
Distributed Programs and Subroutines For Multiprocessors

Erik P. DeBenedictis

AT&T Bell Laboratories
Holmdel, NJ 07733

ABSTRACT

There seems to be a consensus that
multiprocessors are harder to program than
conventional computers. To change this consensus,
this paper develops distributed analogies to
important and well known programming techniques
found in conventional computers -- namely modular
programming and variable scoping. This paper shows
that with these techniques, truly parallel versions of
some languages are possible -- such as Unix (TM)
shell programming. High level parallel languages
could also be constructed where the program
planning activities would be the same as conventional
languages, although lower-level methods would be
different. Within the scope of the issues
addressed, this can make multiprocessors as easy to
program as conventional computers.

INTRODUCTION

As a starting point, consider the following
prototypical distributed programming system. Unix
pipelines are a well known method of representing
the concurrent operation of several programs. A
prototypical pipeline might be Is -1 1 sort +3 >xx,
which lists the files in the current directory (Is -1 is
the Unix directory listing command, long format),
directs the listing to the input of the sort program,
sorts the lines (after skipping 3 fields at the
beginning of each line-before parsing the sort key),
and directs the output to file xx. Perhaps less well
known is that there are distributed Unix systems

that can execute the two programs in parallel. Such
a system will load the programs onto different
CPUs and use physical communication links to
transport the data. The combination of two programs
is itself a program, however, in the sense that it

reads input, writes output, and has internal
behavior. In a Unix system, a pipeline can be
encoded as a shell script (a file with Unix user
interface commands), at which point it becomes
indistinguishable from a regular program.
Consistent with the previous example, shell script p
could contain Is -1 1 sort +3, in which case p >xx
has the same behavior as the previous pipeline.

The pipeline example uses two program
representations -- 1s and sort are written in C, and
pipelines are written in the shell language -- and
this is a tremendous problem. A module in a high
level language (HLL) is often encapsulated as a
subroutine. Subroutines can be combined to form
more sophisticated subroutines to an unlimited
degree. The ability to make a hierarchy of modules
is an important feature which contributes to the
power of HLLs. The pipeline example is not truely
hierarchical: while pipeline programs can be
constructed from either C programs or pipeline
programs, C programs can be constructed only from
other C programs. While Unix systems have ‘hooks’
for embedding pipeline (shell) programs in C
programs, the features that make shell and C
programming attractive are absent when these hooks
are used. I suggest, therefore, that Unix operating
systems give no support to the concept of combining
pipeline programs into C programs. The trouble is
that features of the C language not present in the
shell language are unavailable for parallel
programming. Since there are many such features;
this is a big loss.

This paper develops a single module concept for
distributed programs and distributed subroutines
and formalizes the interactions between them. The
result is the features of a HLL applied to
distributed constructs. With these, we can combine
distributed modules -- subroutines or programs --
as easily as we can combine subroutines in a HLL.
Parallel input and output from programs appear
also. Returning to the pipeline example, with these
constructs the 1s and sort programs could be
distributed programs themselves with a parallel
connection between them.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 1988 0-89791-278-O/88/0007/0451 $1.50

451

distributed connection

T
structured connection

Figure 1. Connection Paradigms for Multiprocessor Programs.

An Example
The left half of figure 1 illustrates two programs

connected. The output of the first program becomes
the input of the other. This type of composition is
well accepted. \Modularity is one reason for
acceptance: each program is written without worrying
about the other one, thereby reducing programmer
effort. A second reason is that programs can be
efficiently composed in many ways to solve a wide
variety of problems. The technical facilities that
makes this kind of composition possible are
connections in the roles of local variables and
subroutine arguments. The names OUT and IN in the
two programs are analogous to formal parameters in a
subroutine: their actual meaning is established at run
time by their callers. The combination of these two
programs forms a de facto program which has a
connection in the role of a local variable. This local
variable connection is what OUT and IN are bound to
at run time. If two instances of the connected
programs were executed, there would be two
connections -- which is why they are local variables.
While program composition and local variables are
useful, they are not currently exploited on
multiprocessors.

The right half of figure 1 suggests how such a
connection might be formed on a multiprocessor.
Both prow and pro&y are illustrated as running on
two processing elements (PEs). To maintain
bandwidth between the programs commensurate with
the number of PEs involved, the OUT-IN
connection must involve multiple independent
physical connections. Such a connection is
illustrated by a connection between corresponding
PEs in each program. The connection is created like
a local variable, although it is a communication path.

Figure 1 shows the programs accessing disk files --
a well accepted activity even though it is currently

unavailable on multiprocessors. File access must be
through messages and must involve independent
physical connections to realize multiprocessor
performance potentials. Files can be placed in the
same universe as local variables. Files are global,
instead of local, since every program in the computer

can access the same instance of a file. Also, the
binding between a file name and data on the disk is
made at run time, rather than at compile time -- as
is the case for other variables.

Discussion

Why don’t uniprocessor programming language and
operating system techniques work? Conventional
techniques are based on a many to one mapping
between variables and memory addresses. We need
a one to one mapping. When we access a variable --
say a subroutine -- on a conventional computer, the
CPU goes away until the subroutine is finished.
There is no reason to keep running us because there
is only one CPU and it is just as well off running the
subroutine as us. Although lots of programs know
about the variable, only one accesses it at a time, so
a stack can hold return addresses. These
assumptions are not true for a multiprocessor. A
subroutine can get called from every PE in the
system at once, and for each call it has to send an
answer back to the proper place. I claim that when a
message is received, it has to come from a place that
uniquely identifies the sender, so a response can be
sent back. Furthermore, the return address must
retain its validity even if the caller got moved to a
different PE while we were running.

Here is the approach: Programs send and receive
messages through named ports. Ports are either
named by the programmer, such as OUT and IN, or
are program identifiers (pids) of subprograms. A
program hooks the ports of its subprograms together
by asserting rules. A rule is an equation stating that
particular types of messages on particular ports are
to be connected. Rules are bidirectional, and a port
can only be mentioned in one rule -- this assures a
one-to-one mapping. Finally, there is a way of
bidirectionally multiplexing several ports into one by
encoding a port name into a message header, and vice
versa. Examples of these are presented later.

There is direct analogy to variables in
uniprocessor programming: Programs interact only
through global variables. Variables are either
programmer defined, such as subroutine names, or

452

1001 H pid ;;iiiiiii:i:i:i’ . ::::::::::::::, :_._ ..:_::, 3 ;i;tiii;ii{g:., _.:. iiii$ii:i::::: :::::::::;:~:;:: ._. .._._ . .._._.:

1

i:;:;:i:i:;::::: _....._.....:..I :::::::::::::::: .:.:.:.:.:.:.::j i~~~~~~ jijijljijijijiiIjijijijii::::::::::::::::: _:_:,:_:.:,:_:_:. message flow ’

Figure 2. A Connection.

are established by the operating system (file
descriptors or pids), or are constants like system
call numbers. A linker hooks the variables of its
subprograms together by eliminating one variable
definition and several accesses to the same variable

SOME EXAMPLES

A Simple Connection

Figure 2 illustrates two connected programs.
Here, the left program with port OUT sends
message OUT.dat, which is the concatenation of
header OUT and data called dat. Ports OUT and IN
are connected. The right program gets message
IN.dat. The system is axiomatically bidirectional,
meaning that the right program could send IN.dat
causing the left program to get OUT.dat.

The rule lOOl.OUT - 1002.IN makes the
connection. Numbers 1000 and up refer to pids
which are unique integers assigned to a program when
loaded for execution. When a message, such as
OUT.msg, flows out of a program and into its
environment, the pid is appended to its left end,

Figure 3. Subprogram Connections.

i.e. lOOl.OUT.msg. The pattern lOOl.OUT will
match any message beginning with lOOl.OUT, such as
lOOl.OUT.msg. When a message matches one
pattern of a rule, the matching part is replaced with
the other pattern. This changes lOOl.OUT.msg to
1002.IN.msg. If the pid is a subprogram, a message
with a pid as its leftmost part will flow into that
pid, deleting the pid from the message. For
example, 1002.IN.msg flows from the environment
to 1002, changing the message to IN.msg.

Subprograms

Figure 3 illustrates subprograms. Here, pid 1001
is a program with pids 1002 and 1003 as
subprograms. Pid 1001 can send messages to the
destinations 1002, 1003, 1004, 1, and 2. Since 1002
and 1003 are connected subprograms, messages to
these destinations would go to the subprogram and
the destination would be removed from the left
part of the message. All other destinations are
treated as ports with the message flowing into the
environment. Port numbers should be less than
1000 to avoid the possibility of a clash with a pid at
execution time because of the notation used here.
On the other hand, port numbers greater than 1000
are useful for emulating subprograms.

Multiplexing

There are a variety of reasons that a system
should be able to emulate itself. There is elegance
in completeness, for example. More pragmatically,
no matter how carefully we design hardware, it will
not be perfect. Inevitably, we will run out of some
resource -- physical communication links, for
example. If we can emulate several logical
communication links with one physical

emulated connection 1004

Figure 4. Link Multiplexing.

453

1003
.:.:.:.:.:,:.:.:.:.::j::.:.:.:.; ,:::: :::::::::.:.:.:.:.:.:.:::.:.:.:.:......_._::: :~:;:~:~:~:;:.:.:':. :::::::::::::,.._.. I_. ;.:.:.:.:~:.:,,.:.:.~.~..~.'~~.~.'.~.~~,.. :_: _, ,~,.~~~,.....: :.:.:...:.:.:.:.:.: .,.,.,. :.:.:.:.:.:.: iiiijiiiiiiii~~~:~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~ ::f!:::::i:l..:::::::::::.:'::::::.::::::1:::::::~:~:::.:::

21ication
server ::::.:::z::::::.:..... ..:.:.:.:.:.:.::::::::i:i:i::~:;. ..:.:.:.:.:.:.:.:.:.:.:.:::::.:.:.:.:.:.:.:.:.:.:.:.:.:.~............... ,............*_.. .,._...

1001 I 1002
:i:i:i:i:I::.:':.:.:.: ,....._... . ..T......:::::::::.:.:.:.:.:.:::::::;::::; :._... .,:.:,:.:.:.:i::::!iI:iiliii:l:l:::::i: :,:.___ _.,.. :...:_.. _._ .:,: :.:::::::::.lf;il
iip.:::, """"":~~~:~~~
'~~.~~~~~ii~~~~~~:~~~~l~i~i.iii~~~~i:::~:['

~:r;,iii~iiii~~~~~~'~~.~~~~~~~~~~~~~~~
iii~~~i~~i::::::::::::~;::~~.;~:~:.:::~:~:~~::~:~~~:~:~~

. ,.,:,:,:.:; :::::: ;:ji;i:j+:::::::.:.::;:;:;:;.:::::::::::: .:.:._. __.,.,..
:.::.:.:.:.::.:.::::.:.::::::,:,....:.:.:.: .:.: .::::::::;:i:;:;:;:;.:. ::::::::..,.,,,,:,: ,:,:,....:.. :::::::::::i::::::::::::::::::::::
.:.: ::::::: :.:.:.:.: :::: .:.:_:.: ::: :.:.:.:.:, :.jjj:i:j::::::::::::::::::::.:.:.:,:,:.~:~ _.,,,.:,:,:_:_:,:,:.: ::::_::::::::::::: . fif:::::i:i:i:i:i:i::::::::::.:.:::::::::.::::::::::~:::::::::::: _._.. _.:.:.:.:.:. :.:.: . .._....

Figure 5. A Server.

communication link, the severity of the problem is
reduced. This section gives an example of how one
communication link can emulate two links with no
change in system operation.

In figure 4, pids 1001 and 1002 are multiplexing
the virtual OUT-IN connection of children programs
1003 and 1004 (and separately 1005 and 1006) over
their R-L connection. Messages traversing the R-L
connection have a type specification in their header.
P identifies the type associated with multiplexing
the OUT-IN connection. Messages with a different
type, say Q or R, could multiplex other
connections. The important thing going on here is
that the messages traversing the real physical link are
one word longer than those being emulated. This
extra word provides the necessary extra information.

A Server

Figure 5 illustrates a server accessible via normal
scoping rules. The server has one input that connects
simultaneously with all programs that have the
server in their scope. Messages from other programs
arrive at the server with the pid of the originating
program appended to the data. This allows the
server to respond properly. Each program with
access to the server can create requests originating
from itself, or it can export server access to its
subprograms.

Messages to port S, the server port, have the pid
of the originator added as the second field during
initial formatting. A program can export access to
the server to its subprograms by relaying messages to
the server without altering the pid field. The

critical rule is XC=1003: 1003.S.X = S.X. The rule
states that any message coming directly from child
1003 directed at the server -- and originally coming
from a pid that matches wildcard X -- is to be
relayed to the local server port. Wildcard Xis
qualified by XC= 1003 which is defined to match
2003 or any subprogram of 1003.

The simple expression X <= 1003 hides
considerable complexity. The capabilities
introduced here are a parallel version of Algol-type
scoping rules. A stack and a display are required to
implement Algol-type scoping; and supporting
parallelism requires that the linear stack be changed
to a tree structured hyperstuck. Evaluating X <=
1003 requires that the run time system maintain
information about which programs are subprograms of
other programs. This information is the hyperstack.
Executing a parallel system with variable scoping
requires elaborate data structures -- and here they
are, but it is fortunate that the elaborate data
structures do not make this paper complicated.

Virtual Subprogram Facility

Figure 6 shows how a program can simulate
subprograms of its subprograms. The straightforward
method of executing a parallel program on a
multiprocessor is to put one program on each
processing element. Doing this assures maximum
parallelism. Subprograms could not be done in the
obvious way because a program and its subprograms
would have to be on different PEs. The suggested
solution is for each PE to have an operating system
program and one user program. The operating

1003 virtual connection

Figure 6. Virtual Subprogram Facility.

454

system would emulate connections between programs
via the multiplexing method described earlier.
Interactions between a user program and its
subprograms would have to be emulated also.
Fortunately, a mechanism for emulating subprograms
is available. Interactions with a subprogram are via
messages directed at the pid of the subprogram; but
there is no difference to the user program between
interacting with a subprogram with a particular pid
and communicating over a like numbered port.

Figure 6 illustrates the virtual subprogram
facility. Programs 1001 and 1002 on the bottom are
the operating system and 1003 and 1004 are the
application programs. Program 1004 requests of the
operating system that a subprogram be allocated for
it. The value 1003 is returned as the pid of the
subprogram -- even though a subprogram is not
allocated to the caller. What happens is that parts
of the operating system communicate and locate a
PE with no application program. The operating
system on this PE then creates a subprogram, pid
1003 in figure 6. The operating system then sets up
multiplexed connections for messages between pid
1003 and port 1003 on the calling program (pid
1004). Pid 1003 is the subprogram of 1004 as far as
either can determine, but the connection is virtual
as indicated by the curved line in the figure.

Most messages from a virtual subprogram should
be relayed to its parent. The obvious exception is
messages that cause creation of subprograms;
uniprocessor system utilities such as memory
allocation are another exception. A portion of the
operating system on each PE is a server for certain

application

activities originating on that PE. These services are
labeled by messages of type SYS in the figure.
Messages of type SYS never go to another PE.

A Distributed Server

The concept of a server being accessible anywhere
is powerful, but a single server would be
overburdened in a large multiprocessor. This
section discusses a server accessible as before, but
with a distributed implementation.

Pid 1004 in figure 7 is an application with access
to a server through port S. Pids 1005 and 1006 are
collectively a server. Instead of one server getting
requests from many application programs, there are
many servers, each getting requests from its single
LOCAL port. Operating system 1002 connects the S
port of 1004 to the LOCAL port of server 100.5 with
the rule 1004.S = lOOS.LOCAL. The servers, such
as 1005 and 1006 can communicate with their
colleagues through the server connection ports --
SC.n. Port SC.n communicates with the n’th server.
Pid 1001 is the single program that controls the
entire distributed program. It allocates the n
subprograms and specifies their connections. For
example, the rule X < 1001, Y<lOOl: X.SC.Y =
Y.SC.X connects the SC ports of all the
subprograms together.

The OUT port on pid 1005 is the subject of the next
section. Each part of the server has an OUT port
that is relayed by rules 1005.OUT.X = 0UT.X and
X.0UT.Y = 0UT.Y to the output of entire program.

A Distributed Pipe

Distributed servers can be connected by

seryers

Figure 7. A Distributed Server.

455

application
distributed pipe

server server application

Figure 8. A Distributed Pipe.

distributed connections. The OUT ports of the
distributed server in figure 7 are all connected to
the OUT port of the main program. Figure 8
illustrates two main programs with distributed OUT
and IN ports connected. The two programs at the
bottom each have four subprograms -- two
applications and one server for each application.
Within each program the servers can interact, as
illustrated by the vertically drawn emulated
connections. Because of the OUT-IN connection
between the main programs, each server can also
communicate with all the servers of the other
program. This distributed pipe is illustrated by the
horizontal and diagonal emulated connections.
While we can describe complicated connections
effectively, making the data follow the most direct
route is a subject for later.

AN ALGEBRA FOR THE RULES

Rules can be combined. This permits a message
to be sent directly from source to destination even
though a long sequence of rules applies.

The method of combining rules involves two
steps. It must first be decided if a rule refers to a
port or a subprogram. In the first step, each rule is
translated from its context in a program to the
global context. In performing this translation,
messages to subprograms are unchanged, messages to
ports have the pid of the sender added, and function

in 1001
i/o(data) = S.lOOl.data

I
first step

‘4
lOOl{i/o(data)} = 1001.S.1001.data 1OOl.S = 1002.P 1002.P.X.data = 1002{i/o(X, data) }

specifications have the pid of relevant program
added. In the second step, pairs of rules are
combined using transitivity. Only minor algebraic
manipulations are required: the same thing can be
added to both sides of a rule (A - B implies A.C -
B-C) and binding of variables may have to be
manipulated.

Examine figure 5 and consider the communication
between 1001 and 1002. Three rules are involved:
in 1001 there is i/o(data) = S.lOOl.data, in 1002
there is P.X.data = i/o(X, data). Also, the link
between 1001 and 1002 is equivalent to the rule
1OOl.S = 1002.P. Figure 9 illustrates the combining
of these three rules. The final combination would
be expressed in words as follows: an ilo statement in
1001 with a simple message is tied to an i/o statement
in 1002 with the value IO01 appended to the head of
the simple message.

Figure 10 illustrates a program in a syntax like
the C language. Lines 1-12 and line 3 declare
nested programs with a syntax similar to data
structures. Line 1 says parent is the name of a
program and its contents appear in brackets. Line 3
declares a subprogram of type child and variable C
to represent its pid at execution time. The body of
program child must be declared elsewhere. Line 10
creates a program at run time and stores the pid in a
variable.

in 1002
P.X.data 7 i/o(X, data)

W&data)% = 1002.P.lOOl.data

lOOl{i/o(data)} = 1002{i/o(1001, data)}

Figure 9. Combining Rules.

456

1 program parent {
2 port S;
3 program child C; I* instance-of-child integer with pid value of child */
4 rule { i/o(data) = S.lOOl.data } ;
5 rule { X<=C: C.S.X = S.X } ;
6 rule_handler(pid, rule) { } /* receives rule from child */
7 i(data) { } /* message input handler *I
8 o(3.14); I* message output */
9 assert-rule(rule);
10 int pid = create-program();
11 terminateo;

Figure 10. Structured Program Syntax.

The interfaces between a program and its
environment are via ports, as declared in line 2. The
compiler assigns small integers to port identifiers
when a program is compiled, like the assignment of
offsets to elements of data structures. When a
subprogram is declared, as in line 3, a skeleton of
the subprogram that has port assignments should be
available -- like .h files in C.

Lines 4 and 5 declare rules for message
connections. Line 4 binds two functions of program
parent to messages. Function i() is a function,
declared on line 7, which will be invoked when input
messages arrive. Calls to function 00, declared on
line 8, generates output messages. Statically
declared rules can be processed at compile time for
optimum efficiency. Line 9, however, asserts a rule
dynamically.

Static and dynamic rule assertion -- and also
subprogram declaration -- have a philosophy similar
to memory allocation on conventional computers.
Variables and arrays can be declared at compile time
or created at run time. Compile time declaration is
usually slightly more efficient, but is generally less
flexible.

Line 6 is a function invoked by the operating
system when a subprogram asserts a rule. Most of
the time a rule assertion by a program should update
a single data base of rules in the operating system.
Sometimes more elaborate behavior is appropriate.
Two examples are debuggers, and running an
operating system as an application program, which
both require omnipotept control over their object
programs. Usually a rule handler will simply
reassert a subprogram’s rule in the parent’s context.

Line 11 terminates the program -- but not its
subprograms. This paper has been written assuming
that programs, pids, and rules are allocated and
later abandoned. There is no explicit deallocation.
A terminated program does not generate output
messages and declines to receive input messages.
Rules remain effective until the pids they refer to
terminate.

CONCLUSIONS
A distributed program encapsulation mechanism has

been uresented. Examples of hierarchical

abstraction and Algol-like scoping rules have been
shown as an encapsulation mechanism. Since the
basic language features are present, it should be
possible to code programs similarly to other Algol-
like HLLs. In addition, examples are given of
dynamic variable binding in the context of file and
pipe i/o in an operating system. With these
features, it should be possible to construct a
parallel operating system with Unix-like features.
It is significant that both the programming and
operating system methods use the same mechanism;
this makes the programming features available at
every level.

The encapsulation mechanism is based on
bidirectional bindings of names. The mechanism can
be considered as the bidirectional analogy to the
unidirectional name-to-memory bindings found in
most computer systems. The bidirectional bindings
are described by algebraic equations which can be
interpreted in ways analogous to those in
conventional computer systems: transitive closure
can be applied to the equations by a compiler or
linker before execution time, or by the operating
system when it dynamically binds programs and files
together. The equations can also be emulated --
which is its most dynamic interpretation.

The purpose of this effort was to develop
distributed analogies to well-known programming
methods. Disruption of accepted programming
techniques is minimized because no new and exotic
methods were introduced. Rather, a (hopefully
complete) set of tried-and-tested programming
features were considered.

457

