
I

I

DISTRIBUTED SIMULATION

Ed;'od by

Brian Unger, PhD
and

David Jefferson, PhD

Simulation Series

Volume- 19

Number J

THE SOCIETY FOR COMPUTER SIMULATION INTERNATIONAL

,

DIslnblMld~ 1988
Cll988 by The Soc>ely bl'~........
ISBN ().9111!101-29-'1

Circuit simulation on a Hypercube

£ril: P. DeBenedieli.
Bryan D. Ael:lond

AT&T Dell Labora\Ol')u
1I0lmdel, New Jersey 07733

ABSTRACT

This paper discu!lua comhined rtatarch on lIimuJation and
parallel processins. Hypercubes and an MSOeiattd prosrammins
environment (called prot.oeols) were constructed to support
txperimen'" in VLSI circuit simulation. Syncbronous and
asynchronous parallel aimulation alsorithms were dueloped and
pros-rammed in tbis en ..ironment. Empirkal rt1lul... for a
hypercube tontainillS 6-1 procnsillS elements (PE.) are reported.
Results abow tbat for a machine with moderate communication
C<llI the synl:hrooous alsorithm is more dfieieot. Computer
lIimulations of the alsorithms sussest tha~ the uynchronou~

version would perform bener if low eoet communication
primitivt1l could be developed. The synchronous algorithm is
limited by processor load imbalance. An analysis of the load
situation sussests that larse processora (> 1000 nodetl will indeed
be able to efficiently aimulau, circuits contain ins hundred. of
thousands of transistors.

current sources. The chanse in voltage at any node in the circuit
csn be de~ermined by summins the currents entering a node and
integrating their charging errect on the node capacitance. For a
sufficieMly smllll timestep, this change in voltage can be
calculated usinS a .ingle backward Euler inteeralion, Uluminl
that all other nodes in the circuit remain constant.

The accuracy and numerical stability ol this lICbeme depends
critically on the cboice of timutep. Nodtll tht are tightly
coupled require a smaller timntep to maifllaill tbe .ame lnel ol
simulatioll accuracy, For this reason tbe circuit is di .. tded into
re,ion. ol tishtly coupled nodes. Two nodes are aaid to bf, tishtly
coupled if they are joined by a direct charse transfer pa~h (e.l,
the source-drain of an MOS transistor). Between resions,
simulation occurs uaing a relatively coarse timutep specified by
the user. Within resions, however, the timestep it automatically
subdivided accordinl to circuit utivity. At any particular time.
.. few resions (the active ones) will be aimulated with a rine
timestep while the rest ol tbe circuit it safely .imulated uling a
coarser timestep.

Further errlCiellcies are obtained by checking to see if the
inpu ... to a region change from one timestep to tbe next. If both
the inpu... and the internal state of the region hu not changed, it
is not necessary to resimulate the relion since the result will be
the same, In our experiments with large IOSie circuits (> 1000
transilltoul, only 15--25% of the regions need to be recalculated.

The concurrent aimulation of a circuit on multiple processors
requires two additional resources. The first is a communiutiona
mechanism for transmining node voltases from one region to
another. The second is a .ynchronization protocol to ensure ~ha~

regions ate receiving the correct data at the correct time, Two
different models of parallel computation have been developed to
provide tbese resources.

3. PARALLEL IMPLEMENTATION. We exploit a circuit'.
intrillsK: concurrency by distributins tbe cirCllit description
across the PEs. The division olthe circuit into resions prov)dea a
natural starting point for seneratillS tbe partitions. Since all
connections between regions are unidirectional. the circuit can be
represented u a directed Sraph u abown in Figure 1 where euh
node it .. region and each edge represellts a node voltage
genertted in the source resion and used as an input by the
destination region. The partitioninl problem then becomu one
of allocating regions to processors in such a way u to evenly
distribute the computational load \I'hile minimiling interprocnsor
communication.

Fisure I: ReSion Subdivision

"

partitioll•
b

Uoiproceasor circuit simulators (pros-rams that simulate analos
circuit behavior) are limitt'd to circuits in the ranse of a few
hundred to a few thouund transistors. The simulation of Vtry
large circui'" (> 100,000 transistors) will therefore require a
multiprocessor 1I)'stern composed of hundreds to thousandll of
Ilrocusins elements (PEs), Ilypercubes, by virtuc of thtir
scalability are well suited to this tuk, The mappins of a
uniprocessor aJsoritbm onto a piece of multiprocessor hardware is
not. howevtr, a tri .. ial tuk, First. it requires a partitioning of
the problem that txpoe.tl the available parallelism, Secondly, it
requires a soI"t....re model of tlCecution tbat can effectively
represent the partitioned algorithm. Thirdly, it requirt1l a lM't of
ptO(ramminl primitil'es that un efficiently implement the
required interprocessor communication and .!IJnchroniution.

In this paper we describe a set of experiments in which we map
an MOS circuit simulator called Emu (Ackland 861 onto a 6.1 PE
hypercubf, multiprocessor lDelknedietis 85l. Section 2 lives t
brief description of tbe simulation alsorithm. Parallel
partitiooins of this algoritbm is outlined in Section 3, Sections ..
and 5 describe the pros-rammins model and low level primiti.. tll
used to implement the parallel al&oritbm. Emphasis here is on
techniques that are gueral enough to be used in otber
application. and aha extensible to multiprocesaors buinS
tbouunds ol PEs. Some empiriul results are reported in Section
5. Section 7 provides a simple tnalysis or some of these results
tOfl;ether with lIOme predictions as to how the synem will perform
wi~h large numbers of PEs.

2. SIMULATION MODEL. EMU represents an MOS circuit
as a lM't of capacitive nodes interconnected by voltage controlled

I. INTRODUCTION. With the uer increasins complexity of
"LSI circuits there is a continuins nud to increMt the power of
the simulation tools uud to verify their function and
performance. One approach to improvins the speed and cspuity
of these tools is to take advantage of the memory and compute
power of a gent'ral purpose multiprocessor lIystem. Such an
approacb allows us to txliloit the intrinsic conl:urrency of a
circuit by simulatins different piet'tll of the circuit on separale
processors.

89

3.1. Synchronous Model. In the synchronous model. all regions
are simulated in lock step. Each llrocesoor simulatu each of its
regions for exactly one ~imestep, h then writU the values of
thOl5e node voltages that hal'e changed to other procesoors that
need tha~ data. The procusor then waits until all other
proceSllOrs have finished simulating that ~imestep. I~ ~hen reads
its new input da~a and begins simulatillg the next timeslep.
Compu~a~ional load balance belween proceS/JOrs is limited by ~he

dynamic load of each region (caused by timeslep subdivision and
conditional execution). S"llchroniutiOll requires all procesoors to
tun at the speed of the slowes~ proceS/JOr at each tirnestep.

4,2. Data Update Plan. Once each timestep, old simulation
data values (node voltages) are updated with new data values. It
is eSllential that tbe new values are calculated only in terms of the
old values, This means tha~ we must keep two copiu of all node
voltage data a.II shown on the left in Figure 3. In a uniprocesoor,
new values are calculated using the old valuu read hom the real
cells. These results are stored in cells called scralch, At the end
of the timestep, data is copied hom scratch to real.

Figure 3: Simultaneous Update Plan

3.2. Asynchronous Model. III the Wjynchronous version, source
regions individullily transmit their output values to destination
regions as they are calculated. The source region nn use that
value t.o simulate a new timeslep l\.'l soon as all of its inputs have
arrived. The simulation of ~he circui~ can then be "ie"'ed as the
execution of II. macro datil flow graph [Ackland 86J.
S)'nchroniution is implicitly provided by the transmission of
data. If buffering ill provided in each of lhe communication
paths, source nodes can proceed ahead of their destinlltion nodu.
This relieves the load imbalance problem by allowing a limited
amount of temporal concurrency. The disad\"l\lItage of this
scheme is the increased communicatiOll load caused by the need
to ~rallsmit unchanged node "oltages in order to provide
synchronization.

phase I;
lIimulllle

.~

real ~Ch

~
•...~.

.ph'!l~ ,~:_
copy

initial
voltagCl

one phase simulation-
queuCi

4. PROGRAMMING FOR A MULTIPROCESSOR,
Mapping the parallel algorithms of ~he previous section onto the
hypercube architecture is accomplished using parallel
programming scenarios, or plnns [Soloway 86J, that specify control
and/or data ollera~ions requiring ~he interaction of two or more
proceSllOrs. A seeondar)' goal is to de"eloll plans that are gencral
enough to be used in other llllpJications, Once these plans hal'e
been specified. they ore implemented using a number of lower
level distributed objects. These objects must ensure that there is
no possible interaction between IllanS that might lead to errors or
deadlock.

4.1. Muter-Slave Plan. At the highest level......e need to
llrovide for command control of the simulator by the user, For
this purp06e, the simulator can be viewed as a single masler
processor controlling a number of daves. The ml\Ster provides the
user interface as sho..... n in Figure 2. Operation consists of a
number of cycles in which the ml\Ster issue.'! a command which is
thell executed by the sla.\'es. The master may. for eXaml)le, issue
the command s;m"l"fe jor 100 liS. Each of the slaves will then
begin the specified simulation for ~heir portion of the circuit
descrilltion. One by one the slaves finish, Wben all are done, ~he

mllSter regains control, prints a prompt for the user, and llroceeds
to the nelet cycle.

.imubtion

CO",~.

~
object ackno..... ledgenlenl

object

Figure 2: Master-Slave Plan

This plan is implemented using a distributed object with to
functions __ braadcll8t and acknowledge. The broadca.st protocol
replicates a message and makea it available to the slavn as sho..... n
in the right half of Figure 2. The ackno ledge protocol collects
individual responses from each slave, finally sending one
acknowledge signal to the master,

In addition, there is other data that the slaves must transmit
to the master. For example, debugging information or plotting
data during simula~ion. Our Master·Slave plan includes a facility
for non·sckno.....ledgement meSllages to the masler, which, to
ensure correct synchronization, have priority over
acknowledgement messages,

90

On the hypercube, the calculating and reading regions of this
data may be on dirferent proceSllOrs. In addition (in the
llS)'nchronous version of the 1Ilgorithm) these processotll may be
operating on different timesteps. Data update is accomplished
using distributed queues as shown on the right in Figure 3. Old
da~a is read from the output of the queue, new data is written to
the input or the queue. Under time lockslep conditions, the
queue will bold at most two values (old and new), By extending
the size or the queue, however, the writing region may proceed a
number of timeateps ahead of the reader.

4.3, Synchronisation Plan. In the asynchronous algorithm,
regions are synchronized by the arril'al of data. In the
synchronous version, however, there needs to be some form of
explicit synchronization to inform proceSllOrs that all input data
has been appropriately updated. This is accomplished using a
distributed s}'nchronization object, Each processor interacts with
this object via a single blocking call. The protocol that definn the
operation of the object takes advllntage of the hypercube network
to determine and transmit synchronization in time logarithmic in
the size of the multiproceSllOr. Basically, each processor
synchronizes with each or its neighbors in dimension order. Once
it has achie\'ed synchronization with i~s neighbor on dimension 0,
it waits for synchronization on dimension 1, and then 2, and so on
until all dimensions have been s)'nchronized. The object tllen
returns control to the calling program and simulation of the next
timestep can proceed.

5. HYPERCUBE PROGRAMMING MODEL, Two types of
code have been used to implement an application program on the
hypercube. The first is regular program code which is
characterized by a single control thread on each PE. The second
is prolocol code which ill used to implement the distributed
objects described in the previous section. Regular code interacts
with the protocol code through a serin of blocking or polling
system calls in much the aame way as a user program on a
conventional machine interacts with the kernel operating system,

5.1. Protocol Specification. Protocols are represented using
state vectors and Iransllioll junetiolls. These speciry how a
distributed object will react to events generated both by the
regular program and incoming messages. The following
paragraphs illustrate the use of protocola by way of an example,
A more complete description of this distributed object
programming technique is given in lDeDenedictis 85[and
IDeBenedictis 86).

Consider, for example, ~be implemen~atioll 01 a distributed
queue. lIere we concentrate on the Ilo....·.conlrolllllpects (i.e. wben
~ata and adnowleds:ement messas:et are sent or retained) and
Isnore data atorase and initializatiotl. Fisure " i1Iusua~es the
ata~e transitions for a Hnder and recei..er. Doth Hnder and
recei"er exist in exactly one stue al all times. Eaeh starts off in
the 0 or empty Itate. The Slate traMiticm aru repretent tbree
kind. 01 indiyisible e..enls: send ins a meaaase, reeei.. ins a
me:saase, and an interaction with the resular prosram. In this
example the prol.Oeol bllll been dra-n 11II a I"..~dimen.ional mesh.
For the case 01 the Stnder, the ..eukal axis represenls tbe
number 01 elements in ~be queue while the horiwn~al axis
represents the Ilumber of mrsllase. Hnt bUI not yet
aeknowledsed. Note tbat these axt1ll are not fUlldamental to the
protocol· ~hey juSI simplify the ..isual representa~ioll.

Figure 5 IIhowlI SQme poMible input and output Irflni/ilifln
fundian, for ~he Stnder. The input fun('tion is executed
whenever an aekno....,ledgemenl message is receh·ed. No dau.
operations are required in this case •• just II change of state. The
output func~ion is execu~ed whenever there is dllill in the queue
lind the ne~work is ready to IIccept 1\ musage. The output
function scnds the mt$llage and then alters the Slate
appropriately. Note ~hd a lIingle e..eM rna}' cause complex
beha..ior. An acknowledge messllge mlly, for enmple, ('ause the
inpu~ function ~o run. The input function changes the state of
the protocol which caUStS ~he ou~put function to run which, in
turn causes the inpu~ function to run asain, repeat ins: the cycle.

There is, ill addition, a d,rlllmic prol.Oeol facility where nate
..eclors are crea~ed 011 dem.nd. Whell a protoeol is dedared, one
01 the argument.s is Ihe amollllt of memory 10 set lIIIide for Itllle
..eclors. Subsequently, the firs~ in~eractioll with an instance of
Ih.t prot.ocol nusts a zeroed Itille ..eclor to be crealed hom the
set lIIIide memory. In the lIimulation applkation, this .llowII each
proce:saillg node 10 create prol.Oeols ouly {or IhOllt: queue object.s
with·hich it interacls (instead 01 all tbOllt: lIIISOCiattd with the
.pplication).

The prol.Oeols des<:ribtd here ate independent of each otber _
whkh is euential to the plan-bued programming approach. The
pl.OIl, luch 11II Mllllter·Sla"e and Data Upd.te, .re in operation
simultaneC>lIsly, SQ it is imperati..e that one plan does not chanse
the qu.litatiye behavior or another plan. The IYltem described {or
protocols is devoid of .ny mechanism which might caUH an
interaetion (other than timing). As a result plans, which are blllled
on protocols, are independent. This allows lhe plans to be
compoeed .rbitrarily wi~hout the necellity or considerins their
interactions. Conventional blockins: mUllas:e i/o would desuoy
this independence and is therefore disallowed. The elllle-of·
pros:ramming brough about by the plan approach hllll allowed \II
to code the versions of lhis simulator expeditiously.

8. EXPERIMENTAL RESULTS. Figure 6 IIhows rtllults for
both the lIynchronous and uynchronous versions of the simulalor
running on the hypercube processor. Resul~lIlte plotted in terms
of IIpeedup relative 10 a lIinsle PE. The circuit beinS simulated il
a controller for. funy Iog:ic chip consistins: of 8620 tunsistors
gto\lped into 1184 regions There are a total 013700 node ..oltasea
that must be tr.nsferred betwetll regionl each timestep.

20

...ail.ble .p~e on ruei ..er
tff. A ret:. A

,
v

Figure -I: State Transition Diagram for a Queue

-
•-

10

No, of PEa

rigure 6; Empirical Results for Emu 00 • Hypercube

70so50..30

o+-_~-_~_~__~_--i

20

The ob"ious point 10 nOlke is the larSe performance difference
between the t·o ..er.lions. Wilh IS3 PE'. in operation, the
sYllcbrooous ..ersioo is ruonin&: with. proceasor efficiency 0I2Q%
wherellll Ihe asynchrOllous ..ersion achie..es only 16% efficien('y.
As mentioned previously, the 'yllchronoull ..ersioo hllll the
ad"antllle 'h.t it requirca 1_ communication between regions,
The lIIIynchronous ..ersioa, however, IIhould achieve. better load
balance, To understand the reuens for this larse difference in
perform.nce, an execution time profiler Willi written for the
hypercube. Reaulu of this study are reported in [Lucco 871 and
lummariud in Fisure 7, They show that Ihe uynchronous
version is spend ins: over "0% of iWl time execu~ing

communications primiti..es. In the synchronous version, this
ol'erhead hu been rcduced to 9%. Lars:e communicltion overhead

inpIU_functionO (
if (IItale__ I) state_O;
else if lltate--3j state_I;
else if uate__" IIt.te_2; I

Figure 5: Input and Output Functions

Olltput_function() (
if (uate__2) (Hnd(O); IItate_l;)
else ~f lltate--"l (sendlDl; IItate_3; l
else If s~ale__5 {send 0 ; nate_4: }

5.2. Run.Time System Support. The run·time system
provides extenllive suppon for protocols. In addition ~o lIuppl)'ins:
a number of sundud protocols, it .ISQ .11o.....s lhe user to define
cUltom protocols .. ia the dedareJralOtol syltem c.lI.
Parameters to this call describe the .latea and their tr.nsitions
and the addrusn of the tr.nsition functions. On('e a prot.ocol is
installed, the system decodes nu....·ork events 10 determine whkh
function (note there .re different fun('lions for different protocols)
and which Itate ..eclor (11II there may be many instancts of a
giyen protocol runnin&: a~ once) 10 use.

91

• sync
• async

COll'f)Utation

communication

••

,
" 20 " " so

The profile of the synchronous version (Figure 7) shoWl! that
ll.lthough. Ilr?Cessors spend only about 9% of their time doing
communicatIon, they lose about 58% as idle time due to poor load
balance. More aimulll.tion studies were performed to determine
how much this could be reduced using 8 dynamic allocation
scheme l.O move regions between processors during the course of a
simulation IKr8l'itt 871. These results are IIhown in Figure 9.
They compare dynamic allocation (ignoring te·allocation costs) to
a random uatic allocation ignoring communication and
sy.nchroniution overhell.ds. They IIhow a potential speedup of 40
~ll~ ~3 processors: a processor dficiency of 63%. Efficiency here
IS limited by a resldull.l load imbalance caused by the grll.nulll.rity
of the regions. Note that in a real dynamic allocation scheme
this dficiency would be considerably less due l.O COlSt of movin~
regions from one processor to another.

-~-----------~

•

No. 01 PEa

•

"....""
,,+---~-------------<
"

7. EXTRAPOLATIONS. The empirical results reported in the
previous section IIhow that under conditions of moderate
communication cOlSt, the synchronous version appears 10 be the
more dficient. They funher show that the lIynchronous version is
limited mainly by idle time resulting from unequal dynamic load.
In this sec~ion, we perform a simple analYllis of this load blllllnce
situation to try and predict how the simulator will perform for
large circui~1I and with large numbers of PEs.

Figure 9: Comparison of Dynamic and Static Region Allocation

_ sIalic

.. dynamic

.go. sync
_ round·robin
_ oldest·firsl

Figure i: Contributions to Runtime

not only causes lost procclI5ing time but also innoduces latency
which can, in turn, lead to increased idle time (because the
required input dua hl\S not yet arrived).

Another I>otcntiai problcm with the asynchronous model is the
order in which regions are scheduled on a cad processor. If this
order is poorly choaen, data required by other processors may be
unnecellSarily delayed resulting in starvation effects. This matter
was studied by aimulating the macro dlLta flow model used in the
asynchronous version under conditions of tero communication
coat [Nichols 871. These studies confirmed that the pcrformance
of the system is indeed scnsitive to the region scheduling
algorithm and thM an impro"cment of about 10% in dficiency
can be gained by using II scheduler that always auempls to run
the oldest (in simulation time) region first, as shown in Figure 8.
Another interesting result from these studies was that in the
ll.bsence of communication coats, the asynchronous vetsion docs
indeed outperform the synchronous \'ersion by ll.bout 25--30% due
to improved load balance.

-,-------------,

•

•

Assume we ll.re lIimulating a circui~ in which there lire ~ regionll
on a system in which ~here are II PEs. AlISume ll. uniform
distribution of regionll acrOllS the PEs. Further assume that
communication costll in the system ll.re tero and that performance
is only limited by the variation in runtime for eaeh region. The
runtime distribution of a region for a lIingle timestep is complex
as shown in the left half of Figure 10. There is finite probability
that the region will not have to be simuillted at all; Le., runtime
witt be zero. If it does need to be simula~ed. the runtime will

No. 01 PEa

Figure 8: Analysis of Performance Ignoring Communication Costs

, J'. r,L-_,L-__

region execution time
Figure 10: Region Runtime Dis~ribution

92

depend on ~he amoun~ of timeslep subdivision. for lhe nke of
our an.lysis we willlMume the runtime distribution ill ll$ shown
in lhe rishl half of fisure 10. That III, we MIIume th.t the
runtime is I i1h prob.bility" .nd 0 wIth probability. - 1-,.

The distribution of lotal time X required to execute one
limellitep on one procelll5Or can be obu.med by modelins the
ex«utioa or the regions 1.1I r/_ independent e\'ent for a r.ndom
plt.«menl with. larse number of reSlOns per pfOC'elII5Or. this is.
reuonable .pproxim.tion, This then Sl\'~ X • binomi.l
distributioll. where,. .. ,.,/_ is the mun, .nd " .. ./?f/_ is the
st.ndard dui.tion.

or the two algorithms, the synchronous shows the besl
performance on our hypercube proctsllOr. This is because of the
relatively hish caet 01 inter·PE communication. Commercial
hypercube syatems exhibit STeater relatin communica~ion caet
and .re likely to abo f.vor the synchronous alsorithm. Simulation
studitll have shown, howenr, that under conditions 01 10...
communkation caet, the u)'nchroaOllI alsorithm is more
efficienl. Wbat is Deeded is a mKbine with bardre (or errlCieDl
firmw.re) support ror biSh level eommunkation priaitins like
queutll, Funher imptOVemeDU ia efficiency misbt be obtained
"'ilh a dynamic partitioniDS aUaltlY, altboullh it is not clear
whu the coeta or allocation would be.

The tunninS time of lhe entire muhiproetuor for one timestep
tan be modeled IllS the maximum lime or _ triI.Is 01 X. denoted
Xlo,' Xlo • is the ••'er.se time o,'er the entire muhiprotessor per
timestep. Lo.d balance efficienc)' is then "," ,,/,Vlo"

figure II Illots erficienc)' ca1cuhlled usins this model ith
, .. O.:! lUI • fUnClion or the total number of resions r and the
number of PEs ~. NOh lhu to keep the efficiency the same whtn
the lIumber or proce!l!lOrs is doublcd, requires tht, number of
resiollll to increase by I\. raclOr or Ilbou~ 'l.5, The Ullpu right
corner of the graph is interest ins: Il lOOK region (. SOOI(
transistor) chip simulating on a 1000 PI:: l1Iulliproeelll5Or ...·ould
incur a -10% load bahl.DCe overhead (60% efficiency).

9. Rderences.

lAck land 86] n. Ackland, S. Ahuja, E Dellenedictis, T. London, S.
Lucco, and D, Romero, MOS Timins Simulation on a MeS8ase
ll3.lled ~'lultiprocu50r. [n Proceedjllg8 o//he IEEE Interllotjonlll
Con/erellce on Computer Onigll, Oetober 1986.

Our empirical rtllUllll IhO"'ed tbat our 63 PE hypercube could
be used to lli\'e speedups of 20 with moderal.e siled circuits. An
.nal)·sis or the Io.d balance of the synchronous .Isorilhm prtdict.s
that thtlle result.s are scalable 10 larser ciTcuits limulating on
larller numbers or PEs. l):IIIt'd on Ihese predictions we hope soon
to be able to demonstrUe the simuluion of very large circuits
(> 100,000 transistors) on a commercial 1000 PE hypercube.

IDelknedictis lMl E. Delknedictis, MultiproeelIIOr PrOfj:rammins
with Distributed V.riables. In Proceeding. o/lhe Con/eruce on
lI,pcrCIIlu Multjproce$lor., AUllUlllI985,

[DeE1enedictis 861 E. DeE1enedktis, Protocol-B_d
MultipfOC'tlleOl1I. In Procceding. of/he Con/ertncc on HypcrCllh
MvUiprocc$lor., AUllulll 1985.

IKraviu 871 S. Kravih .nd B. Ackland, Static V". Dynamic
Partition ins of Circuits ror • MOS TimillS Simul.lOl' on a
MeAast-B_d MultiproctuOr'. EIse...hcre in these pfOC'eedinp.

ILucco 871 S. Lucco and K. Nichols, A Performance AllI.lysis or
Two Parallel PrOfj:rammins MethodoJositll in the Context of MOS
Timinfj Simulation. In Proceeding. 0/ Spring COA/PCON 81 ,
february 1987.

[Nichols 8711<. Nichols and J, Edmark, Evaluatinll Multicomputer
SYblellls with PAnET. Submitted to IEEE Software.

ISoloway 86) E. Soloway, Lellrning to Program _ Learning to
Con8truct Mcchallisms and Explanations. 111 Comlllunieoljo .." 0/
Ille ACM, September 1986. Pagn 850-858,

P.'

100010010 Ph

100 "

' ' '.1_

fillure II: Erriciency Accountins for l.oad Babnce

Since inter-I'E communication occurs onlyhen output data
chanses, it lItems re:ll:lOnable to a.ssume thM each I~E's

communication Io.d is stronfjly correl:ltt'd with il.ll computation
load, If tht time to simula.te a TelllOn IS '. and the time 10
communicate lht results is ' ... then the communication efficiency
... ilI be '," './('.. +1.1. Overall efficltocy III then" ...,.••. for
Ihe runy Jos~ controller test rtllulta reported In the previous
lI«tion, r .. lIS-••nd • _ .,.,. fi&ure II prediclII a load efficiency of
I, _ 0.38. The communicatK»l crflCM'ncy (hom fisure 7) is
"," 0,71. This Sh'es an o\'er:lll errloClency oil _ 0_:!9 ,,·hich aSTtt!!
c~ly with the empiriC:lI rtllult

8. CONCLUSIONS. We ha\'e dt$Cribed a number of
experiments in implementinfj a para1lt'1 \'etSlOn of.n MOS circuit
aimulator on • hypercube multlprOCnllQr. The hypercube
architecture is well suited to thIS applitllllOn because of its
extensibility to larfje numbetll of PEs, We h.'e described two
parallel simulation all!lorilhmll, We h.'e also described a set or
parallcl prOllramming plans (b:l./;td on Ilrotoeols) lhat have been
used to implemcnt these algorithms ill a relia.ble deadlock free
fllShion.

93

	Circuit-Simulation-Hypercube-001
	Circuit-Simulation-Hypercube-089
	Circuit-Simulation-Hypercube-090
	Circuit-Simulation-Hypercube-091
	Circuit-Simulation-Hypercube-092
	Circuit-Simulation-Hypercube-093

