
time per matrix communication grows even faster. For example, if the size of the 
matrix is N, matrix multiplication grows as N s, while the communication time goes 
as N 2. We have actually implemented SU(3) (to be discussed later) and find that the 
communications overhead is in fact smaller: for the worst case 2 x 2 x 4 x 4 subcell, 

we find an overhead of 18%. 
Beyond the CPU time per sweep through the lattice, what ultimately counts is the 

speed through phase space of the observable which one is interested in. One may 
worry that our update procedure causes observables to go though phase space at a 
slower speed than the usual procedure adopted on a sequential computer. On a 
sequential computer, one starts a sweep by updating the links at a corner of the 
lattice and then looping in x, y, z, and t. At any given link update, some of the 
neighboring links have already been updated, causing the subsequent link choice to 
be less correlated with the previous sweep than if all the neighboring links were still 
at their "old" values. On the homogeneous machine, since we simultaneously update 
sets of decoupled links, it appears that more "old"  links are used in the update and 
therefore our sweeps must be more correlated than in the usual procedure. This isn't 
quite correct, however. Towards the end of a sweep on the homogeneous machine 
less old links are used, so this must (at least partially) compensate for the larger 
correlation at the beginning of the sweep. To investigate this, we measured the speed 
through phase space of the average plaquette. Fig. 6 shows the sweep averages of this 
observable for the two update procedures. It is seen that both methods thermalize in 
approximately 4 sweeps and that the fluctuations are, at least roughly, the same. 
This is made more quantitative in table 1 where we show the sweep-sweep correla- 
tion. Table 1 shows that the sweep-to-sweep correlations of the two methods are 
similar; we conclude that the speed through phase space of the two update 

procedures are similar. 

TABLE l 
Sweep-sweep correlations 

Average Naive error Error with correlations* 

regular update 0.724328 0.000169 0.000209 
HM update 0.724369 0.000168 0.000198 

*"Error with correlations" means that sweep-to-sweep correlations among the data have been taken 
into account in the estimation of the error through the formula, 

°2=  +2  
N p=l ~ A2) - ~A) 2 J '  

where the subscript on the observable A labels sweep number. 
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6. Glueball masses in SU(2) 

As a first attempt at a realistic calculation of an interesting physical observable, 
we have calculated the mass of the 0 ÷ glueball in SU(2) for a range of couplings. The 
method used is the combined variational 2-point correlation procedure used by 
various groups [12]. This is the usual 2-point method but with the operators chosen 
so as to maximize the signal from the particular state one is interested in. The 
connected correlation, 

r ( ~ )  = ( ( 0 ( ~ )  - ( 0 ) ) ( 0 ( 0 )  - ( 0 ) ) ) ,  

is calculated, where 0 is some linear combination of gauge invariant operators: 

o = E , , w , .  
i 

The W~ are combinations of Wilson loops chosen so as to excite states of definite 
spin, parity and momentum. The mass is 

m =  lim - I n  F ( z )  
~---,oo F ( ' r -  1) " 

The signal, F(1)/F(0) ,  is maximized as a function of the parameters a i. This 
maximizes the overlap between O and the glueball wave function and is equivalent 
to minimizing m. 

This method is perhaps the optimal way to calculate glueball masses. Even though 
m is gotten only by the asymptotic fall-off of F(T) as ~- ---, ~ ,  by including enough 
operators one can find a reasonable estimate of m from ~" = 1, 2. As a bonus, the 
coefficients a i give one information about the glueball wave function. 

At first sight, the calculation of Wilson loops of arbitrary shape and orientation 
on the homogeneous machine seems very difficult. A loop such as that shown in fig. 
7d can intersect the subcells of several processors. Keeping track of all the necessary 

(a) (b) "~ 

(c) 

(d) (e) 

Fig. 7. Operators  used in the variational calculation of the glueball wave function. 
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communications for increasingly complex loops (which we need for glueball calcula- 
tions) is a difficult task for the programmer. 

This turns out not to be the case, however, if one sets up the algorithm in the 
following way. Describe the shape of a loop by strings of integers, where each integer 
corresponds to a unit translation vector of the lattice: 1 corresponds to +~,  2 
corresponds to +.9 . . . . .  5 corresponds to - ~ ,  etc. For example, the loop of fig. 7d is 
described by the string "253617". A routine is then constructed which takes the 
starting location of the loop and a string of integers (of arbitrary length) as input, 
and produces the matrix product along that path. This is done by moving to the site 
of the lattice where the loop starts and then reading the input string one integer at a 
time. When an integer is read, the matrix in the corresponding direction is fetched, 
multiplied into the current matrix product and, finally, the current site location is 
incremented in the same direction. The routine is then ready to read the next integer. 
It continues this way, literally "walking around" the path described by the input 
string. 

The only modification necessary for this algorithm to work on the homogeneous 
machine is a simple test which, at each step of the "walk",  tests to see if one is 
stepping out of the current subcell. If this is true, the processor sends its current 
matrix product to the processor in the direction of the step. The string does not need 
to be passed. All the processors are calculating the same shape loop located at the 
same point in each subcell (the calculation is, again, synchronized by the communi- 
cations procedure), so all processors will be at the same step of the same path. 

The above algorithm for Wilson loops was quite easy to implement and once this 
was done, the code for glueball masses, including an arbitrary number of operators, 
required very little additional work. One slight complication is the fact that a 2-point 
correlation, being a global observable, cannot be easily calculated within the 
homogeneous machine. What we do is the following. First, all the Wilson loops on 
the lattice are calculated in the nodes of the machine. The zero-momentum operators 
are then gotten by adding the loops in the spatial directions--this is done by adding 
results and passing the results towards processor 0. The zero-momentum operators, 
for each time slice, now reside in processor 0 and all that needs to be done is for the 
2-point correlations between the various slices to be calculated. Instead of doing this 
in processor 0, we pass the numbers to the intermediate host (IH) and have it 
calculate the correlations. This frees the array to continue on to the next sweep. 
Since the amount of work that the IH has to do is small in comparison to that 
required to sweep through a subcell, the IH has no trouble keeping up with the 
array. 

We now present the results for the SU(2) 0 + glueball mass. We have worked at 
four values of the coupling,/3 = 2.0, 2.1, 2.2 and 2.3 on a 4 x 4 x 4 x 8 lattice. We 
have collected data with very large statistics; for our most ambitious data point 
(/3 = 2.3) a total of 250000 sweeps was generated. Roughly two-thirds of the time 
was spent in update and one-third in measurements. The entire computation, for all 
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Fig. 8. Example of a Wilson-loop calculation on the 2 × 2 array. (a) The loop 61122556 to be calculated. 
(b) through (i) various stages of the computation with the dark links denoting those which are being used 

at the present step. 

values of  the coupling, took approximately 1000 hours on the 2 × 2 Homogeneous  
Machine,  which is equivalent to 400 hours on the VAX. 

The five operators used in the variational calculation are shown in fig. 7. These are 

the simple plaquette, all three operators of  perimeter six and the two-by-two planar  
loop. Our  results clearly show that in order to improve the overlap of our trial wave 

function with the true glueball wave function we need to use more operators. This 
would, however, require much more computer  time than is presently available. No t  
only does the time spent in measurements  go up with the number  of  operators but  
better statistics are also required to extract the mass reliably. 

The glueball mass (in units of  inverse lattice spacing) as a function of  the coupl ing 
is plotted in fig. 9. The straight line drawn in the figure corresponds to the predict ion 

of  the renormalizat ion group in two-loop per turbat ion theory:  

( ' )  A L  = 1 ( f l og  2 ) -~ , / 2 ~g e x  p _ 2flog 2 , 
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Fig. 9. Mass of the 0 + glueball as a function of coupling for SU(2) gauge theory in 4 dimensions. 

which is the lattice mass scale, related to the more conventional scale, A m o r n ,  by 

A mom= 57.4AL (SU(2)) .  

For SU(2)/30 = 11/24~r 2 and fll = 17/967r4- We note that our results are almost 
identical to those of Berg et al. [ 13], though we have somewhat more statistics. If we 
interpret our results as being consistent with scaling behaviour we can give a value 
for the "physical" mass of the glueball. Using a value of 270 MeV for A morn which is 
appropriate for a string tension of 400 MeV, we get 

m(0  +) = 0.80 + 0.14 GeV. 

The meaning of this number is somewhat unclear since the string tension as obtained 
from phenomenology pertains to a theory with three colors and dynamical fermions. 

However, we do not think that our results show unambiguously the scaling 
behaviour as predicted by the continuum renormalization group. The masses at 
fl = 2.15, 2.2 are significantly lower than expected. This can, perhaps, be best 
understood in terms of the large peak in the specific heat which occurs at the same 
value of fl [14]. This is purely a lattice artifact and has nothing to do with the 
physical continuum theory. In view of this we would be forced to work at fl >~ 2.3 in 
order to investigate the scaling behaviour. We may interpret both the large specific 
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heat and the anomalously low mass (or large correlation length) as manifestations of 
a nearby phase transition in an extended coupling constant plane [15]. We find this 
point of view particularly illuminating, especially since it suggests a way of testing 
the scaling hypothesis without necessarily working at very large/3's.  This may be 
possible with the use of generalized actions. An analysis of renormalization group 
flows using the Migdal-Kadanoff recursion relations [16] suggests that the mixed 
SU(2)-SO(3) action 

Splaq : / 3 F [  1 - l t rF(Uplaq)]-~- /3A[1-  ltrA(Uplaq)] , 

with the fundamental and adjoint couplings satisfying flA = -- 0"24flF, may approach 
perturbative scaling faster than the simple Wilson action. We are currently investi- 
gating this possibility. 

It is difficult to go further into the weak-coupling (large /3) region because of 
limitations on CPU time. Recall that the correlation length grows exponentially with 
/3. This has several effects. First, one needs to use larger lattices. Second, as we 
approach the continuum limit the speed through phase space decreases due to 
critical slowing down and more sweeps have to be generated to obtain reliable 
statistics. Thirdly, the size of the glueball as measured in lattice units increases so 
that we need to include larger loops in the trial wave function. Finally, as the 
correlation length grows we have to go further into the correlation function to 
extract the mass reliably. Thus, in order to work at higher values of /3  one would 
need a more powerful computer. 

7. SU(3) and an alternative algorithm 

In addition to SU(2), we have also implemented pure gauge SU(3) on the 4-node 
machine, using the optimum Metropolis method of Okawa [17]. The character of this 
computation is very different from that of the SU(2) icosahedral computation. Here, 
floating point operations dominate, and full, 3 x 3 complex matrices are stored. The 
algorithm is identical in structure to the SU(2) algorithm; the only differences are 
the matrix exchange subroutines and the Metropolis update subroutine. Again, we 
have verified that the usual average plaquette results are obtained (compare fig. 10 
and [ 18]). 

As mentioned earlier, the communications time for this SU(3) algorithm, though 
larger than that for SU(2) in absolute terms is actually a smaller fraction of the total 
computation time (18% for SU(3) versus 25% for SU(2) for the "worst  case" 
2 x 2 x 4 x 4 subcell). As before, the smallness of the overhead shows that, for pure 
gauge SU(3), large lattices can be updated in parallel by a homogeneous machine 
with a large number of nodes (64 and greater) with high efficiency. 

In the interest of simplifying our code, we wrote a version of the SU(3) algorithm 
which uses the Wilson loop routine described in sect. 7 not only to calculate 
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Fig. 10. Average plaquette as a function of coupling for SU(3) gauge theory in 4 dimensions. 

observables, but also to do the update of the configuration. To update a link, we 
need the values of the 6 plaquettes which contain the link. This is found by merely 
calling the Wilson-loop routine with the appropriate input strings for the 6 plaquettes. 
This makes the code conceptually much simpler: all the parts of the code which are 
special to a homogeneous machine (versus a sequential computer) are localized to 
one small subroutine. This version of SU(3) runs somewhat slower than the 
original - about 10-15% slower due to additional overhead and non-optimal com- 
munications strategy coming from the use of the generalized Wilson-loop algorithm. 
The importance of this algorithm lies in the fact that it can now be easily extended 
so as to incorporate dynamical fermions using stochastic or hopping-parameter 
expansion methods [19]. These methods fundamentally consist of using a more 
complex action for the gauge links. Instead of interacting only via plaquettes, the 
action also contains all larger Wilson loops. These are trivial to incorporate in our 
algorithm: strings describing the various loops merely need to be input to the 
generalized Wilson-loop routine. Though, a priori, the incorporation of the hopping 
expansion on the homogeneous machine seems horrendous, we find that it can in 
fact be done with little extra work on the part of the programmer and that it will run 
with high efficiency. We intend to investigate this more thoroughly in the future. 

8. Summary and conclusions 

We have shown that pure gauge Monte Carlo calculations can be done on a 
homogeneous machine with high efficiency and without too much work for the 
programmer. We have calculated a non-trivial observable, the 0 ÷ glueball mass, to 
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high statistics and the result is consistent with previously published results. Continu- 
ing along this path, when our more powerful, 64-node machine is finished, we will 
find SU(3) glueball masses. We intend to find the masses of other spin, parity states 
besides the 0 ÷, and we will include many operators and determine them to very high 
statistics. 

Leaving the flavor singlet sector of the theory (e.g. glueballs), another important 
problem is that of the inclusion of valence quarks ("quenched" approximation) and 
the calculation of flavor non-singlet masses [20]. These techniques involve inversion 
of matrices via Gauss-Seidel iteration. Since the matrix being inverted has a local, 
nearest-neighbor structure, these algorithms will be straightforward to implement on 
the homogeneous machine and we are currently working on this problem. 

The ultimate problem is, of course, the inclusion of dynamical fermions. We have 
already mentioned the stochastic and hopping expansion methods; we think that 
these methods can be easily done on the homogeneous machine with high efficiency. 
Another promising technique for dynamical fermions is the pseudo-fermion method 
[21]. This will also work straightforwardly on the HM since, again, the action for the 
pseudo field is local. 

It is probable that significant new progress can be made in the field of lattice 
gauge theories only if much more powerful computers become available - all current 
techniques are limited by CPU time. Since it also appears that the only way to 
achieve large factors in computer performance is through the use of concurrent 
processing, we feel that the only Monte Carlo algorithms worth considering are those 
which can run concurrently. We hope to continue to study these exciting problems in 
the future. 

E.B. and S.O. acknowledge the support of a fellowship from the Shell Oil 
Company. 
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