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ABSTRACT 

There seems to be a consensus that 
multiprocessors are harder to program than 
conventional computers. To change this consensus, 
this paper develops distributed analogies to 
important and well known programming techniques 
found in conventional computers -- namely modular 
programming and variable scoping. This paper shows 
that with these techniques, truly parallel versions of 
some languages are possible -- such as Unix (TM) 
shell programming. High level parallel languages 
could also be constructed where the program 
planning activities would be the same as conventional 
languages, although lower-level methods would be 
different. Within the scope of the issues 
addressed, this can make multiprocessors as easy to 
program as conventional computers. 

INTRODUCTION 

As a starting point, consider the following 
prototypical distributed programming system. Unix 
pipelines are a well known method of representing 
the concurrent operation of several programs. A 
prototypical pipeline might be Is -1 1 sort +3 >xx, 
which lists the files in the current directory (Is -1 is 
the Unix directory listing command, long format), 
directs the listing to the input of the sort program, 
sorts the lines (after skipping 3 fields at the 
beginning of each line-before parsing the sort key), 
and directs the output to file xx. Perhaps less well 
known is that there are distributed Unix systems 

that can execute the two programs in parallel. Such 
a system will load the programs onto different 
CPUs and use physical communication links to 
transport the data. The combination of two programs 
is itself a program, however, in the sense that it 

reads input, writes output, and has internal 
behavior. In a Unix system, a pipeline can be 
encoded as a shell script (a file with Unix user 
interface commands), at which point it becomes 
indistinguishable from a regular program. 
Consistent with the previous example, shell script p 
could contain Is -1 1 sort +3, in which case p >xx 
has the same behavior as the previous pipeline. 

The pipeline example uses two program 
representations -- 1s and sort are written in C, and 
pipelines are written in the shell language -- and 
this is a tremendous problem. A module in a high 
level language (HLL) is often encapsulated as a 
subroutine. Subroutines can be combined to form 
more sophisticated subroutines to an unlimited 
degree. The ability to make a hierarchy of modules 
is an important feature which contributes to the 
power of HLLs. The pipeline example is not truely 
hierarchical: while pipeline programs can be 
constructed from either C programs or pipeline 
programs, C programs can be constructed only from 
other C programs. While Unix systems have ‘hooks’ 
for embedding pipeline (shell) programs in C 
programs, the features that make shell and C 
programming attractive are absent when these hooks 
are used. I suggest, therefore, that Unix operating 
systems give no support to the concept of combining 
pipeline programs into C programs. The trouble is 
that features of the C language not present in the 
shell language are unavailable for parallel 
programming. Since there are many such features; 
this is a big loss. 

This paper develops a single module concept for 
distributed programs and distributed subroutines 
and formalizes the interactions between them. The 
result is the features of a HLL applied to 
distributed constructs. With these, we can combine 
distributed modules -- subroutines or programs -- 
as easily as we can combine subroutines in a HLL. 
Parallel input and output from programs appear 
also. Returning to the pipeline example, with these 
constructs the 1s and sort programs could be 
distributed programs themselves with a parallel 
connection between them. 
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distributed connection 

T 
structured connection 

Figure 1. Connection Paradigms for Multiprocessor Programs. 

An Example 
The left half of figure 1 illustrates two programs 

connected. The output of the first program becomes 
the input of the other. This type of composition is 
well accepted. \Modularity is one reason for 
acceptance: each program is written without worrying 
about the other one, thereby reducing programmer 
effort. A second reason is that programs can be 
efficiently composed in many ways to solve a wide 
variety of problems. The technical facilities that 
makes this kind of composition possible are 
connections in the roles of local variables and 
subroutine arguments. The names OUT and IN in the 
two programs are analogous to formal parameters in a 
subroutine: their actual meaning is established at run 
time by their callers. The combination of these two 
programs forms a de facto program which has a 
connection in the role of a local variable. This local 
variable connection is what OUT and IN are bound to 
at run time. If two instances of the connected 
programs were executed, there would be two 
connections -- which is why they are local variables. 
While program composition and local variables are 
useful, they are not currently exploited on 
multiprocessors. 

The right half of figure 1 suggests how such a 
connection might be formed on a multiprocessor. 
Both prow and pro&y are illustrated as running on 
two processing elements (PEs). To maintain 
bandwidth between the programs commensurate with 
the number of PEs involved, the OUT-IN 
connection must involve multiple independent 
physical connections. Such a connection is 
illustrated by a connection between corresponding 
PEs in each program. The connection is created like 
a local variable, although it is a communication path. 

Figure 1 shows the programs accessing disk files -- 
a well accepted activity even though it is currently 

unavailable on multiprocessors. File access must be 
through messages and must involve independent 
physical connections to realize multiprocessor 
performance potentials. Files can be placed in the 
same universe as local variables. Files are global, 
instead of local, since every program in the computer 

can access the same instance of a file. Also, the 
binding between a file name and data on the disk is 
made at run time, rather than at compile time -- as 
is the case for other variables. 

Discussion 

Why don’t uniprocessor programming language and 
operating system techniques work? Conventional 
techniques are based on a many to one mapping 
between variables and memory addresses. We need 
a one to one mapping. When we access a variable -- 
say a subroutine -- on a conventional computer, the 
CPU goes away until the subroutine is finished. 
There is no reason to keep running us because there 
is only one CPU and it is just as well off running the 
subroutine as us. Although lots of programs know 
about the variable, only one accesses it at a time, so 
a stack can hold return addresses. These 
assumptions are not true for a multiprocessor. A 
subroutine can get called from every PE in the 
system at once, and for each call it has to send an 
answer back to the proper place. I claim that when a 
message is received, it has to come from a place that 
uniquely identifies the sender, so a response can be 
sent back. Furthermore, the return address must 
retain its validity even if the caller got moved to a 
different PE while we were running. 

Here is the approach: Programs send and receive 
messages through named ports. Ports are either 
named by the programmer, such as OUT and IN, or 
are program identifiers (pids) of subprograms. A 
program hooks the ports of its subprograms together 
by asserting rules. A rule is an equation stating that 
particular types of messages on particular ports are 
to be connected. Rules are bidirectional, and a port 
can only be mentioned in one rule -- this assures a 
one-to-one mapping. Finally, there is a way of 
bidirectionally multiplexing several ports into one by 
encoding a port name into a message header, and vice 
versa. Examples of these are presented later. 

There is direct analogy to variables in 
uniprocessor programming: Programs interact only 
through global variables. Variables are either 
programmer defined, such as subroutine names, or 
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Figure 2. A Connection. 

are established by the operating system (file 
descriptors or pids), or are constants like system 
call numbers. A linker hooks the variables of its 
subprograms together by eliminating one variable 
definition and several accesses to the same variable 

SOME EXAMPLES 

A Simple Connection 

Figure 2 illustrates two connected programs. 
Here, the left program with port OUT sends 
message OUT.dat, which is the concatenation of 
header OUT and data called dat. Ports OUT and IN 
are connected. The right program gets message 
IN.dat. The system is axiomatically bidirectional, 
meaning that the right program could send IN.dat 
causing the left program to get OUT.dat. 

The rule lOOl.OUT - 1002.IN makes the 
connection. Numbers 1000 and up refer to pids 
which are unique integers assigned to a program when 
loaded for execution. When a message, such as 
OUT.msg, flows out of a program and into its 
environment, the pid is appended to its left end, 

Figure 3. Subprogram Connections. 

i.e. lOOl.OUT.msg. The pattern lOOl.OUT will 
match any message beginning with lOOl.OUT, such as 
lOOl.OUT.msg. When a message matches one 
pattern of a rule, the matching part is replaced with 
the other pattern. This changes lOOl.OUT.msg to 
1002.IN.msg. If the pid is a subprogram, a message 
with a pid as its leftmost part will flow into that 
pid, deleting the pid from the message. For 
example, 1002.IN.msg flows from the environment 
to 1002, changing the message to IN.msg. 

Subprograms 

Figure 3 illustrates subprograms. Here, pid 1001 
is a program with pids 1002 and 1003 as 
subprograms. Pid 1001 can send messages to the 
destinations 1002, 1003, 1004, 1, and 2. Since 1002 
and 1003 are connected subprograms, messages to 
these destinations would go to the subprogram and 
the destination would be removed from the left 
part of the message. All other destinations are 
treated as ports with the message flowing into the 
environment. Port numbers should be less than 
1000 to avoid the possibility of a clash with a pid at 
execution time because of the notation used here. 
On the other hand, port numbers greater than 1000 
are useful for emulating subprograms. 

Multiplexing 

There are a variety of reasons that a system 
should be able to emulate itself. There is elegance 
in completeness, for example. More pragmatically, 
no matter how carefully we design hardware, it will 
not be perfect. Inevitably, we will run out of some 
resource -- physical communication links, for 
example. If we can emulate several logical 
communication links with one physical 

emulated connection 1004 

Figure 4. Link Multiplexing. 
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Figure 5. A Server. 

communication link, the severity of the problem is 
reduced. This section gives an example of how one 
communication link can emulate two links with no 
change in system operation. 

In figure 4, pids 1001 and 1002 are multiplexing 
the virtual OUT-IN connection of children programs 
1003 and 1004 (and separately 1005 and 1006) over 
their R-L connection. Messages traversing the R-L 
connection have a type specification in their header. 
P identifies the type associated with multiplexing 
the OUT-IN connection. Messages with a different 
type, say Q or R, could multiplex other 
connections. The important thing going on here is 
that the messages traversing the real physical link are 
one word longer than those being emulated. This 
extra word provides the necessary extra information. 

A Server 

Figure 5 illustrates a server accessible via normal 
scoping rules. The server has one input that connects 
simultaneously with all programs that have the 
server in their scope. Messages from other programs 
arrive at the server with the pid of the originating 
program appended to the data. This allows the 
server to respond properly. Each program with 
access to the server can create requests originating 
from itself, or it can export server access to its 
subprograms. 

Messages to port S, the server port, have the pid 
of the originator added as the second field during 
initial formatting. A program can export access to 
the server to its subprograms by relaying messages to 
the server without altering the pid field. The 

critical rule is XC=1003: 1003.S.X = S.X. The rule 
states that any message coming directly from child 
1003 directed at the server -- and originally coming 
from a pid that matches wildcard X -- is to be 
relayed to the local server port. Wildcard Xis 
qualified by XC= 1003 which is defined to match 
2003 or any subprogram of 1003. 

The simple expression X <= 1003 hides 
considerable complexity. The capabilities 
introduced here are a parallel version of Algol-type 
scoping rules. A stack and a display are required to 
implement Algol-type scoping; and supporting 
parallelism requires that the linear stack be changed 
to a tree structured hyperstuck. Evaluating X <= 
1003 requires that the run time system maintain 
information about which programs are subprograms of 
other programs. This information is the hyperstack. 
Executing a parallel system with variable scoping 
requires elaborate data structures -- and here they 
are, but it is fortunate that the elaborate data 
structures do not make this paper complicated. 

Virtual Subprogram Facility 

Figure 6 shows how a program can simulate 
subprograms of its subprograms. The straightforward 
method of executing a parallel program on a 
multiprocessor is to put one program on each 
processing element. Doing this assures maximum 
parallelism. Subprograms could not be done in the 
obvious way because a program and its subprograms 
would have to be on different PEs. The suggested 
solution is for each PE to have an operating system 
program and one user program. The operating 

1003 virtual connection 

Figure 6. Virtual Subprogram Facility. 
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system would emulate connections between programs 
via the multiplexing method described earlier. 
Interactions between a user program and its 
subprograms would have to be emulated also. 
Fortunately, a mechanism for emulating subprograms 
is available. Interactions with a subprogram are via 
messages directed at the pid of the subprogram; but 
there is no difference to the user program between 
interacting with a subprogram with a particular pid 
and communicating over a like numbered port. 

Figure 6 illustrates the virtual subprogram 
facility. Programs 1001 and 1002 on the bottom are 
the operating system and 1003 and 1004 are the 
application programs. Program 1004 requests of the 
operating system that a subprogram be allocated for 
it. The value 1003 is returned as the pid of the 
subprogram -- even though a subprogram is not 
allocated to the caller. What happens is that parts 
of the operating system communicate and locate a 
PE with no application program. The operating 
system on this PE then creates a subprogram, pid 
1003 in figure 6. The operating system then sets up 
multiplexed connections for messages between pid 
1003 and port 1003 on the calling program (pid 
1004). Pid 1003 is the subprogram of 1004 as far as 
either can determine, but the connection is virtual 
as indicated by the curved line in the figure. 

Most messages from a virtual subprogram should 
be relayed to its parent. The obvious exception is 
messages that cause creation of subprograms; 
uniprocessor system utilities such as memory 
allocation are another exception. A portion of the 
operating system on each PE is a server for certain 

application 

activities originating on that PE. These services are 
labeled by messages of type SYS in the figure. 
Messages of type SYS never go to another PE. 

A Distributed Server 

The concept of a server being accessible anywhere 
is powerful, but a single server would be 
overburdened in a large multiprocessor. This 
section discusses a server accessible as before, but 
with a distributed implementation. 

Pid 1004 in figure 7 is an application with access 
to a server through port S. Pids 1005 and 1006 are 
collectively a server. Instead of one server getting 
requests from many application programs, there are 
many servers, each getting requests from its single 
LOCAL port. Operating system 1002 connects the S 
port of 1004 to the LOCAL port of server 100.5 with 
the rule 1004.S = lOOS.LOCAL. The servers, such 
as 1005 and 1006 can communicate with their 
colleagues through the server connection ports -- 
SC.n. Port SC.n communicates with the n’th server. 
Pid 1001 is the single program that controls the 
entire distributed program. It allocates the n 
subprograms and specifies their connections. For 
example, the rule X < 1001, Y<lOOl: X.SC.Y = 
Y.SC.X connects the SC ports of all the 
subprograms together. 

The OUT port on pid 1005 is the subject of the next 
section. Each part of the server has an OUT port 
that is relayed by rules 1005.OUT.X = 0UT.X and 
X.0UT.Y = 0UT.Y to the output of entire program. 

A Distributed Pipe 

Distributed servers can be connected by 

seryers 

Figure 7. A Distributed Server. 
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application 
distributed pipe 

server server application 

Figure 8. A Distributed Pipe. 

distributed connections. The OUT ports of the 
distributed server in figure 7 are all connected to 
the OUT port of the main program. Figure 8 
illustrates two main programs with distributed OUT 
and IN ports connected. The two programs at the 
bottom each have four subprograms -- two 
applications and one server for each application. 
Within each program the servers can interact, as 
illustrated by the vertically drawn emulated 
connections. Because of the OUT-IN connection 
between the main programs, each server can also 
communicate with all the servers of the other 
program. This distributed pipe is illustrated by the 
horizontal and diagonal emulated connections. 
While we can describe complicated connections 
effectively, making the data follow the most direct 
route is a subject for later. 

AN ALGEBRA FOR THE RULES 

Rules can be combined. This permits a message 
to be sent directly from source to destination even 
though a long sequence of rules applies. 

The method of combining rules involves two 
steps. It must first be decided if a rule refers to a 
port or a subprogram. In the first step, each rule is 
translated from its context in a program to the 
global context. In performing this translation, 
messages to subprograms are unchanged, messages to 
ports have the pid of the sender added, and function 

in 1001 
i/o(data) = S.lOOl.data 

I 
first step 

‘4 
lOOl{i/o(data)} = 1001.S.1001.data 1OOl.S = 1002.P 1002.P.X.data = 1002{i/o(X, data) } 

specifications have the pid of relevant program 
added. In the second step, pairs of rules are 
combined using transitivity. Only minor algebraic 
manipulations are required: the same thing can be 
added to both sides of a rule (A - B implies A.C - 
B-C) and binding of variables may have to be 
manipulated. 

Examine figure 5 and consider the communication 
between 1001 and 1002. Three rules are involved: 
in 1001 there is i/o(data) = S.lOOl.data, in 1002 
there is P.X.data = i/o(X, data). Also, the link 
between 1001 and 1002 is equivalent to the rule 
1OOl.S = 1002.P. Figure 9 illustrates the combining 
of these three rules. The final combination would 
be expressed in words as follows: an ilo statement in 
1001 with a simple message is tied to an i/o statement 
in 1002 with the value IO01 appended to the head of 
the simple message. 

Figure 10 illustrates a program in a syntax like 
the C language. Lines 1-12 and line 3 declare 
nested programs with a syntax similar to data 
structures. Line 1 says parent is the name of a 
program and its contents appear in brackets. Line 3 
declares a subprogram of type child and variable C 
to represent its pid at execution time. The body of 
program child must be declared elsewhere. Line 10 
creates a program at run time and stores the pid in a 
variable. 

in 1002 
P.X.data 7 i/o(X, data) 

W&data)% = 1002.P.lOOl.data 

lOOl{i/o(data)} = 1002{i/o(1001, data)} 

Figure 9. Combining Rules. 
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1 program parent { 
2 port S; 
3 program child C; I* instance-of-child integer with pid value of child */ 
4 rule { i/o(data) = S.lOOl.data } ; 
5 rule { X<=C: C.S.X = S.X } ; 
6 rule_handler(pid, rule) { } /* receives rule from child */ 
7 i(data) { } /* message input handler *I 
8 o(3.14); I* message output */ 
9 assert-rule(rule); 
10 int pid = create-program(); 
11 terminateo; 

Figure 10. Structured Program Syntax. 

The interfaces between a program and its 
environment are via ports, as declared in line 2. The 
compiler assigns small integers to port identifiers 
when a program is compiled, like the assignment of 
offsets to elements of data structures. When a 
subprogram is declared, as in line 3, a skeleton of 
the subprogram that has port assignments should be 
available -- like .h files in C. 

Lines 4 and 5 declare rules for message 
connections. Line 4 binds two functions of program 
parent to messages. Function i() is a function, 
declared on line 7, which will be invoked when input 
messages arrive. Calls to function 00, declared on 
line 8, generates output messages. Statically 
declared rules can be processed at compile time for 
optimum efficiency. Line 9, however, asserts a rule 
dynamically. 

Static and dynamic rule assertion -- and also 
subprogram declaration -- have a philosophy similar 
to memory allocation on conventional computers. 
Variables and arrays can be declared at compile time 
or created at run time. Compile time declaration is 
usually slightly more efficient, but is generally less 
flexible. 

Line 6 is a function invoked by the operating 
system when a subprogram asserts a rule. Most of 
the time a rule assertion by a program should update 
a single data base of rules in the operating system. 
Sometimes more elaborate behavior is appropriate. 
Two examples are debuggers, and running an 
operating system as an application program, which 
both require omnipotept control over their object 
programs. Usually a rule handler will simply 
reassert a subprogram’s rule in the parent’s context. 

Line 11 terminates the program -- but not its 
subprograms. This paper has been written assuming 
that programs, pids, and rules are allocated and 
later abandoned. There is no explicit deallocation. 
A terminated program does not generate output 
messages and declines to receive input messages. 
Rules remain effective until the pids they refer to 
terminate. 

CONCLUSIONS 
A distributed program encapsulation mechanism has 

been uresented. Examples of hierarchical 

abstraction and Algol-like scoping rules have been 
shown as an encapsulation mechanism. Since the 
basic language features are present, it should be 
possible to code programs similarly to other Algol- 
like HLLs. In addition, examples are given of 
dynamic variable binding in the context of file and 
pipe i/o in an operating system. With these 
features, it should be possible to construct a 
parallel operating system with Unix-like features. 
It is significant that both the programming and 
operating system methods use the same mechanism; 
this makes the programming features available at 
every level. 

The encapsulation mechanism is based on 
bidirectional bindings of names. The mechanism can 
be considered as the bidirectional analogy to the 
unidirectional name-to-memory bindings found in 
most computer systems. The bidirectional bindings 
are described by algebraic equations which can be 
interpreted in ways analogous to those in 
conventional computer systems: transitive closure 
can be applied to the equations by a compiler or 
linker before execution time, or by the operating 
system when it dynamically binds programs and files 
together. The equations can also be emulated -- 
which is its most dynamic interpretation. 

The purpose of this effort was to develop 
distributed analogies to well-known programming 
methods. Disruption of accepted programming 
techniques is minimized because no new and exotic 
methods were introduced. Rather, a (hopefully 
complete) set of tried-and-tested programming 
features were considered. 
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