
nCUBE Parallel VO Software

Erik DeBenedictis
Scalable Computing

Abstract
7his paper is abow I/O system software that makes I/O on a

massively parallel computer as scalable as computing. The paper
is centered around mapping functions, which form an intellectual
framework from which to understand parallel I/O. The I/O system
not only provides the raw capability of doing parallel I/O, but is
also convenient to use and compatible with Unix. These features
are in release 3 of nCUBE system software.

1 Introduction
Massively parallel computers have some fame for being able

to solve very large problems, but are regarded as having limited
applicability. Perhaps the near-absence of U0 capability has re-
stricted them to the small fraction of applications that are extreme-
ly computation-intensive. Providing an U0 capability, however,
could let massively parallel computers address a much wider
range of new applications.

Figure 1 illustrates the concept of scalability for a massively
parallel computer. There is an upper limit to the performance of a
computer of conventional design caused by the finite velocity of
light and material properties of semiconductors. In a quest for ever
higher computer speeds, the scalable, massively parallel. computer
architecture was invented. This architecture combines many com-
puters of a convenient size into a single computer with many times
the performance.

Until recently, however, massively parallel computers had very
limited VO capabilities. Usually. the massively parallel machine
itself was attached to a host computer, and all the VO was done by
that host computer. The host computer, typically a workstation,
would often have one disk. While the computing capability could
be made as large as one wanted by adding more processors, the
I D capacity could not be increased.

As a result, massively parallel computers have not followed
the rule-of-thumb in the supercomputer industry that ‘‘a megabyte
per megaflop is balanced.” This means that a machine where the
I/O rate in megabytes per second equals the floating point rate in
megallops per second has a relatively good balance between com-
puling and VO. In graphing the distribution of computer programs
by I /O requirements, figure 2 shows a bell-shaped curve centered
on a 1: 1 ratio between megabytes and megaflops. Since a massive-
ly parallel machine with N processing elements has 0 0 comput-

N times

appeafi
to user as +

Figure 1: Concept of Massively Parallel Computing

Juan Miguel del Rosario
nCUBE Corporation

programs suitable
for massive
parallelism

number
of

programs

1 megabyte 1 megabyte
Per Per

N megaflops 1 megaflops

lOWV0 highVO
requirements requirements

Figure 2 Distribution of Programs by VO Requirements
ing capability and O(1) VO capability, such a machine would only
be able to address applications to the left of the 1/N point of the
graph. Without parallel VO, therefore, massively parallel comput-
ers get more unbalanced as the number of processors increases.

As with computing, there is a limit to the performance of an in-
dividual YO device. The speed of a disk drive, for example, is lim-
ited by the speed with which actuators move and with which wires
can convey data to and from the media. By using many disk drives
together, as illustrated in figure 3, one can hope to achieve the
same effect as a single disk drive with many times the perfor-
mance.

Recently, the vendors of massively parallel computer hardware
have been introducing hardware for scalable VO. This hardware
interfaces a scalable number of U0 media, such as disk drives, to a
massively parallel computer. With a 1:l ratio between processing
elements and U0 media, each processor can produce VO data at
its characteristic rate and be assured that the VO system can ac-
commodate this data rate. Furthermore, vendors are attempting to
apply scalability consistently. Scalable YO channels appear be-
tween scalable VO devices and scalable computers, for example,
to assure that the potential for scalability can be realized.

While hardware is now available for parallel VO, one observes
relatively few applications which involve significant amounts of
VO. We believe this is due to a lack of convenient software.

times N(FZ

Figure 3: Concept of Massively Parallel VO

I PCCC ’92
2.2.4.1

CH3129-419210000-0117 $3.00 0 1992 IEEE 0117

nCUBE has identified this as a general problem and is releasing
the system described in this paper as a solution.

1.1 SoRware Engineering Issues
nCUBE’s parallel I/O system software is directed at much

more than just giving the user the cupabiliry of doing parallel VO:
we strive to make parallel VO convenient. As a roadmap for intro-
ducing scalable features, we will review in the next section those
attributes of conventional I/O systems that make them convenient
to use.

The goal of parallel VO is a bottleneck-free pathway between
a group of processing elements and an equal number of VO devic-
es. If this were the limit of the complexity of real parallel I/D ac-
tivities, then we expect that programmers would code Vo directly
into their programs and there would be no need for this paper.
Some of the realities of parallel I/O are illustrated in figures 4 and
5 and described below [DeBenedictis 911.

Fred debugs program using output to a Unix disk
and vi (a text editor)

Later, Fred runs the program with output to a big
striped disk

Later, Carl runs the program with output through a
high speed network interface

1. A 1-1 mapping of the data between the parallel program and
the parallel VO system does not occur often. If, for example, a
user has purchased a different number of disk drives than process-
ing elements, then the mapping cannot be 1-1. If a user has a bud-
get for only 2 disk drives, for example, he will want to get the best
performance he can from this configuration, even though the VO
system will not run as fast as the processor.

2. Furthermore, except for programs that use temporary files
which are deleted before termination, data must be stored on disk
systems in a standard format. This is so that another program (or a
text editor) can read the data. It is an unusual coincidence when
the j’th processing element in a parallel program produces just the
right data for the j’th disk drive according to the standard format.
A task for the parallel U0 system then is to translate between dis-
tributions convenient for programs and a standard form.

3. The details of how to interface with the parallel device are
likely to vary also. On workstations, for example, programmers
like to think that files are stored on a disk system. This is often just
an abstraction, however. Many workstations are diskless and their
files are actually stored on the disk of another computer. In these
cases, VO &om a program goes to a network, not a disk. A parallel
I/O system may be constructed similarly. High performance disk
systems are now available where the actual interface to the com-
puter is via a HiPPI network. The other end of the network con-
nects to a parallel disk system, and software allows the network
interface to masquerade as a file system. Furthermore, on a
nCUl3E system, the high performance network interface is itself a
parallel device. The parallel U0 system must have the same inter-
face for all devices.

4. Figure 5 illustrates parallel Vo in a typical software develop-
ment cycle. Consider program development along a common para-

Figure 5: Software Life Cycle

digm: a programmer initially writes and debugs a parallel program
using a hand-generated dataset for input and looks at the output
with a text editor. When the program is debugged to his satisfac-
tion, the program is run with a full-sized damet, which resides on
a parallel disk. In reality, the character of the VO task changes rad-
ically as parallel Vo is being used. Programmers expect, however,
that this transition can be done without rewriting the program. Lat-
er on, other programmers may choose to run the program from re-
mote locations. Perhaps the remote locations are connected via a
high speed network, such as HiPPI. The I/O task is different again
because a network protocol is required rather than a disk protocol.
It is essential that this change can be effected without rewriting the
program, since the original programmers are not even involved.

Since conventional operating systems address these issues, ex-
tending their structure to parallel VO is an obvious approach. This
structure is illustrated in figure 6. When programming under a
conventional operating system, the user writes the application-spe-
cific portion of the program with VO done in a generic way. In
Unix, for example, all VO is imagined to be a simple stream of
bytes. The operating system has device drivers, each of which in-
terfaces between generic VO and a specific device. The program is
dynamically connected to the device driver according to the name
of the file being accessed. With this method, the source code for
the user’s program contains no reference to a specific device, mak-
ing it portable to any device. Since nothing in this approach is in-
compatible with parallel VO, it can serve as a model for a parallel
U0 system.

To summarize, we are discussing a system that offers both ca-
pability and convenience. We draw an analogy to programming
languages. There is nothing a programmer can do in Fortran or C
that cannot also be done in assembly language. To see this, consid-
er that on modem computers, the Foman and C compilers trans-

Figure 4: Parallel V o ’ s Data Permutation Figure 6: System-level Support for Parallel VO

2.2.4.2
01 18

late their input to assembly language. Likewise, any VO that can
be done with the system-level support described in this paper can
also be done with only raw access to IX). Our claim, however, is
that both computer languages and system-level support for parallel
I/O are useful for their convenience, even though they do not add
fundamental capability.

2 An Intellectual Framework for Parallel VO
As a single task, we regard the data movement implied by par-

allel VO to be too difficult. The problem is to generate the data
permutation from the parallel program to a parallel VO device.
This permutation is not necessarily 1:1, may involve a non-obvi-
ous data permutation, and is expected not only to be correct, but to
satisfy softwm engineering constraints also. This problem, while
tractable, is certainly too difficult for ready acceptance by pro-
grammers.

The approach is to break the single difficult problem into three
simple problems, as illustrated in figure 7. The starting point is the
visualization of a dataset that programmers invariably have as part
of algorithm design. The first problem is to describe the way this
dataset is distributed among the processing elements of the paral-
lel program. The distributions are called mappings, and this map-
ping will be called M1. The second problem is to describe the way
the dataset is distributed among the disk drives of the parallel disk.
This is a mapping also, and is called M2. The third problem is
solved by the system software. The problem is to form the com-
posite mapping Ml-' o M2, (0 representing function composition
from the left) which is the overall permutation from the program
to the device.

The mapping from the dataset to the program is known by the
programmer as part of the algorithm design process. For example,
textbooks on parallel programming give extensive coverage to the
distribution of dense matrices onto parallel computers. The com-
mon methods are to put roughly square blocks, entire rows, or en-
tie columns onto processing elements. The division of the matrix
into blocks, rows, or columns contains is the mapping function M1
in an abstract sense. The only new activity for doing parallel VO is
that the programmer will formalize this mapping as a data struc-
ture which the program will present to the system software as a
system calI.

The mapping from the dataset to the VO device is known by a
programmer also, although typically a systems programmer. The
well known disk striping technology works by dividing a dataset,
viewed as a stream of bytes, into blocks, with the blocks being
mapped in a round-robin manner to the different disk drives. This
mapping from the dataset to the disk drives is M2.

The sequence of activities for parallel VO can be summarized
as follows:
1. the applications and systems programmers code functions M1
and M2 into their source code,

2. the applications program and device driver inform the system
software of mapping functions M1 and M2 through system calls,

3. the system software computes the overall permutation ~ 1 - l o
M2, and

4. VO data then flows from the data producer to the data con-
sumer by the most direct path without bottlenecks.

3 Variety in Parallel V O
While the previous discussion has focused entirely on a paral-

lel program doing output to a parallel disk, these concepts apply to
a much wider range of activities.

3.1 Parallel Graphics
As a reality demonstration, we will summarize a real-time ras-

ter graphics application which is distributed as a sample program
on nCUBE software distribution tapes. An early application of the
nCUBE was the generation of motion images. This application is
somewhat different from those typically found on graphics work-
stations. Graphics workstations strive to generate still images as
quickly as possible. As the images become more complex, the dis-
play rate slows down. The nCUBE application is fixed to real-
time, and as the images become more complex, more processors
are added. Since the nCUBE processor array is scalable, it can ac-
commodate the computing requirements for real-time graphics,
but a suitable VO device is needed. For this application, nCUBE
constructed a parallel VO device, called nGRAPHICS, for dis-
playing raster data generated on the nCUBE.

The nGRAPHICS VO board, illustrated in figure 8, has con-
nections to the VO channels on 128 processing elements in the
processor array. These 128 channels are routed to 16 nCUBE pro-
cessors on the nGWHICS board. The main memory on these
processors is accessible both to the VO processors and a DMA de-
vice which treats the collective memories of 16 processors as a
single 512 bit wide memory. Images are displayed by DhU'ing an
entire image as a single operation. The display hardware has a
fixed mapping for displaying data. Specifically, the first two col-
umns of the image are illuminated by bytes in the memory of the
first VO processor. The second two columns are illuminated by
bytes from the second VO processor, and so on for the first 32 col-
umns. The next 32 columns are similarly illuminated by all 16
pmessors. and so on until all columns are accounted for. This de-
scribes the inverse of M2, which is the mapping from the image to
the channels of the parallel VO device.

The software for doing real-time raster graphics involves de-
scribing M1 and then repeatedly outputting images, as illustrated

U0 PES

Figure 7: Mapping Functions
~

Figure 8: nGWHICS Hardware

2.2.4.3
01 19

dimension
Frame Buffer A(16.16)

ginit () ;

Raster data in local memory

mapped bl/ by +m;[W!~qby

+WIDTH +
ldrwpx (rwpx, rwpy) ;
showdef (WIDTH, xs, y s , dx, -dy, zm);

for (; ; 1

0 1 2 3
PE2 PE3

showexec (bitmap) ;
Figure 9: A Program’s Interface to Parallel Graphics

in figure 9. To specify M1, the programmer identities a rectangular 33 Disk Mappings
region for which a processing element will generate the image. In we describe two Variants of the RAID [Patterson 8% !hlem
general, this rectangular region will be of a particular s i x and 863 technology to ihstrate the m g e of features available in paral-
computed into a subset of a local array. The region will appear on lel secondary stowe. RAID, which stands for Redundant h Y S
the Screen at a particular position. After initializing the graphics of Inexpensive Disks, is a technology for making many disks of
with ginit0, the program calls ldwrpxo and ShowdefO specifying the found on personal computers have performance commen-
the parameters of the M1 mapping. Following these calls, dam can Sura@ With mainframe computers. While the RAID technology ap-
be displayed at a rapid rate by showexec(bitmap), where the bit- Pears not t~ have been for Parallel computers,
map argument is a pointer to the base of the m y in local memory. *e extension isobvio~s.

Disk striping, corresponding to RAID level 0, uses a number
perspective of the system software, the user has specified by of logical disk drives to increase performance, as illustrated in fig-
calls to 1-x and showdef, and the graphics device driver ~2 Ure 12. In addition, each logical disk drive may have a chain of
encoded into it. After specifying MI, the system software corn- several disk drives, but the chaining serves U, increase capacity
puks MI-1 M2, which is the overall data permutation. Each call Without a major increase in performance. Data is Stored on the disk
to showexec then displays the data efficiently. Typically, showexec array by dividing the data S t r e a m into blocks which are mapped in
permutes the data in the computational m y , laving the result on a round-robin manner to the logical drives. Performance increases
16 array processors. The data is then transferred in one operation for large b-anSferS because all the logical drives are Vansfemng
to the graphics board. data simultaneously. Transaction processing applications, which

do small randomly placed VO operations, observe performance
3.2 Program Mappings increases because the drives seek simultaneously. The disadvan-

The mappings of data to programs are significant since they tage of this form of disk striping is that failure of any disk drive
can be done in many ways, three of which are illustrated in figure will cause ~OSS of data.
11. A 2-dimensional array is typically mapped in one of three dif-
ferent ways: by roughly square blocks, with entire columns on a
processing element, and with entire rows on a processing element
[Fox 881. In the nCUBE parallel VO system all three of these
mappings are possible by the proper choice of a mapping function.
After the programmer specifies the appropriate mapping function,
the data permutation will be performed by the VO system without
further programmer intervention.

Figure 11: Program Mappings

Figure 10 illustrates the overall flow of graphics data. From the

YO pm. 0 proc. proc. proc.

CRT in mind’s eye
Figure 12: Striped Disk

Disk striping with parity blocks, corresponding to RAID level
5. allows continued operation after a disk failure, as illustrated in
figure 13. With this technology, the number of logical drives is one
greater than the striping factor. A parity block is generated in each
row of blocks, but with the parity block shifting positions on each
row. Even with one disk drive failure, the data can still be recov-
ered by computation on the parity blocks. Furthermore. since the
parity blocks are accessed more often than data blocks, the even
distribution of the parity blocks over the drives levels perfor-
mance. This technology, while complex, may offer a long-term so-
lution to high capacity, large volume, data storage.

termined by
teristics of
cs hardware

graphics hardware user program

E€I- parallel output

Ml-’ o M 2
bottleneck-free

Figure 10: overdl Data How in parallel Graphics

2.2.4.4
01 20

M1

on
Figure 13: Striped Disk with Panty B Mapping functions describe the mapping from the abstract

3.4 Fast Network (HiPPI) Hardware dataset to byte positions in the distributed program or y10 device.
As the computation and Ix) capabilities of massively parallel The input is the index of a byte in the abstract dataset The outputs

machines scale up with advancing technology, network band- are the Unit number, being either a pmesshg element number or a
widths will an announced Hipp1 net- device number, and the index of the byte in the unit
work interface which employs the scalable architecture illustrated Figure 15 illustrates the particular class of functions proposed
in figure 14. Like the nGRAPHICS interface, the HiPPI interface as mapping functions. The functions operate by permuting the bits
interfaces to 128 processing elements in the computational array. of their afgummts. Specifically, the input to the function is repre-
The 16 I/o pm.qsors on the Hipp1 board use video ram chips as sented as a Series of bit valueS. applied from the left. The output Of

main memory. Video &vices: one port is the function appears on the right in two fields. The unit number ap-
random access memory and the other port can shift the pears as the bits of lowest significance on the right side. The num-

contents of the memory at very high speed. DMA hardware inter- ber of bits varies depending on the number Of dimensions of the
faces between the video units. The remaining bits form the
rectly. Good mappings for the HiPPI interface distribute the data index into the dataset on the specs4 unit.
to the y10 processors in moderate sized blocks. In order to effec- The necessary manipulations of these functions are straightfor-
tively use bandwidth to the 16 Ix) processors, messages must be ward, as illustrated in figure 16. The inverse of a permutation is
broken into at least 16 pieces. If block sizes are too small, howev- easily obtained by reflecting the pennutation about a vertical axis,
er, b e command sequence to the chained DMA hardware will take as illustrated by M1 and MI-'. Composition of two functions is
too long to setup. The VO system being described applies to this done by Wing each arc from one end to the other, as illustrated
HiPPI interface also. by Ml-' and M2 being composed to fonn Ml-' o M2.

As an example of the use of mapping functions, consider map-
ping functions for the program mappings discussed earlier. The
dataset in the mind of the programmer is a 16x16 array of floating
point numbers which are to be mapped by block, column, and row
to the memories of four processing elements.

Figure 17 attaches a meaning to the bits in the binary represen-
tation of the index of each byte in the dataset. The dataset consists
of 1024 bytes, consisting of 256 groups of 4 bytes, each group of 4
bytes representing a floating point number. It should be clear,
therefore, that the least significant two bits of the binary represen-
tation of the index identify the byte within a floating point number.

The first 16 floats (64 bytes) in the dataset represent the first
column of the matrix (given Fortran array ordering). Since the ele-
ments of a column have the same column index and varying row
index, the next four bits in the binary representation represent the
row number where such a byte would be sent. The remaining four

up also. n W E

chips are dual

and the Hipp1 physical transport di- subcube or the number of

ia

Figure 1 4 Fast Network (HiF'PI) Hardware

4 Mapping Functions

Lions [Chen 881. On one hand, they must be flexible enough to rep-
The key to implementing this Ix) system is the mapping func-

resent all the mappings described in previous sections. On the
other hand, they must be easily enough manipulated that system
software can compute MI-' o M2 and then transfer data efficiently
using the composite mapping.

address form

512's bit

.. I............. 128's bit

dataset

64's bit

MSB

offset in

as binary
number

LSB
Figure 15: Sb ucture of a Mapping Function

16's bit I. .I.. ... I.
...........I.,..

byte 63

H byte 1023
I float 1 l'sbit

Figure 17: Bit Interpretation of Indices

2.2.4.5
01 21

messages to other parts
of the parallel program devices

messages to parallel

JZJD-)
float

Figure 1 8 Row-oriented Mapping Function Figure 20: Merged Message and File VO
bits in the binary representation of the index therefore represent processor communications was handled by nCUBE proprietary
the column number. system calls such as nread, nwrite, and ntest. The nCUBE propri-

Figure 18 illustrates the mapping function where entire rows etary calls, which do not use a file descriptor, do VO either to 0th-
appear on a processing element. In this case, the factor determin- er processing elements in the subcube, or to I/o processors.
ing which processing element a byte is mapped to is the row num- The old I/o system has been extended as illustrated in figure
ber. More specifically, since the columns are mapped kt groups, 20. First, it is now possible to send messages in different address-
with only one group mapped to a processing element, it is the most ing domains. Specifically, messages can still be sent to other pro-
significant two bits of the row number that determine the process- cessing elements in the subcube, in which case addresses 0.N-1
ing element. represent the processing elements in the subcube. In addition,

Figure 19 illustrates the mapping function where the matrix is messages can be sent to the units of a parallel device, in which
mapped in blocks. Which processing element a byte is mapped to case addresses 0.N-1 could represent the different disk drives of a
depends on both the row and column of that byte. More specifical- parallel disk. Secondly, messages can be sent via file descriptors.
ly, since the blocks are eight entries on a side and their are two This means that file VO, which is directed at file descriptors, can
blocks in each dimension, the highest order bit of the row and col- be translated into message VO directed at the different units of the
umn indices determine the processing element number. The per- parallel device.
mutation retains the Fortran-imposed order of the remaining bits. These enhancements have caused a change in roles of propri-

Consider the mapping function where entire columns appear etary and Unix communications primitives, as illustrated in figure
on a processing element. Using the same reasoning as before, the 21. In the old system, the communications kernel (called Vertex)
highest two bits of the column number determine which process- supported the proprietary primitives directly, but had compatibility
ing element a byte is mapped to, with the order of the other bits be- libraries for Unix primitives and other primitives (such as reactive
ing unchanged. kernel [Seitz 881). In the new system, Unix primitives become the

This class of mapping functions can describe many popular new standard interface, and compatibility libraries exist for the
mappings, but there are limitations. The functions can describe a proprietary and other primitives.
hierarchy of round-robin blocked mappings. This includes the ma- The new system is an adaptation of Unix networking. In Unix,
trix distributions as well as “disk striping” mappings. Further- a program may have a network attached to a file descriptor. An ad-
more, while the mapping functions do not support RAID parity dressing domain will be associated with the network which associ-
units and Gray code orderings, these can be accommodated as an ates a unique address with the file descriptors of all the other
additional functional level. programs which are likewise attached to the network. To send a

The limitation of this class of mappings is that all sizes must be message, one uses the call putmsg(fd, data, address). The argu-
powers-of-2. While block sizes on disks and the sizes of “sub- ment fd is the file descriptor of the “connectionless transport end-
cubes” are typically powers-of-2, the number of disk drives in a point” which attaches the network to the program. The data and
system often is not. We regard this limitation as significant and ex- address arguments convey the data to be sent and the address it is
pect to enhance the class of mapping functions eventually. to be sent to.

The nCUBE system sets up miniature Unix networks to sup-
5 Low-Level I/O port interprocessor communications and parallel VO. These net-

A new low-level VO system has been added to support parallel works will be attached to file descriptors of the various processing
I/O. The new system, which is compatible with the old, not only elements and will support putmsg type d s .
supports the functions described so far but adds value in the areas The nselffeature, illustrated in figure 22, supports interproces-
of Unix compatibility [ATBtT 901. sor communications and backwards compatibility. When starting a

The old low-level VO system had two independent types of parallel program, the operating system creates an addressing do-
VO from the processing elements. VO to the filesystem was h- main embodying all the processing elements in the parallel pro-
dled by Unix VO calls. These calls included open, close. read, gram. This addressing domain is attached to a file descriptor called
write, and acted on file descriptors. Messam-based VO for inter-

row
number

column
number

byte
within
float

MSB

1nde;:thin

LSB -
PEnumber

Figure 19: Block-oriented Mapping Function

IUxaY New wa

nwrite write xsend n h t e write xsend
nread/ read/ X e c V / nread/ read/

nreadlnwrite proprietary getmsglputmsg Unix
communications calls communications calls

Figure 21: Function Layering

2.2.4.6
0122

address)

64 row

I
Figure 2 2 Nself

nself in all the processing elements. Messages are sent within the
subcube using nself. The proprietary primitives are then imple-
mented using nself: nwrite(data, address) is translated immediate-
ly into putmsg(nself, data, address), using the global variable
nself.

Access to parallel VO devices is easily added at this point, as
illustrated in figure 23. For each I/ID connection. an Unix-style ad-
dressing domain is constructed. The addressing domain includes
all units at both the producing and consuming ends of the parallel
I /O channel and provides the low-level capability for sending
messages among the units.

These low-level VO Capabilities give bansparent support for
l/O redirection and pipes, which are high-level Unix abstractions.
Since parallel Ix) channels are associated with file descriptors,
and a program inherits the standard input, output, and error file de-
scriptors from the shell when it is started, programs can be run
with VO redirected to parallel files. Parallel pipes are similarly
supported.

Tie-in to Mapping Functions
The tie-in between the low-level VO capabilities and the high-

level mapping functions can now be described. Say the user writes
one byte to a parallel file. Now, the parallel device appears to the
user program like the network in figure 23, rather than a file. Since
without an address, one does not know where on a network to send
data, regular Unix does not define the behavior of writes to a net-
work. We are therefore free to have writes to networks invoke the
mapping function algorithms. Evaluating the M1" o M2 then
yields the destination unit number and a position within Chis unit
for the single byte being written. Following evaluation of the map-
ping functions, the system code does a putmsg call sending the
byte to the appropriate unit.

As in Unix. stream devices and random-access devices are
treated differently. For a random-access device, the message spec-
ifies the index within the ID unit, and the byte is written there. For
a stream device, the position in the VO unit can be reconstructed
from a count of the bytes sent from a processor to an VO unit.

Say the user writes many bytes to a large file. The write is bro-
ken into blocks where all the bytes in a block are destined for the
same VO unit. While it is beyond the scope of this paper to elabo-
rate, symbolic processing of mapping functions can yield not only
where the byte goes. but also the number of consecutive bytes fol-
lowing that will end up contiguously stored on the same media
unit. This processing is applied repeatedly to a transfer, shortening

row 1.68 MBps 108.0MBps

-
Figure 23: Parallel VO

parallel computer with s+r processors

1111
column, or 1 block I ' I iz?or 1

Figure 24: Test configuration for parallel pipes
the transfer by the size of the transmitted block each time, until
there are no more bytes left.

6 Performance Results
The first test demonstrates heterogeneous programming, or

parallel pipes. In this test two parallel programs are running simul-
taneously in a single nCUBE parallel computer and communicate
via a parallel communications path. Each program has a 1024 x
1024 character array distributed in the various combinations of
row, column, and block mappings. After specifying the mappings,
one program transmits its part of the array the array with a single
write and the other receives it with a single read. Several features
are demonstrated in addition to scalable performance. When the
programs were compiled they knew only about their own data dis-
tribution, and not the distribution of the other, hence modularity is
demonstrated. In some tests, the distributions differ in the two pro-
grams, thereby demonstrating the ability of the U0 system to
translate between data distributions.

Figure 24 illustrates the configuration, with tables 1 and 2 il-
lustrating performance figures. All rate and bandwidth measures
are in units of MByWsec.

Table 1 : Performance of parallel pipes

; 1 ;o 1 z 1 2.18MBps 1 4.36MBps 1
2.14 MBps 8.56 MBps

row row 2.07MBps 16.6MBps

I 32 I row I row I 1.72MBps I 55.0MBps I

2.2.4.7
01 23

per node would remain constant as the values of s and rare altered.
However, the results show that there is a gradual divergence be-
tween the observed and expected per node rates. It has been ob-
served that this reduction in the rate per node can be accounted for
by assigning a constant overall transmission overhead of approxi-
mately 4 milliseconds. Further, this overhead and the resulting re-
duction in the per node transfer rate is only significant when the
size of each node’s local data is below 1 Megabyte. For test cases
where each node’s local data was maintained at greater than or
equal to 1 Megabyte, the rate per node remained constant for all
values of s and r, and the aggregate bandwidths exhibited perfect
linear speedups. The exact contributions to this overhead from the
various possible sources are currently being investigated and, due
to publication deadlines. is relegated to some future papr.

Table 2 provides results for a parallel pipe using various map-
ping combinations. The results show the expected reduction in
rates for non-identity mappings caused by the increase in overhead
related to additional data manipulations. The exact contributions

32

64

32

64

Table 3: Performance of parallel disk

row 2 2.52MBps

row 2 2.49 MBps

row 4 4.83MBps

row 4 4.%MBps

Table 2: Parallel pipe mapping variations

108.0 MBps
I ‘ J

64 column column 108.0MBps

I 64 I block I block I 108.OMBps I

to this overhead from the various possible sources are currently
being investigated and, due to publication deadlines, is relegated
to some future paper.

The second test demonstrates U0 between parallel programs
and secondary storage. In this test, a parallel program transfers a
1024 x 1024 character matrix to a parallel disk. After specifying a
row mapping, the program writes the matrix to the disks. The data
is stored as 1024 character stripes distributed in round robin fash-
ion among the disks.

Figure 25 illustrates the conEguration, with table 3 illustrating
performance Egures.

The results show that the aggregate disk bandwidth increases
in proportion to the number of disks. However, it also shows that
the limiting factor in the overall bandwidth is determined by the
minimum of the bandwidth capacities of the processors and that of
the disks. This is evidenced by the fact that doubling the number
of nodes for a given set of disks will cause only slight variations in
the overall bandwidth.

1.01 m p s

7 Conclusions
We have discussed a long term plan for parallel VO on mas-

sively parallel machines. Some of these features will be included
in release 3.0 of the nCUBE system software, although other fea-
tures will not be included until later.

This system will transfer data in parallel between scalable pro-
grams and/or I/O devices with any number of units. We claim to
have made VO as scalable as computing.

Furthermore, VO and computing are integrated.
The additional features were added in the Unix model, where

possible. In other places, the Unix model has been extended in a
natural way.

Unix abstractions have also been extended to parallel VO. I/O
redirection (program e Ele) and pipes (program1 I program2) are
supported naturally.

References
[AT&T 901 “Unix System V, Release 4 Programmer’s Guide:

Networking Interfaces,” Prentice-Hall, 1990.
[Chen 881 M. Chen, E. DeBenedictis, “Separate Compilation

and Dynamic Linking of Parallel Programs,” M. Chen. E. De-
Benedictis, Yale University, May 1988.

[DeBenedictis 911 E. DeBenedictis, P. Madams, “nCUBEs
Parallel with Unix Compatibility,” Proceedings of the Sixth
Distibured Memory Computing Conference, Portland, OR, April,
1991

[Fox 881 G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,
D. Walker, “Solving Problems on Concurrent Processors,” Pren-

[Patterson 881 D. Patterson, G. Gibson, R. Katz, “A Case for
Redundant Arrays of Inexpensive Disks,” Proceedings of the 1988
ACM SIGMOD Conference on Management @Data, Chicago, IL,
June, 1988.

[Salem 861 K. Salem, H. Garcia-Molina, “Disk Sniping,”
IEEE 1986 International Conference on Data Engineering, 1986.

[Seitz 881 C. Seitz, J. Seizovic, W. Su, “The C Programmer’s
Abbreviated Guide to Multicomputer Programming,” Caltech
Computer Science Technical Report Caltech-CS-TR-88-1, January
1988 (revision of April 1989).

ti~e-Hall, 1988.

Figure 25: Test configuration for parallel disk

2.2.4.8
01 24

