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ABSTRACT

This paper discusses combined research on simulation and
parallel processing. Hypercubes and an axsocinled programming
environment {called protocols) were consiructed ta support
expenments in VLSL circuiv simulation. Syochronous  sud
asynchronous parallel simulation algorithms were developed and
programmed in this environment Empincal results for a
hypercube containing 61 processing elements {PEs) are reported.
Results show that for a machine with mederate communication
costs, the synchronous algorithm is more efficient. Computer
simulations of the algorithins suggest that the ssynchronous
version would perform  better il low cost communication
primitives ¢ould be developed. The synchronous algorithm is
limited by processor load imbelance. An analysis of the load
situation suggests that large processors (> 1000 nedes) will indeed
be able to efficiently simulate circuits containing hundreds of
thousands of traasistors.

1. INTRODUCTION. With the ever increasing complexity of
VLS circuils there is a continuing need to increase the power of
the simulation tools wused to venfy their function and
performance. One approach to improving the speed and capacily
of these Lools is to take ndvantage of Lthe memory and compute
power of a general purpesc mulliprocessor system. Such an
approach allows us to exploit the inirinsic concurrency of a
circuit by simulating different pieces of the circuil on separate
Processors.

Uniprocessor circuit simulators (programs that simulate analog
circuil behavior} are limited to circuits in the range of 4 fow
Inimdred 1o a few thousand transistors. The simulation of very
large circuits (> 100,000 transistors) will therefore require a
multiprocessor system composed of hundreds to thousands of
processing clements (PEs). Hypercubes, by virtue of their
sealability are well suiled to this task. The mapping of u
uniprocessor algorithm onto a picee of multiprocessor hardware is
not, however, & Lrivial taxk. First, it requires a parlitioning of
the problem that exposes the availsble parallelism. Secondly, it
requires a software model of execution Lhnt can effectively
represent the partitioned algorithm. Thirdly, it requires a set of
programming primitives that can efficiently implement the
required interprocessor communication and synchronization

In this paper we describe a set of experiments in which we map
an MOS circuit simulutor called Emu [Ackland 86] onto a 61 PE
hypercube mulliprocessor [DeBencdictis 85]. Scetion 2 gives a
bricl  description of the simulation algorithm.  Parallel
partitioning of this algorithm is outlined in Scction 3. Sections 4
and 5 describe the programmiag medel and low level primitives
used to implement the paratlel algorithm. Emphasis here is on
techniques that are general enough to be used in other
applications and also extensible to multiprocessors having
thousands of PEs. Some empincal results are reported in Section
G. Section 7 provides a simple analysis of some of these resulls
together with some predictions as to how the system will perform
with large numbers of PEs,

2. SIMULATION MODEL. EMU represents an MOS circuit

as a set of capacitive nodes interconnecied by voliage controlled

current sources. The change in voltage at any node in the circuit
can be determined by summing the currents entering a node and
integrating their charging ¢ffect on the node capacitance. For a
sufficiently small timestep, this change in voltage can bLe
calculated using 3 single backward Euler integration, assuming
that all other nodes in the circuit remain constant.

The accuracy and numerical stability of this scheme depends
eritically on the choice of timestep Nodes that are tightly
coupled require a smaller timestep to maiataio the same level of
simulation accuracy. For this reason the circuit is divided into
regions of lightly coupled nodes. Two nodes are 3aid to be tightly
coupled i they are joined by a direct charge transfer path (e.g.
the gource-drain of an MOS Lransistor). Between regions,
simulation occurs using s relatively coarse timestep specified by
the vser. Within regions, however, the timestep is automatically
subdivided according to circuit activity. Al any particular Lime.
a few regions {the active ones) will be simulated with a fine
timestep while the rest of the crrcuit is safely simulated using a
coarser timestep.

Further efliciencies are obtained by checking to see if the
inputs to a region chunge from one timestep to the nexe. If bath
the inputs and the internal state of the region has not changed, it
is not necessary to resimulate the region since the resull will be
the same. [n our experiments with large logic circuits ( > 1000
transistors), only 15259 of Lhe regions need to be recalculnted.

3. PARALLEL IMPLEMENTATION. \We exploit a circuit's
wtnnsic coneurrency by distributing the circuil description
across the PEs. The division of the circuit into regions provides a
natural sitarting poinl for genecrating the partitions. Since al)
connections between regions are unidirectional, the circuit can be
represented as a directed graph as shown in Figure | where each
node i3 a region nnd each cdge represenis a node voltage
generated in the source region nnd used as an input by the
destination region. The partitioning problem then becomes one
of nllocating rcgions o processors In such u way as to evenly
disiribute the computational load while minimizing interprocessor
communcation.

Figure 1: Region Subdivision

The concurrent simulation of a circuit on multiple processors
requires two additional resources, The first is a communications
mechanism for transmitting node voltages from one region to
another. The second is a synchronization protocol to ensure that
regions ace receiving the correct data at the correct time. Two
different models of parallel computstion have been developed to
provide these resources.
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3.1. Synchronous Model. In the synehronous mode), all regions
are simulated in lock step. Each processor simulates each of its
regions for exaclly one timestep. It then writes vhe values of
those node voltages that have changed to other processors that
need that data. The processor then waits until all other
processors have (inished simulating thal timestep It then reads
its new input data and Dbeging simulating the next limestep.
Comyputational load balance belween processors is hmited by the
dynamic load of each region (caused by Limestep subdivision and
conditionzl execution). Synchronization requires all processors to
run at Lhe specd of the slowest processar al each Limestep.

3.2. Asynchronous Model. ln the asynchronous version, source
regions individually transmit their output values to destination
regions as they are calculated. The source segion can nse that
value to simulate a new timestep as soon as all of its inpuls have
arrived. The simulation of the eireuit can then be viewed as Lhe
execution of a macro data flow graph JAckland &6:.
Synchronization is implicitly provided by the transmission of
data. Il buffering is provided in each of the communication
paths, source nodcs can proceed shead of their destination nodes.
This relieves the load imbalance problem by allowing a limited
amount of temporal concurrency The disadvantage of this
scheme is the inereased communication load caused by the need
to transmil unchanged node voltsges in order lo provide
synchronization.

4. PROGRAMMING FOR A MULTIPROCESSOR.
Mapping Lthe parallel algorithms of Lthe previous section onto the
hypercube  architecture is  accomplished  using  parallel
programming scenarios, or plans [Soloway 86|, that speaify rontrol
and/or data operations requiring the mteraction of two or more
processors. A secondary goal is to develop plans that are general
enough to be used in other applications. Once these plans have
been specified, they nre implemented using o number of lower
level distributed objeets These objects must ensure that these is
no possible interaction between plans that might Jead to errors or
deadlock.

4.1. Masater-Slave Plan. At the highest level, we need to
provide for command control of the simulator by the user. For
this purpese, the simulator can he viewed as a single master
processor controlling a number of slaves The master provides the
user interface as shown in Figure 2. Operation consists of a
number of cyeles in which the master issues a command which is
then exceuted by the slaves  The master may, for example, ixsue
the command simulafe for 100 ns. Each of the slaves will then
begin the specified simulation for their portion of the cireuit
deseription. One by one the slaves finish. When all are donc, the
master vegains control, prints a prompt for the user, and proceeds
to the next cvele.

sinulation

\donu
O

multiprocessor
O nodes O

ecommand ack.

N

simulate
100 ns.

broeadeast
objeet

colleclive
acknowledgement
ohject

Figure 2: Master-Slave Plan

This plan s implemented using a distributed object with two
functions -- broadcas! and acknowledge. The broadeast protocol
replicates & message and makes it available to the slaves as shown
in the right hall of Figure 2. The acknowledge protocol collects
individual responses from cach slave. finally sending one
acknowledge signal to the mester.

In addition, there is other data that the slaves must trangmit
to the master. For example, debugging information or plotiing
data during simulation. Our Master-Slave plan includes a facilivy
for non-acknowledgement messages to the master, which, to
ensure  correct  synchronization, have  priority  over
acknowledgement messages.
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4.2. Data Update Plan. Once each timestep, old simulation
data values (node vollages) are updated with new data values. ]t
is essential that the new values are caleulated only i terms of the
old values. 'This mesans that we must keep two copies of 2ll node
voltage data as shown on the left in Figure 3. In a uniprocessor,
new values are calculated using the old values read from the real
cells. These results are stored in cells called scrateh. Av the end
of the timestep, data is copied from scratch to real.

phase I:

simulate

S e one phose simulslion
——

queues

real

\\:‘lﬁch

wnitial
vollages

Figure 3: Simultancous Update Plan

On the hypercube, the calculating and reading regions of this
data may be on different processors. In addition {in the
asynchronous version of the algorithm) these processors may be
operating on different timestcps. Data update is sccomplished
using distributed queues as shown on the right in Figure 3. Old
dsla is read from the output of the quene, new data is written to
the input of the queue. Under time lockstep conditions, the
qucue will hold at most two values (old and new). By extending
the size of the queue, however, the writing region may proceed a
number of timesleps ahead of the reader.

4.3. Synchronization Plan. In the asynchronous algorithm,
regions are synchronized by the arrival of data. In the
synchronous version, however, there needs to be some form of
explicit synchronization to inform processors that all input data
has been appropriately updated. This is accomplished using a
distributed synchronization object. Each processor interacts with
this object via a single blocking call. The protocol thal defines the
operation of Lhe object takes advantage of the hypercube network
to determine and transmit synchronization in time logarithmic in
the size of the multiprocessor. Basically, each processor
synchronizes with each of its ncighbors in dimension order. AOnce
it has achieved synchronization with its neighbor on dimension 0,
it waits for synchronization on dimension 1, and then 2, and so on
until all dimensions have been synchronized. The object then
relurns control to the calling program and simulation of the next
timestcp can proceed.

5. HYPERCUBE PROGRAMMING MODEL. Two types of
code have been used to implement an application program on the
hypercube. The first is regular program code which is
characterized by a single control Lthread on each PE. The second
is protocol code which is used to implement the distributed
objects deseribed in the previous section. Regular code interacts
with the protocol code through a series of blocking or polling
system calls in much the same way as a uwser program on a
conventionsl machine interacts with the kernel operating system.

5.1. Protocol Speclfication. Protocols are represented using
slate vectors and (ransition funclions. These specily how a
distributed object will react to events generated both by the
regular program and incoming messages. The following
paragraphs illustrate the use of protocols by way of an example.
A more complete description of this distributed object
programming technique is given in [DeBenedictis 85] and
[DeBenedictis 86).



Consider, for example. the implementation of a distributed
quene. llere we concentrate on the fow-cantrol aspects (5.e. when
dnty and acknowledgement messages are sent or relzined) and
ignore datu storage and initialization. Figure 4 illustrates the
state transitions fos a sender and receiver. Both sender and
receiver exiat in exactly owe state at all times. Fach starts off in
the 0 or emply state. The state transition ares represent Lhree
kinds of indivisible events: sending a message, receiving a
message, and an interaction with the regular program. In this
example the protocol has been drawn as a two-dimensional mesh.
For the case of the sender, the vertical axis represents the
numhber of elements in the queue while the horizontal axis
represents  the number of messages sent but ot yet
ascknowledged. Note that these axes are not fundamental to the
protocol - they just simplify the visual representation.

Figure 5 shows some possible inpul and output (ransilion
Junctions for the sender. Thr input function i execnted
whenever an ucknowledgemenl message s reevived. No data
operations are required n this ense — just a change of state. The
oulput function is executed whenever there is data in the queue
and the network is ready o accept a message. The oulpul
function sends Lhe message and Lhen alters the state
appropristely. Note that a single event may cause complex
behavior. An acknowledge messuge may, for example, cause the
input function to run. The input Tunction changes the state of
the protocol which causes the outpul function to run which, in
Larn cuouses the input funrction Lo run agaia, repeating Lhe eycle.

amount of data in queue

rec. D rec. D

write
amounl

of data

in
quele prog.
wrile

Figure 4: State Transition Dingram for a Queue

5.2. Run-Time System Supporlt. The run-lime

provides extensive support for protocols

system
In addition to supplying
a numbcr of standard protocols, il also allows the user to define

custom protocols via  the declare_protocol system call.
Parameters to Lhis call describe the states and their transitions
and the addresses of the transition functions. Once a protocol is
installed, the system decodes network events to determine which
function (nole there are different functions for different protocols)
and which stste vector (as Ltherc may be many instances of a
given protocol running at once) to use.

input_function() {
if [state—==1) state=0,
else if (state==3) state=1;
else if (state==1) state=2, }

output_funetion() {

il {state= =2) { send(D}): state=1;}

else if (state==1) 1 send(D): state =3;
vlse if [state===3) { send{D): state—=1: }}

Figure 5: Input and Output Functions
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There is. in addition, a dynamic protocol facility where state
vectors ure created on demand. When a protocol is declared. one
of the arguments is the amount of memaory Lo set aside for state
vectors. Subsequently, the lirst interaction with an instance of
thal protocol causes a zeroed state vector to be created from the
set aside memory. 1o the simulation npplication, this allows each
processing node to create protecols only for those queue objects
with which it interacts (instead of ull those associated with the
spplication).

The protocols described berc are independent of each other —
which is essential to the plan-based programming approsch. The
plans, such as Master-Slave aud Dota Update, are in operation
simultancously, so it is imperative that one plan does not change
the quulitative behavior of another plan. The system described for
protocols is devoid of any mechanism which might cause an
interaction (other than timing). As & resull plans, which are based
on protocols, are independent. Thiz sllows the plans to he
compased urbivrarily withoul the necessity of considering Lheir
interactions. Conventional blocking messuge i/o would destroy
this independence and is thercfore disallowed. The case-ol-
programming brought about by the plan approach has allowed us
to code the versions of this simulator expeditiously.

8. EXPERIMENTAL RESULTS. Figure 6 shows results far
hoth the synchronous and asynchronous versions of the simulator
running on the hypercube processor. Results are plotted in terms
of speedup relative to a3 single PE. The circuit being simulated is
a4 controller for a fuzzy logic chip consisting of 8620 transistors
grouped into 984 regions There are a tolal of 3700 node vollages
that must be transferred belween regions each timestep.
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Figure 6: Empinical Results for Emu on a Hypercube

The obvious point 16 noticc 13 the large performance difference
between Lthe two versions. \With 63 PE’s in operation, the
synchronous version is running with a pracessor efMciency of 20%
whereas the asyachronous version achieves only 169 efficiency.
As mentioned previously, the synchronous version has the
advantage that it requires less communication between regions.
The ssynchronous version, however, should achieve a better load
balance. To undcrstand the reasons for this large difference in
performance, an execution time profiler was written for the
hypercube. Resulls of this study are reported in [Lucco 87] and
summarized in Figure 7. They show that the ssynchronous
version i3 spending over 40% of its time execuling
communications primitives. In the synchronous version, this
overhead has been reduced to 9%. Large communication overhead
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Figure 7: Contributions to Runtime

not only causes lost processing Lime but also introduces latency
which car, in turn, lead to increased idle time (because the
required input data has not yet arrived),

Another potential problem with the asynchronous model is the
order in which regions are scheduled on a cach processor. {f this
order is poorly chosen, data required by other processors may be
unnecessarily delayed resulting in starvation effects. This matter
was studied by simulating the macro data flow model used in the
asynchronous version under conditions of zero communication
cost [Nichols 87]. These studies confirmed that the performance
of the systemn is indeed sensitive o the region scheduling
algorithm and that an imiprovement of aboul 10% in efficiency
can be gained by using a scheduler that always allempts to run
the oldest (in simulation time) region first, as shown in Figure 8.
Another interesting result from these studies was that in the
absence of communication cosis. the asynchronous version does
indeed outperform the synchronous version by about 25-30% due
to improved load balance.

50
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-~ round-robmn

€0 1 o oldos!-firsl

Speedup

m-

m-

10 v T T T

20 30 40 %0 1] 70

No., of PEs

Figure 8: Analysis of Performance Ignoring Communication Costs

The profile of the synchronous version (Figure 7) shows that
although processors spend only about 9% of their time doing
communicatjon. they lose about 58% as idle time due to poor load
balance. More simulation studies were performed to determinc
how much this could be reduced using a dymamic allocation
scheine to move regions between processors during the course of a
simulation [Kravitz 87]. These results arc shown in Figure 9.
They compare dynamic allocation (ignoring re-allocation costs) to
a rtandom static allocation ignoring communication and
synchronization overheads. They show a potential speedup of 40
with 63 processors - a processor efficiency of 83%. Efficiency here
is limited by a residual load imbalance cavsed by the granularity
of the regions. Note that in a rcal dynamic allocation scheme,
this efficiency would be considerably less due to cost of moving
regions rom onc processor to another.

0
40 speodup
- stalic
-6~ dynamic
m-
20 1
No. of PEa
1 T v T T
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Figure 9: Comparison of Dynamic and Static Region Allocation

7. EXTRAPOLATIONS. The empirical results reported in the
previous section show that wunder conditions of moderate
communication cost, the synchronous version appears ta be the
more efficient. They further show that the synchronous version is
limited mainly by idle time resulting from vwnequal dynamic load.
In this section, we perform a simple analysis of this load balance
silvation to try and predict how the simulator will perform f(or
large circuits and with large numbers of PEs.

Assume we are simulating a circuit in which there are r regions
on a system in which there are n PEs. Assume a wniform
distribution of regions across the PEs. Further assume tbat
commupnication costs in the system are zero and that performance
is only limited by the variation in runtime for each region. The
runtime distribution af a region for a single timestep is complex
as shown in the left hall of Figure 10. There is finite probability
that the region will not have to be simulated at all; ie., runtime
will be zero. If it does need to be simulated, the runtime will

q

N

0 1
region execution time

Figure 10: Region Runtime Distribution




depend on the amount of timestep subdivision. Faor the sake of
our analysis we will assume the runtime distribution is as shown
in the nght half of Figure 10. That is, we assume that the
runtime is 1 with probability p. and 0 with probability g = 1-p.

The distribution of total time X required ta execute one
timestep on one processor can be obtauned by muodehing the
execution of the regions as r/n independent events For a random
placernent with a large number of regons per processar, this is a
reasonable approximation. This then gives X a  binomial
distribution, where p = rp/n s the mean, and o = vrpg /n 15 the
standard deviation.

The running time of the ¢ntire multiprocessor for one timestep
can be modeled as the maxunum time of a trials of X. denoted
Xy ‘YI-I ix the average tune over the entire multiprocessor pet
timestep. Load balance efficiency i then ¢ = p/X,

Figure 11 plots efficiency caleulated usmg Uin model with
p =02 as b lunchion of Lhe toln) number of regions roand the
number of PEs n. Nove that to keep the efficiency the same when
the number of processors is tloubled, reguirex the number of
regions Lo mcrense by a fuctor of abour 2.5. The upper right
corner of the graph is mteresting: a 100K region (800K
transistor) chip simulating on a 1000 PE maltiprocessor would
incur 8 0% lond balance overhead (60% efficiency).
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Since inter-PE communieation ocours only when output data
changes, it seems reasonable o assume that each PE's
commusnication load is strongly correlated with its computation
load ¥ the time to simulate a regwm o 1, and the time to
communicate the resuits s 1, then the communiration efficieney
will be e, = ¢, /{1,+1,) Overall elficiency 1= then ¢ = ¢ ¢, For
the fuzzy logic controller test results reported in the previous
section, r = 984 and n = 63. Figure 11 predicts o load efficiency of
¢ =038 The communication efficiency (from Figure 7) is
¢, = 077. This gives an overall efliciency of ¢ = 0.8 which agrers
closely with the empirical result

8. CONCLUSIONS. W¢ have deseribed & number of
experiments in implementing a parallel version of an MOS circunt
simulatoy on @ hypercube multiprocessor. The  hypercube
architecture 13 well suited to this application because of s
extensibility 1o large numbers of PEs. We have described two
parallel sinulation algorithms. \We have also deseribed a seu of
parallel programming plans {hased on protocals) that have been
used to implement these algorithms i a relialile deadlock free
Mashion.

Of the two algorithms, the synchronous shows the hest
performance on our hypercube processor. This is because of the
relatively high cost of inter-PE commumcation. Commercial
hypercube systems exhibit greater relative cammunicstion cost
and are likely to also favor the synchronous algorithm. Simulation
studies have shown, however, that under conditions of low
communication cost, the asynchronous algerithm s more
efficient, What is needed is a machine with hardware (or efficient
lirmwate) support for high level communication prinitives hke
queues. Further improvements in efficiency might be ohtained
with a dynamic partitioning strategy, although it is not clear
wliat the costs of allocation would be.

Our empirical results showed that our 63 PE hypercube could
be used Lo give speedups of 20 with moderate sized circuits. An
analysis of the load balznce of the synchronous algorithm predicls
that these results are scalable to lorger circuits simulating on
larger numbers of PEs. Rased on thesc predictions we hope soon
to be nble to demonstrate the simulation of very Jarge circuits
(= 100.000 trnnsistors) on a commercial 1000 PE hypercube.
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