An Asynchronous Distributed Discrete Event Simulation Algorithm for Cyclic Circuits using a Data-Flow
Network

Sumit Ghosh
LEMS, Division of Engineering
Brown University
Providence, R.I. 02912

Erik Debenedictis
nCUBE Corporation

Belmont, CA 94002

Meng-Lin Yu, AT&T Bell Laboratories, Holmdel, NJ 07733

Abstract

The discipline of discrete event simulation may be applied to
many physical systems such as digital hardware, queueing net-
works, telephone networks, simulated warfare, and banking
transactions. Where the processes of a physical system inter-
act asynchronously, an asynchronous distributed event-driven
simulation algorithm may enable the simulation to execute on
a parallel processor. This has the potential to significantly
reduce the total simulation time. Until now none of the algo-
rithms reported in the literature could offer a solution with
the following characteristics — acceptable performance, free-
dom from deadlock, and provably correct, for circuits where
the process interactions form a cyclic graph. Directed cyclic
graphs appear frequently and may constitute a significant part
of a physical system. For example, oscillators and industrial
control mechanisms with positive or negative feedback re-
sult in cyclic graphs. This paper proposes a mathematically-
proven algorithm, referred to as YADDES, for asynchronous,
distributed, discrete-event simulation of circuits containing
feedback loops. In this approach, every component of the
circuit is represented through an executable model and the
flow of information is expressed through message communi-
cation. There is no notion of global simulation time. Instead,
simulation time is encapsulated in the model description and
encoded in the messages. In addition, a data-flow network
is synthesized based on the conncctivity of the components
in the circuit that computes a quantity “time of next event”
for every component. This quantity permits the correspond-
ing model to execute asynchronously as far ahcad in simula-
tion time as possible yet guaranteeing correctness. Thus, the
network assures that any simulation process executing on a
distributed processing environment that has sufficient infor-
mation to simulate can execute while also avoiding deadlock.
The algorithm has been verified through an implementation
on the loosely-coupled parallel processor ARMSTRONG at
Brown University.

1. A New Approach to Asynchronous Dis-
tributed Discrete-Event Simulation

In the YADDES approach (an acronym for yet another asyn-
chronous distributed discrete-event simulation algorithm); for
a given system such as a digital design only those subcircuits
that constitute cyclic directed graphs are identified and pre-
processed and the entities of such subcircuits are simulated
as described in this section. Other entities of the system that
constitute acyclic graphs are simulated as described in [3].
The approach is described for the discipline of digital hard-
ware and applies equally to queueing networks and banking
transactions.

265

1.1 An Intuitive Overview

The principal cause of deadlock in the traditional asyn-
chronous distributed discrete-event simulation system is the
presence of feedback loops. That is, the simulation envi-
ronment represented through models connected by feedback
loops is unable to accurately decide the precise execution of
events. The YADDES approach proposes the synthesis of an
acyclic circuit of pseudo components based on the original
simulation circuit whose purpose is to enable the execution of
the circuit in a deadlock free environment.

To preserve the asynchronous and concurrent nature of the
algorithm, each pseudo component represents a decision-
making entity whose sole function is to determine when the
corresponding simulation model may correctly execute an in-
put event. An event refers to a signal transition at an input
port. YADDES requires that each pseudo component com-
pute a quantity “time of next event” (W') at its output port
through the application of a minimum operator over the W’
values at its input ports and the simulation time of the event
of the corresponding simulation model. Thus, the pseudo
component must necessarily access the simulation time of the
event from the related simulation model. This quantity re-
flects a measure of the time at which the next event is ex-
pected at that path. Furthermore, it may be utilized in de-
ciding whether a model may safely execute an event. The use
of the minimum function signifies the conservative nature of
the YADDES algorithm.

Corresponding to each of those inputs of the acyclic circuit
that represent the primary inputs, the W’ value is defined
equal to the assertion time of the most recent transition. The
remaining inputs of the acyclic circuit are unconnected signi-
fying that they are not influenced by any events in the circuit.
Their W' values are assumed to be permanently held at a very
large number expressed through the symbol oo so that they
may not influence the W’ computations of the pseudo com-
ponents.

A significant limitation of the synthesized acyclic circuit in-
cludes the lack of connectivity between the pseudo compo-
nents of the respective feedback loops that may be otherwise
dictated in the simulation circuit. This is manifested as fol-
lows. For a given feedback loop, the W’ value at the output of
the leftmost pseudo component does not reflect the simulation
times of the events associated with other simulation models
in the same loop nor those of other models that may influ-
ence the computation. As a result, the computed W’ value
may be inaccurate. In fact, it is probably optimistic for the
following reason. Given the use of the minimum operator, the
consideration of the W’ values associated with other models
would only imply a lower value in the computation of the W’

ISSN# 0-7803-0233-8/91 $1.00©1991 IEEE

value for a pseudo component. To address this limitation,
a second identical copy of the acyclic circuit is synthesized.
To distinguish between them, the first and second acyclic cir-
cuits are referred to as primed and unprimed respectively and
the quantity “time of next event” is expressed through W for
the unprimed circuit. All outputs of the primed circuit are
connected to each input of the unprimed circuit through a
minimum operator. This interconnection network is encap-
sulated in the concept of a crossbar switch that, in essence,
expresses the dependency between the feedback loops. Where
the activities of a feedback loop may not affect those of an-
other loop, the corresponding link in the switch is considered
non-existent; otherwise, a link exists. An existent link has
a weight associated with itself that is equal to the computed
propagation delay from the output of the pseudo primed com-
ponent X’ to the input of the pseudo unprimed component Y.
Although the maximum capacity of the switch is NxN, the
actual size is defined by the circuit in question. The role of
the outputs of the unprimed circuit is discussed later in sec-
tion 6. The W values computed by the pseudo components
of the unprimed circuit correctly include the simulation times
of all appropriate events in the entire circuit. These values
may be used in accurately determining when an event may be
executed by a model. The primed and unprimed circuits and
the switch are collectively termed “data-flow network” for the
circuit in question.

In essence, the optimistic nature of the evaluation process in
the primed circuit acts as a window into future events. These
future events are presented to the unprimed circuit for con-
sideration and the conservative characteristic of the unprimed
circuit guarantees accuracy of the simulation process.

2. Implementation Issues

The implementation of the YADDES algoritlim is complex
and is described as follows. Given any complex circuit and
a user specified partition, the total number of processors re-
quired for simulation equals N+2 where N is the number of
partitions. While the components of every partition execute
on a processor, the primary inputs of the simulation circuit
and the outputs of the data-flow network are modeled as en-
tities PO and P1 respectively and are executed on unique pro-
cessors. The entity P1 signifies the rightmost boundary of
the data-flow network and participates in the propagation of
acknowledgements. In the event that a circuit contains feed-
back loops, the user specified feedback arc set is accepted by
a preprocessor that generates the data-flow network. Corre-
sponding to every component of the simulation circuit, the
final implementation consists of three entities - a simulation
model that represents the functionality of the component and

the primed and unprimed pseudo components. These are
expressed through the C-functions “sim-component”, “ppc-
component”, and “puc-component” respectively. Although
they are conceptually concurrent entities, in the current im-
plementation on ARMSTRONG, they are executed round-
robin on a processor. When a partition includes multiple
models, an interconnection between two or more models on
the same processor is expressed through a data structure.
When the models are located on separate processors, an in-
terprocessor protocol represents the connection.

A significant part of the implementation consists of a kernel C
description (approximately 2500 lines) that executes on every
processor except those that execute the entities PO and P1.
Each processor accepts an unique input file that represents
information on the models and pseudo components and their
interconnection for the corresponding partition. The input
files for the partitions are generated by a preprocessor that
accepts a description of the circuit in a hardware description
language ESL [12] and the user specified partitions and feed-
back arc set.

The flow of control during the execution of the algorithm
may be described as follows. The simulation models i.e., the
sim-component functions, corresponding to those components
that receive signal transitions from the external world at their
primary input ports are executed first. A sim-component,
in turn, initiates the executions of the puc-component and
ppc-component functions and suspends itself. When the exe-
cutions of puc-component and ppc-component are complete,
the sim-component is reactivated. The execution of a puc-
component (or ppe-component) is considered complete when
either the W (or W’) value at the output is unchanged or
an acknowledgement is received signifying that the change in
the output W (or W') value has been propagated through-
out the data-flow network. Additionally, the puc-component
and ppc-component functions may be initiated for execution
when a new W (or W’) value is received at any of its input
ports from the left. Thus, as the execution of the algorithm
continues, the thread of control shifts from one entity to an-
other. Eventually, the simulation process terminates when all
events have been executed i.e., all externally supplied (usable)
transitions at the primary input ports have been utilized to
generate output transitions.

3. Conceptual Comparison with Previous
Approaches to Asynchronous Discrete-Event
Simulation

This section presents a conceptual understanding of the algo-
rithm presented in this paper and its fundamental differences

266

with the algorithms proposed in [5] and [3].

In the deadlock recovery algorithm [5], a simulation model
does not propagate any output signal information to other
models connected to its output port when its value as a con-
sequence of execution remains unchanged. As a result, other
models whose execution depends on the output value of this
model may not execute and constitute a deadlock. When such
a deadlock occurs across the entire system, a distributed dead-
lock detection mechanism detects the situation and a central
entity synchronously accesses the U and W values [5] of every
model, computes their minimum, and permits execution of all
models up to the minimum value. In the YADDES approach,
the effect of any change in W or W’ must ripple through the
data-flow network as far as the effect may propagate. The
crossbar switch implies transitive closure over all models in
a feedback loop and guarantees that the U and W values of
every simulation model that may possibly be affected by a
change in the W or W' value of a model shall be updated. In
addition, the minimum operator used in the computation of
every W', W, and K value ensure their correctness in the pres-
ence of multiple changes. The crossbar switch is equivalent to
the traversal of all relevant loops in a design and computing
the minimum over all relevant U and W values.

In the algorithm proposed in [3], messages are sent with incre-
mentally increased time values even when the logical values
at the outputs are unchanged. Consequently, the simulation
time up to which every model is simulated is advanced contin-
uously. The mechanism is motivated by a model’s inability to
view the global picture such as an unchanged external input
signal. A consequent limitation is the potentially large num-
ber of messages in the system for scenarios where external
input signal is unchanged for extended periods of time rela-
tive to the cumulative propagation delays of the models in the
feedback loop. In YADDES, the missing picture is substituted
by the primed copy of the data-flow network. It permits opti-
mistic jumps in the values of W’ assuming that future events
will be unable to influence and modify them. Normally such
optimism may lead to inconsistency and error, but the pres-
ence of the crossbar switch and minimum operator ensures
the correct advancement of the W value.

4 Conclusion

The issue of asynchronous distributed discrete event simu-
lation of cyclic circuits is crucial to the field of computer

simulation and has the potential of addressing problems in .

the domains of digital hardware design, queueing networks,
and banking transactions. Until now, none of the algorithms
reported in the literature could offer a solution with the char-

acteristics of freedom from deadlock and acceptable perfor-
mance. This paper has presented an algorithm for asyn-
chronous distributed discrete event simulation of cyclic cir-
cuits. The YADDES approach opens up the possibility of
modeling challenging problems from other disciplines such as
banking, railway and mobile phone networks, sociological in-
teractions, human decision-making process, aircraft simula-
tion, oceanics, and weather forecasting as discrete-event sys-
tems. Some of these applications are under investigation.
The algorithm has been mathematically proven correct and
free from deadlock. The algorithm has been verified through
an implementation on the ARMSTRONG parallel processor
system at Brown University. Furthermore, the investigators
are studying the use of this algorithm as a basis for devel-
oping more complex concepts such as (i) an algorithm for
distributed fault simulation based on circuit partitioning, (ii)
an algorithm for distributed real-time banking systems, and
(iii) modeling large switching networks to investigate the role
of overload conditions on network performance.

References

[1] Jaydev Misra, “Distributed Discrete-Event Simulation,”
Computing Surveys, Vol 18, No 1, March 1986, pp.39-65.

[2] David Jefferson, “Virtual Time,” ACM Transactions on
Programming Languages, Vol 7, No 3, July 1985, pp. 404-
425.

[3] Sumit Ghosh and Meng-Lin Yu, “An Asynchronous Dis-
tributed Approach for the Simulation of Behavior-Level Mod-
els on Parallel Processors,” Proceedings of the 1988 Interna-
tional Conference on Parallel Processing, August 15-19, 1988,
St. Charles, Illinois.

[4] K.M. Chandy and J. Misra, “Asynchronous Distributed
Simulation via a Sequence of Parallel Computations,” Com-
munications of the ACM, Vol 24, No 4, April 1981, pp. 198-
206.

[5] K.M. Chandy, L.M. Haas, and J. Misra, “Distributed
Deadlock Detection,” ACM Transactions on Computer Sys-
tems, Vol 1, No. 2, May 1983, pp. 144-156.

[6] Daniel A. Reed and Allen Malony, “Parallel discrete
event simulation: The Chandy-Misra Approach”, Proceed-
ings of the SCS Multiconference on Distributed Simulation,
3-5 February 1988, San Diego, California, pp.8-13.

[7] Private communications with K.F. Wong, Department of
Computer Science, Washington University, St. Louis, MI
63130, June 1988.

267

(8] Private communications with Boris Lubachevsky, AT&T
Bell Laboratories, Murray Hill, NJ

[9] Narsingh Deo, “Graph Theory with Applications to Engi-
neering and Computer Science,” Prentice Hall Inc. 1974.

[10] J. T. Rayfield and H. F. Silverman, “’Operating System
and Applications of the Armstrong Multiprocessor”, IEEE
Computer, Vol. 21, No. 6, June 1988, pp. 38-52.

[11] Erik DeBenedictis, “Multiprocessor Programming with
Distributed Variables,” Proceedings of the Conference on Hy-
percube Multiprocessor, Aug 1985.

[12] S. Davidson and J. Lewandowski, “ESIM/AFS - A Con-
current Architectural Level Fault Simulator,” Proceedings of
the International Test Conference, October 1986.

268

