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Abstract 
Scalable parallel computers with TFLOPS (Trillion FLoating Point Operations Per 

Second) performance levels are now under construction. While we believe TFLOPS 
processor technology is sound, we believe the software and I/O systems surrounding 
them need improvement. This paper describes our view of a proper system that we 
built for the nCUBE parallel computer and which is now commercially available. 

The distinguishing feature of our system is that scalable parallelism is implicit rather 
than explicit. We did not base our system on new commands, system calls, or 
languages. Instead, we extended some aspects of Unix® to add parallelism while 
keeping these aspects unchanged for nonparallel programs. 

The result is a system that lets one use a future TFLOPS parallel computer without 
knowing parallel programming. As parallel versions of standard compilers arrive, and 
large data sets get distributed over multiple I/O devices, then standard Unix commands 
will run arbitrary mixtures of parallel and nonparallel programs and I/O devices. One 
gets scalable computing and I/O rates whenever a command includes only parallel 
components. 

1 Introduction 
1.1 Scalable architecture 

A scalable architecture is a shorthand notation for describing a family of computers. FIG. 1 uses 
the notation to describe the nCUBE's architecture (which is similar to others [4] [5] [8]). The 
scalable architecture has a Processing Element (PE) repeated n times and an I/O device repeated 
m times. Each PE has a CPU and some local memory that only that CPU uses for the kernel of a 
computation. The use of local memory only ensures that increasing the repetition factor n does 
not degrade performance due to network limitations. 
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FIG. 1: A scalable architecture 
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A log2(n+m) stage hypercube communication network connects the PE's and I/O devices. The 
scalable architecture corresponds to the family of computers with different values of n and m. 
Leaving the repetition factors unbound allows us to see how performance and other factors vary. 

TFLOPS-level computers are very large; those due for delivery about 1995 roughly follow FIG. 
1 with n=10,000 and 100 MFLOPS per CPU. Furthermore, for each n=10,000 computer, there 
will be many computers built with smaller values of n. This means hardware and software will 
have to work over a four order-of-magnitude size range (1≤n≤10,000). 
1.2 Scalable I/O 

The traditional standard for balanced I/O on any computer calls for the I/O rate (in 
MBytes/second) to equal the computing rate (in MFLOPS). Others expect this to hold for 
TFLOPS supercomputers as well [10]. This means a scalable processor requires a scalable I/O 
system for balance. The natural way to achieve this adds enough ports (m) to the network for disk 
drives, as shown in the right side of FIG. 1. The ratio of n and m and the relative speed of the 
processors versus the I/O media determine the I/O balance. Keeping the ratio of n and m about the 
same keeps I/O balanced among members of the architecture's family. 

Just because many processors and disks are wired together does not mean that an application 
automatically runs faster. However, algorithms have been developed for many problems that give 
proportional speedups as n and m increase [3, 10], especially for large problems. The challenge is 
to do this within the Unix framework 
1.3 Extendibility in Unix 

Unix® [9] has some internal interfaces that help make extensions natural. These internal 
interfaces act as barriers. They limit the effect an extension has on the rest of the system and on 
applications programs. This section discusses some internal interfaces and sets the stage for the 
following section that uses them as the basis of parallel extensions.  

FIG. 2 shows how the Unix executable file is an internal interface that limits the effects of 
different programming languages. Compilers specific to each language translate programs into a 
single executable file type. This insulates the rest of the system from knowledge of a program's 
source language. By compiling parallel source into the common executable, we block most direct 
exposure of the user to parallelism. Of course, today's executable files lack features necessary for 
TFLOPS-level parallel processing. We first discuss how to get TFLOPS-level performance before 
returning to the issues of source code and executable files. 
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FIG. 2: Multiple languages 
FIG. 3 shows the Unix internal interface for connecting application programs to each other and 

to I/O devices. Unix has a single type of "I/O pipe" that allows a user to connect any program to 
any I/O device (or any other program). Window-based user interfaces illustrate the value of this 
internal interface. Hundreds of Unix utility programs were first written decades ago on 
minicomputers. Their programmers knew only about printing terminals and CRT character 
displays because there were no windowing systems yet. Since modern windowing systems use the 
same I/O pipes as the old-style terminals, these programs run today in windows (but still as a text-
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based applications). Pipes let hundreds of programs get a free (limited) upgrade to a window-
based user interface. This accelerated the acceptance of window-based user interfaces by 
automatically providing hundreds of utility programs. 
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FIG. 3: Data pipes in Unix 

If parallel programs and parallel I/O use an extension of the standard Unix I/O pipe, we can 
preserve this interface. This will allow existing Unix programs to run on new parallel computers. 
Like the window-based user interfaces, this will provide a limited upgrade. As more utilities and 
applications are written to use the parallel extensions, performance will improve but the user 
interface will be unchanged. The next section discusses this parallel extension to I/O pipes. 
2 Parallel Extensions for I/O Pipes 
2.1 Current Unix I/O Pipes 

The current Unix internal interface lets programmers believe all I/O is in the form of a byte 
stream. This means programs do not need to know the physical representation of files and output 
devices (e. g. tape and disk blocking, printer carriage control). Conversely, I/O devices do not 
need to know how a program interprets data (e. g. text or binary data). Instead, programmers 
imagine and manipulate data in the most natural way. Text on a screen (illustrated in FIG. 4) or 
images (illustrated in FIG. 5) are common views. While writing programs that print lines of text, 
programmers think of adding lines to the end of a screen. This view holds even if the program is 
sending output to a disk. 
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FIG. 4: Byte stream abstraction 

Byte streams are abstractions because the system does not really do I/O that way. Instead, data 
is moved from a program to a device in a single composite step as shown in FIG. 4. Writing text 
to a disk, for example, may change the end of one disk block, go to the free list for another block, 
add that block to the file description in the directory, and change the beginning of the new block. 
2.2 Unix extensions for data distribution 

This section shows specific extensions to the Unix I/O pipe interface to support data 
distributions.  

FIG. 5 is an example of a parallel program in its execution environment. The program is a 
parallel image processing application that writes an image to a parallel disk. The parallel 
program, shown on the bottom left, uses the popular Single Program Multiple Data (SPMD) [3] 
execution paradigm. In such a program, each of the four Processing Elements (PEs) illustrated 
runs the same program. Furthermore, the PEs execute similar sequences of instructions. 
Specifically, all PEs execute system calls in the same sequence but on different data. 
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FIG. 5: Parallel system example 

The programmer views the data as the 8 × 8 image, as shown at the top of FIG. 5. We have 
labeled the pixels with characters to show correspondences. Image processing applications 
commonly divide data into roughly square 2-d regions and distribute these regions to the 
processors viewed as a 2-d array. The arrow from the image to the processor array represents this 
distribution. We put a tag on this arrow with the words "4 × 4 images, 4 PEs" to document this 
distribution. 

We show normal striping [7] for the two-disk storage system on the right. The storage system 
views data as a 1-d sequence of 8 byte blocks, with the blocks distributed round-robin to the disk 
drives. The tag on the right side documents this distribution. 

As with the current Unix systems, I/O is not really done this way. To achieve scalable transfer 
rates, the operating system sends data directly from the processors to the disks, transmitting, 
blocking and writing the data as needed ⎯ the next section gives the details. Throughout FIG. 5, 
we shaded the pixels in PE 2 and the first stripe. This shows how output from PE 2 creates a 
complex pattern on the disk. Specifically, output from PE 2 goes to disk 0 then 1 and then repeats 
disks 0 and 1. Furthermore, PE 2's data in each stripe neither starts nor ends either stripe and is 
not even contiguous within the stripe. Complex patterns like these often result from composing 
two data distributions. 

The tags D1 and D2 are the details of parallel I/O. We can preserve the byte stream abstraction 
by avoiding contamination of the program and I/O devices with each other's tags.  
2.3 Scalable pipes  

FIG. 6 shows a scalable algorithm suitable for an I/O pipe. Compare this to the processors, 
network, and I/O units of the scalable architecture shown in FIG. 1. We show data switches on the 
left and right sides of the figure. These switches get put in each processor and I/O device. As the 
data passes through the left hand switches, individual bytes or blocks are routed to the proper 
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channel on the right. Sometimes, we need the switches on the right. They order the arriving data 
into a single stream. The network in the middle conveys the data blocks to the proper unit.  
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in
network

repeated n times repeated m times

 
FIG. 6: Parallel algorithm to convert distributions 

The algorithm in FIG. 6 is both theoretically and practically scalable. As detailed in Ref. 2, the 
data switching algorithms are theoretically constant-time and fast in practice. Since they are 
independent and executed in parallel, they do not impair scalability. Coupled with a scalable 
network, the overall algorithm would be scalable. Now, some would argue that there are no 
general purpose networks that are truly scalable. These arguments are most convincing for 
shared-memory networks where low network latency is important. They are less applicable to 
message-passing networks. Since the algorithm uses messages and does not depend on low 
network latency, the network does not impair scalability either. 

The algorithm in FIG. 6 is the new feature needed in an I/O pipe to make the bandwidth 
scalable. The overall effect of the algorithm is to redistribute data from the left hand distribution 
D1 to the right hand distribution D2. This is D1-1°D2 in functional notation. While algorithms for 
the data switching are straightforward, the operating system must know D1 and D2 to configure 
the algorithm. The next section describes how the system gets D1 and D2 from executing 
programs through system calls. Also, we give nonparallel programs and devices a default tag that 
says "no distribution, one processor." This makes the algorithm handle connections between 
parallel and nonparallel programs and devices automatically. 
2.4 Interface to emerging parallel languages 

FIG. 7 illustrates an interface with parallel compilers. We illustrate the array "dimension a(8, 
8)" from the example at the top center of the figure. Parallel compilers select data distributions 
like D1 and use them for distributing arrays and calculations on them. Current parallel compilers 
then discard this information, making it unavailable to other parts of the system. We suggest 
enhancing parallel compilers to put this information into the executable file. We also suggest that 
compilers generate system calls to deliver this information to the operating system before doing 
I/O. This gives the operating system the information necessary to use the pipe extension 
described above.  
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FIG. 7: Flow of data distribution information 
There is a similar situation with data distributions in I/O devices. The system administrator 

selects D2 based on the number of disks on the system and other requirements. These 
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distributions typically distribute a byte stream using striping [7] and RAID [6]. In current I/O 
device technology, data distribution is entirely the responsibility of the storage subsystem and is 
unavailable elsewhere. This is equivalent to the parallel compiler discarding data distribution 
information. Making D2 available in the device driver enables scalable I/O to the device. 

A system call delivering distribution information to the operating system is the primary 
extension needed to executable files. Since the default is "no distribution, one processor," the new 
system call does not affect existing programs. Parallel programs make the new system call and 
thus enable parallel I/O. 
3 Scalable I/O hardware 

While TFLOPS computers are under construction, the fastest networks at the same stage of 
development are under 10 GFLOPS. This is under 1% of the bandwidth required for a traditional 
I/O balance. By using the software described earlier and the "stream combiner" architecture in 
FIG. 8, one could build a scalable network that can be driven by any Unix program. One could 
then scale the network to a terabyte/second to balance a computer scaled to TFLOPS. 
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FIG. 8: Stream combiner 

The stream combiner shown in FIG. 8 lets the software just described drive any fast medium. This 
device works like the section of roadway between a toll booth and a bridge in a big city. Since 
toll booths are slower than traffic lanes, a two-lane bridge may have a dozen toll booths. Cars 
emerge slowly from the toll booths on a dozen lanes of roadway. As these lanes quickly merge 
into two lanes, the traffic speeds up and the cars become closer together. This lets the bridge run 
at full capacity though individual toll booths are slow. The stream combiner illustrated works 
similarly to four toll booths and a one lane bridge. Where cars merge randomly on a roadway, the 
stream combiner merges the data according to the specific pattern shown. 

The merging pattern shown corresponds to a 1-d data distribution as described earlier. This lets 
one create a data distribution tag for the stream combiner. If one then treats stream combiner 
inputs as the units of a parallel entity, the software described earlier will work. 

One must tailor a stream combiner to each specific medium. An engineer must pick a size for 
the symbols in FIG. 8 and understand the flow control requirements of the medium, for example. 
4 Work Performed 

We built system software for the nCUBE parallel computer around the ideas in this paper. This 
software became version 3.0 of nCUBE's system software, and is commercially available.  

We ran many performance trials, including program-to-program, program-to-disk, and 
program-to-device (video display) I/O. We also recompiled Unix programs, like tar, and put them 
on the system release tape as system utilities. We detail these results in ref. [2] and the nCUBE 
technical documentation. 
5 Conclusions 

We conclude by describing the logical result of consistently applying this design approach to 
scalable computers. The high level block diagram of a future massively parallel computer may be 
the same as a contemporary computer. There will be scalable components inside the boxes in its 
block diagram, however. The processor section will consist of a processing element replicated n 
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times. The replication factor n will increase the performance by the same factor. Furthermore, one 
can have any value of n provided one can afford the resulting computer. The secondary storage, 
I/O subsystem, and systems software will have a similar design and properties. 

Software and programming for such a computer may bear striking resemblance to that for 
today's computers. The user who does not program but deals solely with applications may see no 
difference. This user will see a computer with a familiar user interface and supporting the same 
abstractions as a contemporary computing environment. Today's programs also will run on any 
single processor. 

The programmer will see a similar environment, but programmed with enhanced languages. 
Programmers will write in existing languages enhanced for data parallelism. The compilers for 
these languages will produce executable files that are interchangeable with today's Unix files. 

When parallel programs run in combination with parallel I/O devices, TFLOPS computing 
levels occur. 
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