

I/O for TFLOPS Supercomputers

 Erik P. DeBenedictis† Stephen C. Johnson‡

Abstract
Scalable parallel computers with TFLOPS (Trillion FLoating Point Operations Per

Second) performance levels are now under construction. While we believe TFLOPS
processor technology is sound, we believe the software and I/O systems surrounding
them need improvement. This paper describes our view of a proper system that we
built for the nCUBE parallel computer and which is now commercially available.

The distinguishing feature of our system is that scalable parallelism is implicit rather
than explicit. We did not base our system on new commands, system calls, or
languages. Instead, we extended some aspects of Unix® to add parallelism while
keeping these aspects unchanged for nonparallel programs.

The result is a system that lets one use a future TFLOPS parallel computer without
knowing parallel programming. As parallel versions of standard compilers arrive, and
large data sets get distributed over multiple I/O devices, then standard Unix commands
will run arbitrary mixtures of parallel and nonparallel programs and I/O devices. One
gets scalable computing and I/O rates whenever a command includes only parallel
components.

1 Introduction
1.1 Scalable architecture

A scalable architecture is a shorthand notation for describing a family of computers. FIG. 1 uses
the notation to describe the nCUBE's architecture (which is similar to others [4] [5] [8]). The
scalable architecture has a Processing Element (PE) repeated n times and an I/O device repeated
m times. Each PE has a CPU and some local memory that only that CPU uses for the kernel of a
computation. The use of local memory only ensures that increasing the repetition factor n does
not degrade performance due to network limitations.

Von Neumann
processor

Von Neumann
processor

Von Neumann
processor

PE (CPU,
memory, and
network)

repeated n times

I/O media(disk)
I/O device(disk)
I/O media(disk)

I/O device

repeated m times

2

n+m port
log n+m
stage
hypercube
network

FIG. 1: A scalable architecture

† President, Scalable Computing, Redwood City, CA.
‡ President, Melismatic Software, Palo Alto, CA.

DEBENEDICTIS AND JOHNSON 1 I/O FOR TFLOPS SUPERCOMPUTERS

A log2(n+m) stage hypercube communication network connects the PE's and I/O devices. The
scalable architecture corresponds to the family of computers with different values of n and m.
Leaving the repetition factors unbound allows us to see how performance and other factors vary.

TFLOPS-level computers are very large; those due for delivery about 1995 roughly follow FIG.
1 with n=10,000 and 100 MFLOPS per CPU. Furthermore, for each n=10,000 computer, there
will be many computers built with smaller values of n. This means hardware and software will
have to work over a four order-of-magnitude size range (1≤n≤10,000).
1.2 Scalable I/O

The traditional standard for balanced I/O on any computer calls for the I/O rate (in
MBytes/second) to equal the computing rate (in MFLOPS). Others expect this to hold for
TFLOPS supercomputers as well [10]. This means a scalable processor requires a scalable I/O
system for balance. The natural way to achieve this adds enough ports (m) to the network for disk
drives, as shown in the right side of FIG. 1. The ratio of n and m and the relative speed of the
processors versus the I/O media determine the I/O balance. Keeping the ratio of n and m about the
same keeps I/O balanced among members of the architecture's family.

Just because many processors and disks are wired together does not mean that an application
automatically runs faster. However, algorithms have been developed for many problems that give
proportional speedups as n and m increase [3, 10], especially for large problems. The challenge is
to do this within the Unix framework
1.3 Extendibility in Unix

Unix® [9] has some internal interfaces that help make extensions natural. These internal
interfaces act as barriers. They limit the effect an extension has on the rest of the system and on
applications programs. This section discusses some internal interfaces and sets the stage for the
following section that uses them as the basis of parallel extensions.

FIG. 2 shows how the Unix executable file is an internal interface that limits the effects of
different programming languages. Compilers specific to each language translate programs into a
single executable file type. This insulates the rest of the system from knowledge of a program's
source language. By compiling parallel source into the common executable, we block most direct
exposure of the user to parallelism. Of course, today's executable files lack features necessary for
TFLOPS-level parallel processing. We first discuss how to get TFLOPS-level performance before
returning to the issues of source code and executable files.

C
source

Fortran
source

parallel
source?

C
compiler

Fortran
compiler

parallel
compiler

common
executable
file type

Internal interface
insulating the rest
of the system from
the source language

FIG. 2: Multiple languages
FIG. 3 shows the Unix internal interface for connecting application programs to each other and

to I/O devices. Unix has a single type of "I/O pipe" that allows a user to connect any program to
any I/O device (or any other program). Window-based user interfaces illustrate the value of this
internal interface. Hundreds of Unix utility programs were first written decades ago on
minicomputers. Their programmers knew only about printing terminals and CRT character
displays because there were no windowing systems yet. Since modern windowing systems use the
same I/O pipes as the old-style terminals, these programs run today in windows (but still as a text-

DEBENEDICTIS AND JOHNSON 2 I/O FOR TFLOPS SUPERCOMPUTERS

based applications). Pipes let hundreds of programs get a free (limited) upgrade to a window-
based user interface. This accelerated the acceptance of window-based user interfaces by
automatically providing hundreds of utility programs.

program
another

terminal

program disk

Unix
commands

network

parallel
programs

tied
together

with

Internal interface protecting applications
and I/O devices from each other

and devices?

I/O pipe

FIG. 3: Data pipes in Unix

If parallel programs and parallel I/O use an extension of the standard Unix I/O pipe, we can
preserve this interface. This will allow existing Unix programs to run on new parallel computers.
Like the window-based user interfaces, this will provide a limited upgrade. As more utilities and
applications are written to use the parallel extensions, performance will improve but the user
interface will be unchanged. The next section discusses this parallel extension to I/O pipes.
2 Parallel Extensions for I/O Pipes
2.1 Current Unix I/O Pipes

The current Unix internal interface lets programmers believe all I/O is in the form of a byte
stream. This means programs do not need to know the physical representation of files and output
devices (e. g. tape and disk blocking, printer carriage control). Conversely, I/O devices do not
need to know how a program interprets data (e. g. text or binary data). Instead, programmers
imagine and manipulate data in the most natural way. Text on a screen (illustrated in FIG. 4) or
images (illustrated in FIG. 5) are common views. While writing programs that print lines of text,
programmers think of adding lines to the end of a screen. This view holds even if the program is
sending output to a disk.

DEBENEDICTIS AND JOHNSON 3 I/O FOR TFLOPS SUPERCOMPUTERS

hello world
hello world
hello world
hello world

1. Line orientation
2. Disk blocking
3. Parallelism?

Program with
variable length
text lines

Block
oriented

disk

Actual I/O path

variable length lines go
to one or more blocks

Abstract
I/O path

Interface hides I/O details like

byte stream
abstraction

FIG. 4: Byte stream abstraction

Byte streams are abstractions because the system does not really do I/O that way. Instead, data
is moved from a program to a device in a single composite step as shown in FIG. 4. Writing text
to a disk, for example, may change the end of one disk block, go to the free list for another block,
add that block to the file description in the directory, and change the beginning of the new block.
2.2 Unix extensions for data distribution

This section shows specific extensions to the Unix I/O pipe interface to support data
distributions.

FIG. 5 is an example of a parallel program in its execution environment. The program is a
parallel image processing application that writes an image to a parallel disk. The parallel
program, shown on the bottom left, uses the popular Single Program Multiple Data (SPMD) [3]
execution paradigm. In such a program, each of the four Processing Elements (PEs) illustrated
runs the same program. Furthermore, the PEs execute similar sequences of instructions.
Specifically, all PEs execute system calls in the same sequence but on different data.

DEBENEDICTIS AND JOHNSON 4 I/O FOR TFLOPS SUPERCOMPUTERS

D1: 4 x 4
images,
4 PEs

D2: 8 byte
blocks,
2 disks

Disk 0

Disk 1

Tags
indicate
form of

data dist-
ribution

0 1 2 3 4 5 6 7
8 9 A B C D E F
G H I J K L M N
O P Q R S T U V
W X Y Z a b c d
e f g h i j k l
m n o p q r s t
u v w x y z * +

0 1 2 3 4 5 6 7
8 9 A B C D E F
G H I J K L M N
O P Q R S T U V

W X Y Z a b c d
e f g h i j k l
m n o p q r s t
u v w x y z * +

PE 0 PE 1

PE 2 PE 3

u v w x y z * +
e f g h i j k l

O P Q R S T U V

m n o p q r s t
W X Y Z a b c d
G H I J K L M N
0 1 2 3 4 5 6 7

8 9 A B C D E F

Programmer
views data
as an 8 x 8

pixel image

Data dist-
ributed to
four proc-

essor
parallel

program
as 4 x 4
images

Data dist-
ributed to
two disks
as 8 byte
stripes

FIG. 5: Parallel system example

The programmer views the data as the 8 × 8 image, as shown at the top of FIG. 5. We have
labeled the pixels with characters to show correspondences. Image processing applications
commonly divide data into roughly square 2-d regions and distribute these regions to the
processors viewed as a 2-d array. The arrow from the image to the processor array represents this
distribution. We put a tag on this arrow with the words "4 × 4 images, 4 PEs" to document this
distribution.

We show normal striping [7] for the two-disk storage system on the right. The storage system
views data as a 1-d sequence of 8 byte blocks, with the blocks distributed round-robin to the disk
drives. The tag on the right side documents this distribution.

As with the current Unix systems, I/O is not really done this way. To achieve scalable transfer
rates, the operating system sends data directly from the processors to the disks, transmitting,
blocking and writing the data as needed ⎯ the next section gives the details. Throughout FIG. 5,
we shaded the pixels in PE 2 and the first stripe. This shows how output from PE 2 creates a
complex pattern on the disk. Specifically, output from PE 2 goes to disk 0 then 1 and then repeats
disks 0 and 1. Furthermore, PE 2's data in each stripe neither starts nor ends either stripe and is
not even contiguous within the stripe. Complex patterns like these often result from composing
two data distributions.

The tags D1 and D2 are the details of parallel I/O. We can preserve the byte stream abstraction
by avoiding contamination of the program and I/O devices with each other's tags.
2.3 Scalable pipes

FIG. 6 shows a scalable algorithm suitable for an I/O pipe. Compare this to the processors,
network, and I/O units of the scalable architecture shown in FIG. 1. We show data switches on the
left and right sides of the figure. These switches get put in each processor and I/O device. As the
data passes through the left hand switches, individual bytes or blocks are routed to the proper

DEBENEDICTIS AND JOHNSON 5 I/O FOR TFLOPS SUPERCOMPUTERS

channel on the right. Sometimes, we need the switches on the right. They order the arriving data
into a single stream. The network in the middle conveys the data blocks to the proper unit.

= data switch in each processor
that directs I/O bytes to/from the
other end of the connection

D2 o D1-1

in
network

repeated n times repeated m times

FIG. 6: Parallel algorithm to convert distributions

The algorithm in FIG. 6 is both theoretically and practically scalable. As detailed in Ref. 2, the
data switching algorithms are theoretically constant-time and fast in practice. Since they are
independent and executed in parallel, they do not impair scalability. Coupled with a scalable
network, the overall algorithm would be scalable. Now, some would argue that there are no
general purpose networks that are truly scalable. These arguments are most convincing for
shared-memory networks where low network latency is important. They are less applicable to
message-passing networks. Since the algorithm uses messages and does not depend on low
network latency, the network does not impair scalability either.

The algorithm in FIG. 6 is the new feature needed in an I/O pipe to make the bandwidth
scalable. The overall effect of the algorithm is to redistribute data from the left hand distribution
D1 to the right hand distribution D2. This is D1-1°D2 in functional notation. While algorithms for
the data switching are straightforward, the operating system must know D1 and D2 to configure
the algorithm. The next section describes how the system gets D1 and D2 from executing
programs through system calls. Also, we give nonparallel programs and devices a default tag that
says "no distribution, one processor." This makes the algorithm handle connections between
parallel and nonparallel programs and devices automatically.
2.4 Interface to emerging parallel languages

FIG. 7 illustrates an interface with parallel compilers. We illustrate the array "dimension a(8,
8)" from the example at the top center of the figure. Parallel compilers select data distributions
like D1 and use them for distributing arrays and calculations on them. Current parallel compilers
then discard this information, making it unavailable to other parts of the system. We suggest
enhancing parallel compilers to put this information into the executable file. We also suggest that
compilers generate system calls to deliver this information to the operating system before doing
I/O. This gives the operating system the information necessary to use the pipe extension
described above.

dimension a(8, 8)

Distribution
D1 selected
by compiler

Distribution
D2 selected
by I/O designer

device file
name = disk

executable file

distribution =
D1 D2

system_call()

FIG. 7: Flow of data distribution information
There is a similar situation with data distributions in I/O devices. The system administrator

selects D2 based on the number of disks on the system and other requirements. These

DEBENEDICTIS AND JOHNSON 6 I/O FOR TFLOPS SUPERCOMPUTERS

distributions typically distribute a byte stream using striping [7] and RAID [6]. In current I/O
device technology, data distribution is entirely the responsibility of the storage subsystem and is
unavailable elsewhere. This is equivalent to the parallel compiler discarding data distribution
information. Making D2 available in the device driver enables scalable I/O to the device.

A system call delivering distribution information to the operating system is the primary
extension needed to executable files. Since the default is "no distribution, one processor," the new
system call does not affect existing programs. Parallel programs make the new system call and
thus enable parallel I/O.
3 Scalable I/O hardware

While TFLOPS computers are under construction, the fastest networks at the same stage of
development are under 10 GFLOPS. This is under 1% of the bandwidth required for a traditional
I/O balance. By using the software described earlier and the "stream combiner" architecture in
FIG. 8, one could build a scalable network that can be driven by any Unix program. One could
then scale the network to a terabyte/second to balance a computer scaled to TFLOPS.

aeim...

bfjn...

cgko...

four input streams
rate r

dhlp...

abcdefghijklmnop...

one output stream
rate 4r

1 symbol
blocks,
4 units

FIG. 8: Stream combiner

The stream combiner shown in FIG. 8 lets the software just described drive any fast medium. This
device works like the section of roadway between a toll booth and a bridge in a big city. Since
toll booths are slower than traffic lanes, a two-lane bridge may have a dozen toll booths. Cars
emerge slowly from the toll booths on a dozen lanes of roadway. As these lanes quickly merge
into two lanes, the traffic speeds up and the cars become closer together. This lets the bridge run
at full capacity though individual toll booths are slow. The stream combiner illustrated works
similarly to four toll booths and a one lane bridge. Where cars merge randomly on a roadway, the
stream combiner merges the data according to the specific pattern shown.

The merging pattern shown corresponds to a 1-d data distribution as described earlier. This lets
one create a data distribution tag for the stream combiner. If one then treats stream combiner
inputs as the units of a parallel entity, the software described earlier will work.

One must tailor a stream combiner to each specific medium. An engineer must pick a size for
the symbols in FIG. 8 and understand the flow control requirements of the medium, for example.
4 Work Performed

We built system software for the nCUBE parallel computer around the ideas in this paper. This
software became version 3.0 of nCUBE's system software, and is commercially available.

We ran many performance trials, including program-to-program, program-to-disk, and
program-to-device (video display) I/O. We also recompiled Unix programs, like tar, and put them
on the system release tape as system utilities. We detail these results in ref. [2] and the nCUBE
technical documentation.
5 Conclusions

We conclude by describing the logical result of consistently applying this design approach to
scalable computers. The high level block diagram of a future massively parallel computer may be
the same as a contemporary computer. There will be scalable components inside the boxes in its
block diagram, however. The processor section will consist of a processing element replicated n

DEBENEDICTIS AND JOHNSON 7 I/O FOR TFLOPS SUPERCOMPUTERS

DEBENEDICTIS AND JOHNSON 8 I/O FOR TFLOPS SUPERCOMPUTERS

times. The replication factor n will increase the performance by the same factor. Furthermore, one
can have any value of n provided one can afford the resulting computer. The secondary storage,
I/O subsystem, and systems software will have a similar design and properties.

Software and programming for such a computer may bear striking resemblance to that for
today's computers. The user who does not program but deals solely with applications may see no
difference. This user will see a computer with a familiar user interface and supporting the same
abstractions as a contemporary computing environment. Today's programs also will run on any
single processor.

The programmer will see a similar environment, but programmed with enhanced languages.
Programmers will write in existing languages enhanced for data parallelism. The compilers for
these languages will produce executable files that are interchangeable with today's Unix files.

When parallel programs run in combination with parallel I/O devices, TFLOPS computing
levels occur.
References
1. E. DeBenedictis and P. Madams, "nCUBE's Parallel I/O with Unix Compatibility," in

Proceedings of the Sixth Distributed Memory Computing Conference, May 1991.
2. E. DeBenedictis and M. del Rosario, "Modular Scalable I/O," Journal of Parallel and

Distributed Computing, January 1993 (to appear).
3. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker, "Solving Problems on

Concurrent processors," Prentice-Hall 1988.
4. Intel Corporation, technical documentation on the Paragon parallel computer.
5. MasPar Corporation, technical documentation on the MP-1 parallel computer.
6. D. Patterson, G. Gibson, R. Katz, "A Case for Redundant Arrays of Inexpensive Disks," in

Proceedings of the 1988 ACM SIGMOD Conference on Management of Data, Chicago, IL,
June, 1988, pp. 109-116.

7. K. Salem, H. Garcia-Molina, "Disk Striping," IEEE 1986 International Conference on Data
Engineering, 1986, pp. 336-342.

8. Thinking Machines Corporation, "The Connection Machine CM5 Technical Summary," 1991.
9. Unix System Laboratories, Inc., "Unix System V Documentation," Prentice-Hall, 1992.
10. J. Van Zandt, "Parallel Processing in Information Systems," Wiley, 1992.

	Abstract
	1 Introduction
	1.1 Scalable architecture
	1.2 Scalable I/O
	1.3 Extendibility in Unix

	2 Parallel Extensions for I/O Pipes
	2.1 Current Unix I/O Pipes
	2.2 Unix extensions for data distribution
	2.3 Scalable pipes
	2.4 Interface to emerging parallel languages

	3 Scalable I/O hardware
	4 Work Performed
	5 Conclusions
	References

