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Abstract 
 

In this paper, we describe the hardware and software architecture of the Red Storm 
system developed at Sandia National Laboratories.  We discuss the evolution of this 
architecture and provide reasons for the different choices that have been made. We 
contrast our approach of leveraging high-volume, mass-market commodity processors to 
that taken for the Earth Simulator. We present a comparison of benchmarks and 
application performance that support our approach. We also project the performance of 
Red Storm and the Earth simulator.  This projection indicates that the Red Storm 
architecture is a much more cost-effective approach to massively parallel computing.  

 
 

1. Introduction 
 
In the early 1980’s the performance of commodity microprocessors reached a level that 
made it feasible to consider aggregating large numbers of them into a massively parallel 
processing (MPP) computer intended to compete in performance with traditional vector 
supercomputers based on moderate numbers of custom processors. 
 
One basic argument for the commodity MPP approach was that its building blocks had 
very high performance relative to their price because they benefited from economies of 
scale driven by a consumer market that was huge in comparison to the niche market for 
specialized, high-end scientific supercomputers. Another argument was that it was 
becoming increasingly difficult to extract higher performance from a small number of 
vector units because this required higher clock rates and faster logic, and these in turn 
compounded the cooling problem. The solution, it was argued, was to distribute the 
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computation spatially across a larger number of slower but cheaper and more easily 
cooled microprocessors. 
 
The primary counter arguments were that it was conceptually difficult and economically 
infeasible to rewrite complex scientific and engineering applications to execute on MPP 
machines because they used a different computational paradigm, that of distributed 
memory and message passing. And furthermore, it was claimed, doing so would not bring 
the benefits sought because, in practice, customized vector processors could deliver a 
substantially higher fraction of peak performance, and that this more than compensated 
for the supposed price advantage of the commodity microprocessors. 
 
Amidst vigorous debate on these issues, the commodity MPP research and development 
agenda was pursued aggressively at laboratories in the United States (US) and Europe in 
the ensuing decade. By the mid 1990’s the commodity MPP approach was very well 
established, and had become the dominant philosophical approach within the Department 
the Energy (DOE), one of the few leading consumers of supercomputing within the US 
government and, indeed, the world. Hence, DOE’s Accelerated Strategic Computing 
Initiative (ASCI) selected machines based on the commodity MPP model for its major 
procurements.  Sandia National Laboratories’ ASCI Red [1] was the first such machine, 
and the Red Storm system, currently under construction by Cray Inc. is the fifth and latest 
such machine. 
 
It seemed that, in practice, the debate had been settled within the DOE and that more 
broadly, a fairly stable détente had been reached: Certain technical communities preferred 
and had more success with the traditional vector approach, in particular the climate 
modeling community and portions of the intelligence community. The traditional 
engineering community, which relied primarily on finite element and finite difference 
methods, had largely gravitated to the commodity MPP approach at the high end, and was 
becoming enamored of its offspring, the commodity-based Linux cluster, for mid-range 
computing. 
 
The advent of the Earth Simulator [2] has dramatically reinvigorated this debate. 
Impressive results have been reported on at least three problems of long-standing 
scientific interest: direct numerical simulation of turbulence [3], modeling of Rayleigh-
Taylor instability in plasma [4], and climate modeling via a spectral atmospheric general 
circulation model [5]. These applications ran at between 37% and 65% of the Earth 
Simulator’s theoretical peak performance of 40 trillion floating-point operations per 
second (teraFLOPS), performance far in excess in both relative and absolute terms of any 
reported on the most capable commodity-based MPP machines in the world. 
 
We should note immediately that, with over 5000 processors, a purpose-built network, a 
large distributed memory, and support for the message-passing paradigm, the Earth 
Simulator is surely an MPP machine. Hence the essence of the debate centers around its 
use of low-market volume vector processors designed specifically for scientific 
computing rather than the more traditional choice for MPPs of high-market volume 
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super-scalar processors designed for general use. In many respects, therefore, the Earth 
Simulator represents a convergence of these two basic approaches. 
 
Our main purpose in this paper is to evaluate the effectiveness of this hybrid approach 
with respect to timely, efficient, and economical solution of the engineering problems of 
most interest to Sandia. We do so by comparing performance of relevant application 
codes on a variant of the vector processor used in the Earth Simulator with that obtained 
on a commonly available microprocessor, and applying historical data and modeling 
techniques to infer bounds on the performance that would be observed when running 
these codes on the Earth Simulator and the Red Storm architecture. The application codes 
considered are used widely throughout the DOE and the Department of Defense, and are 
representative of codes in which the mainstream computational engineering community 
has a strong interest.  Hence, we believe this comparison has wider significance. 
 
The rest of this paper is organized as follows.  In the following section, we discuss the 
evolution of the Red Storm architecture. Section 3 details the Red Storm hardware 
architecture, followed in Section 4 by a description of the software architecture.  We 
provide a brief overview of the Earth Simulator in Section 5.  We present a performance 
comparison of Red Storm and the Earth Simulator on benchmarks and select applications 
in Section 6.  Section 7 compares the two platforms using a predictive performance 
model, and we conclude in Section 8 with an overview of the important contributions of 
this work. 
 
 
2. Evolution of the Red Storm Architecture 
 
In this section, we discuss the important system architecture issues and characteristics 
that influenced our decisions for Red Storm.  We present our design philosophy and 
emphasize the importance of maintaining a balanced system architecture. 

2.1. Overview of Previous and Current High-End Architectures 
 
Today’s supercomputing choices are the product of commodity market competition, 
technology evolution, historical hardware and software legacies, and leadership choices 
within industry. Initially, all computing was high-end computing. Beginning in the 
1950’s with the IBM-7xxx series and Univac-11-xxx series of Von Neumann uni-
processors, up to the first minicomputers, building computers was essentially an 
expensive tour-de-force and their purchase could only be justified for the most 
compelling scientific and technical problems and commercial applications with the 
greatest payoff.  This approach to supercomputing led, in the mid-to-late 1960’s, to the 
pipelined architectures, typified by the CDC-6600, followed in the 1970’s by the first 
vector system, the Cray-1, pioneered by Seymour Cray at Cray Research. This line of 
development was extended in the US to include vector multiprocessors, first seen in the 
Cray X-MP and extended into the Cray Y-MP, the Cray C-90, the ETA-10, the Cray T-
90, and the IBM 390 series. In Japan, the early models of the NEC SX series of parallel 
vector supercomputers (PVPs) exemplified the vector line of development.  
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The evolution of vector supercomputers led to the addition of special gather-scatter 
hardware for non-uniform memory references and to increasing numbers of processors 
within a coherent, shared-memory architecture. The most successful vector processors 
(e.g. the Cray X-MP, Y-MP, and C-90) were also excellent scalar processors—a fact that 
will be drawn out further below.  These machines were largely used in a space- and time-
sharing mode and − due to the low efficiency and cumbersome nature of their shared-
memory parallel programming tools − only occasionally used for true multi-processor 
parallel execution of jobs. Nevertheless, PVPs were the king of the performance hill until 
the early 1990’s. 
 
In the late 1970’s, mini-supercomputers such as the VAX family and the Alliant family 
of machines began to provide systems with much lower cost (and lower peak 
performance) than the vector supercomputers.  These machines shared many of the 
programming features and multi-user capabilities of the high-end PVPs.  It wasn’t 
unusual to have a VAX being used by thirty or more users simultaneously in a time-
sharing mode. 
 
In the early 1980’s, personal computers and workstations evolved out of the 
minicomputer marketplace. Rapid advances in CMOS integrated circuits led to the 
appearance of computers on a chip, as in the MicroVAX and its Data General 
competitors.  The minicomputers became personal technical computers with the advent of 
Sun Microsystems and Apollo workstations. It was not long thereafter that the first 
personal computer (PC) aimed at the business and technical marketplaces arrived.  
Personal computers powered by commodity processors from Motorola (68xxx family) 
and Intel (80xx family) began to be used for technical endeavors and early on began to 
compete with the Sun and Apollo offerings, since their huge cost advantages allowed 
them to be deployed much more broadly. By the late 1980’s, technical America largely 
ran on Intel-based IBM PCs (although IBM had long ceased to be the sole source for 
these machines) or Motorola-based Apple Macintoshes. 
 
PVPs were then dealt a massive blow from which they never truly recovered.  First, the 
same processor, memory, and board technologies that powered PCs were used to create 
massively parallel computers with dozens (Intel iPSC with up to 64 processors), to 
hundreds (nCUBE-10 with a maximum of 1024 processors), to thousands (CM-200, CM-
5, nCUBE-2, Intel Delta and Intel Paragon) of commodity or commodity-like processors. 
These machines were difficult to program at first, but they were shown quickly to be 
capable of consistently high performance across a wide variety of applications. They 
were also much cheaper than the PVPs.  By the second generation of MPPs, typified by 
the Cray T3E and ASCI Red, PVPs were no longer leading edge. They did, however, 
show up as a node choice in Japanese MPPs, for example in the NEC SX-4 and in the 
Fujitsu VPP-500. Cray Inc. has resurrected PVPs as the node of their current-generation 
X-1 MPP, and NEC continues to use them in the SX-6 and Earth Simulator MPPs. 
 
The second big blow to PVPs came from the development of semi-commodity servers 
based on workstation technology: Sun Microsystems, Digital Equipment Corporation 
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(DEC), Hewlett-Packard (HP), IBM, and Silicon Graphics, Inc. (SGI) all introduced 
shared-memory servers based on their various workstation lines. These processors 
provided a similar programming and execution environment to PVPs (porting codes was 
generally not difficult), and they were within reach of many organizations. Because of 
their ability to leverage more commodity technologies, they were much more cost-
effective in many cases than PVPs. In addition − and this was critical in attracting 
Independent Software Vendors − codes worked identically on both the workstations and 
the servers, producing bit-for-bit the same results without a recompile. By taking 
advantage of new super-scalar instructions sets and large caches, these servers were able 
to overcome some of the architectural balance advantages of the PVPs.  
 
The next step in high-end computing was the introduction of cluster technologies. This 
has proceeded on two fronts: in the first development, beginning in the late 1990’s, IBM, 
Compaq, and SGI − among others − began creating proprietary clusters using their 
shared-memory servers and custom-designed or semi-commodity networks. The 3+ 
teraFLOPS ASCI Blue Pacific computer system built by IBM for Lawrence Livermore 
National Laboratory (LLNL) and the 3+ teraFLOPS ASCI Blue Mountain system built 
by SGI for Los Alamos National Laboratory (LANL) were the two largest such clusters 
built in the late nineties. They were, respectively, the second and third terascale systems 
ever built − the first having been the 1.8 teraFLOPS ASCI Red system, which was an 
MPP built by Intel for Sandia. ASCI Red was subsequently upgraded to 3+ teraFLOPS 
also. Since then, the 12 teraFLOPS IBM ASCI White machine and the 30 teraFLOPS 
Compaq ASCI Q machine have been acquired by LLNL and LANL, respectively. The 
IBM approach has been to use their own custom multi-level switch fabrics to 
interconnect shared-memory nodes based on their Power workstation processors. These 
nodes had four processors in the case of Blue Pacific and sixteen processors in the case of 
White. SGI utilized its MIPS R10000 processor in non-uniform memory access, 128-
processor shared-memory nodes. They connected their nodes with HIPPI-800 switch 
fabrics. (The planned upgrade to HIPPI-6400 was not successful.) For the ASCI Q 
machine, Compaq utilizes its ES-45 4-processor shared-memory servers based on the 
Alpha EV68 processor. Both IBM and Compaq sold similar terascale systems to a variety 
of other customers.  Oak Ridge National Laboratory, the Swiss National Computing 
Center at Manno, and Lawrence Berkeley National Laboratory purchased IBM systems.  
Pittsburgh Supercomputing Center and the Centre de l’Energie Atomique in France 
purchased Compaq systems. 
 
At the same time, in the mid to late 1990’s and continuing to the present, true commodity 
clusters were being built and deployed based on uni-processor or dual-processor nodes 
utilizing Compaq Alpha or Intel x86 processors. These clusters used mainly semi-
commodity Myrinet [6] interconnects from Myricom; but smaller examples sometimes 
were based on gigabit (or slower) Ethernet switch fabrics. In all cases, the system 
software was built around the Linux open-source operating system. The first large 
clusters − for example the Computational Plant (Cplant™) [7] cluster at Sandia and the 
Chiba City [8] cluster at Argonne National Laboratory − developed their own runtime 
environments and Input/Output (I/O) file systems. These systems proved extremely 
effective at providing supercomputing at the best price-performance characteristics yet 
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achieved. At Sandia, at least, the programming environment and runtime environment 
were closely similar to that provided on MPP machines [9]. The cost of operation and 
availability was also similar to experience with MPPs. The first terascale commodity 
cluster was the Alpha processor-based 2500-processor Cplant™ Antarctica cluster at 
Sandia. Antarctica, which was deployed in 2000, ran Linux with Sandia’s Cplant™ 
environment.  Currently, the total Cplant™ cluster capacity at Sandia exceeds 3 
teraFLOPS. Subsequently, a number of institutions have installed even larger clusters, 
including Intel x86-based clusters at LANL and LLNL. In one notable development, the 
Lawrence Livermore cluster utilized a Quadrics [10] fat-tree switch fabric rather than the 
Myrinet fabrics utilized at Sandia and LANL. 
 
As we shall discuss below, none of these clusters − custom or commodity − have system 
balance between computation and communications that is competitive with that found on 
true MPPs such as the Cray T3E and the Intel ASCI Red. Nonetheless, for several 
important classes of applications, they are capable of achieving reasonably high parallel 
efficiency on a thousand processors or more.  They also, in general, lack full-system 
Reliability, Availability and Serviceability (RAS) features. For truly large systems, this 
has caused difficulties in running large jobs with long execution times. In addition, of the 
large clusters deployed until recently, only Cplant™ has truly scalable system software 
[9]. Cplant™, like ASCI Red and the Cray T3E, is designed to provide service to dozens 
of simultaneous users and has fast, scalable system boot-up, and executable loading 
capabilities. By contrast, all of the commercial clusters described above have slow, non-
scalable boot-up mechanisms (on some commercial clusters, it can exceed ten hours to do 
a full boot of the system; by contrast the system boot on ASCI Red is less than two 
minutes and for Cplant™ is less than fifteen minutes.) 
 
Also today, a number of new-generation systems are being developed. They include 
ASCI Purple, a next-generation shared-memory cluster from IBM with 64 Power-4 
processors (each 8 gigaFLOPS) per node and a new Federation switch fabric. This 
machine will be deployed in 2005 at LLNL. Its peak speed will be at least 60 teraFLOPS. 
In addition, IBM is developing a new MPP, Blue Gene/L, with several thousands of low-
power processors connected by a mesh switch fabric. Although this machine is not highly 
balanced, it will have a very high peak performance and could achieve significant 
performance on certain limited classes of scientific applications.   
 
HP, which recently acquired Compaq, is producing a new semi-commodity cluster based 
on Intel’s 64-bit Itanium II processor. It utilizes 2-way shared-memory nodes, and its 
interconnect is a Quadrics fat-tree. HP continues to sell the Alpha ES-45-based clusters 
formerly developed by Compaq. However, they have not announced plans to build 
clusters based on the Alpha EV-7 processor, the Compaq-developed replacement for the 
EV-68—and one of the best-balanced processors developed since the early Cray vector 
processors. Similarly SGI is offering an Itanium II-based cluster that is distinguished, 
however, by a very large non-uniform memory access shared memory node with 64 
processors per node. Both the HP and SGI systems will run Linux as their operating 
system.  
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Finally, Cray Inc. has developed and begun selling a new MPP with PVP nodes, the Cray 
X-1. The X-1 has four four-way vector processors per node. Each vector processor has 
two vector pipes, each capable of two operations per clock cycle, which share a data 
cache and share a common scalar unit.  The vector processor clock speed is 800 MHz and 
the scalar clock is 400 MHz. The network topology is a complex modification of a three-
dimensional toroidal mesh [11]. 
 

2.2. Red Storm Design Philosophy 
 
Our design philosophy is captured in the acronym SURE. SURE stands for Scalability, 
Usability, Reliability and Economy.  Since processors, I/O systems and memory systems 
cannot be made arbitrarily powerful, we have no choice but to employ massive 
parallelism in creating ever faster compute engines. For that approach to be effective, all 
aspects of the system − processor, memory and interconnect hardware, I/O hardware, 
power and cooling, system volume, and all aspects of system software (including system 
boot and job loaders) − must be designed for scalability. For performance, scalability 
means that system software overheads are low and that system performance increases 
linearly − and nearly perfectly − as we increase the number of processors up to the full 
system size. System boot and applications load times must increase no more than 
logarithmically with the number of processors and must be measured in seconds or 
minutes not hours. In addition, system I/O performance must not depend strongly on how 
many processors are requesting I/O services. Of course, these system characteristics 
must, at a minimum, not prevent the development and use of scalable applications 
software.  Scalability in general requires that we examine the design with respect to every 
aspect of system operation and ensure that bottlenecks are removed.  For Red Storm, one 
scaling requirement of the design was that major applications achieve over 50% parallel 
efficiency using all 10,000+ compute nodes in the system 
 
The system must be usable for the intended end-use. This means that it provides a simple, 
effective runtime environment, compilers and libraries for the major languages, and 
support for major, community-standard parallelization tools (today that essentially means 
MPI [12] and MPI-2 [13]), effective I/O capabilities and file systems. The runtime 
environment should provide scalable multi-user support (we need to serve dozens of 
simultaneous users) and the ability to provide the aspects of a single-system image 
needed for applications programmers to manage their jobs and for system managers to 
effectively manage the entire resource.  It means that job allocation mechanisms need to 
be flexible and efficient and that the hardware design must not prevent that flexibility and 
efficiency. It means providing effective debugging capabilities and performance 
measurement and optimization tools. Users and system managers need to see capabilities 
equivalent to a full UNIX environment for their interactions with the system. It does not, 
however, mean adding things that are not useful to running high-performance parallel 
applications. This approach drives us toward a partitioned system software environment. 
The ability to do word processing or text editing, send email, open sockets, or migrate 
processes does not add value to or belong on the compute nodes of such a system.  (See 
further in Section 4 below.) 
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The system must be reliable. We desire for Red Storm that a typical large job be able to 
run, on average, for 100 hours without failure of the job. For a small system, reliability in 
hardware can be achieved by utilizing good design approaches and high-quality 
manufacturing practices.  In the case of the huge systems Red Storm is aimed at, 
reliability must be an explicit design feature of the system.  Roughly speaking, for 
independent random failures, the reliability of a system is inversely proportional to the 
number of replicated parts. So, if the mean time between failure of a single power supply 
is N hours, the mean time between failure of at least one power supply out of ten 
thousand is to high accuracy, N/10,000.  It is important to define what we mean by 
reliable. We do not mean high availability. Availability is crucial to many commercial 
and system-critical computing functions − to the point that complete redundancy is often 
utilized to preserve guaranteed availability. It is not crucial to our form of strategic 
computing. Reliability in this context means that a large parallel job running for many 
hours has a high probability of successful completing. It is measured by the mean time 
between job failures. Note that the system can undergo a failure that does not lead to loss 
of a job without affecting reliability − this is important to developing reliability 
enhancement strategies. A related requirement would be that if the system undergoes a 
failure that is local, only jobs using that local resource are affected.  This kind of aspect 
of reliability we also call resiliency. Note that a system can have very high availability 
and not be reliable for our purposes. It is, by contrast, unlikely that a system that has low 
availability could have high reliability. Finally, for a hardware system to be reliable, it 
must be serviceable: a system that has infrequent failures, which take many hours to 
identify and fix, is not reliable. 
 
Note that, in a system designed for hardware reliability, software reliability becomes the 
limiting factor in achieving high reliability. Software reliability is at best an inexact 
science. Our experience has shown that systems with nearly identical software features 
can differ wildly in reliability. (For obvious reasons, we do not cite examples.) Software 
reliability is first and foremost inversely proportional to some power of the number of 
lines of code. It is also inversely proportional to the inherent complexity of that code. It is 
greatly enhanced by rigorous design and engineering processes. So our mantra in 
achieving high software reliability is “simplicity in design first, followed closely by rigor 
in development.” To this end we strongly prefer partitioned software environments (not 
just for reliability, also for performance and scalability as well). We prefer to utilize 
complex, full-featured system software only where it is absolutely needed (mainly for 
log-in, system services and input/output (I/O)) and to utilize extremely simple but 
powerful (for that purpose) ultra-lightweight software on the great majority of the nodes 
in the system (the compute partitions).  
 
Finally, we seek a system that is economical to purchase and own.. This affordability 
aspect includes cost of purchase, cost of maintenance, cost of operations and cost to the 
user of using the system. The single best thing we can do to control expense is to keep the 
system simple. It lowers manufacturing cost; it increases inherent reliability; and it makes 
it less expensive to maintain and operate.  Another key is to utilize high-volume 
commodity parts wherever feasible. This not only reduces cost of parts, it allows use of 
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standard manufacturing processes which are less expensive (and more reliable) than 
custom processes). We cannot simply use commodity technologies everywhere:  
commodity technologies are not designed with scalability and high reliability at scale as 
design goals. While redundancy and other reliability features can drive up initial costs − 
and if not properly managed can cause complexity-driven failures − they can increase 
greatly operational efficiency and flexibility as well as reducing the cost to the user 
community in terms of lost work from unnecessary failures. Systems designed to operate 
at many teraOPS often require megawatts of power and cooling. So, power and cooling 
constitute major components of the cost of ownership. First, there is the obvious cost of 
purchasing electricity − which for systems at the scale of Red Storm − can add up to 
millions of dollars per year. However, if power requirements exceed installed delivery 
capabilities, the capital cost of bringing in more power can be significant (millions of 
dollars). Similarly  cooling adds to the power budget. Again, however, it also adds to the 
capital facility costs. More chillers and heat exchangers may be required. They have their 
own cost, but they may also require larger volumes that may lead to millions of dollars in 
facility expansion costs. Finally, if the facility costs to accommodate added cooling 
become too large, or if air-cooling becomes thermodynamically infeasible, it may be 
necessary to go to liquid-cooling methods in the computer itself. This could have 
enormous impact on cost of purchase and complexity of operations and maintenance. 
Therefore, it is critical to minimize power requirements. In Section 3, we describe how 
we attempted to minimize the power and cooling budgets for Red Storm. System volume 
is another major component of cost. For example, the Earth Simulator is so large that it 
requires a truly huge, multi-story facility to house it [2]. Similarly the ASCI White and 
ASCI Q machines at LLNL and LANL, respectively, required the building of large new 
facilities to house them. In the case of Red Storm, the space budget was very limited 
(under 1000 square meters). This meant that we were prevented from using any currently 
offered commercial cluster solution on the basis of density alone. 
 
In the remaining parts of this section, we will discuss architectural tradeoffs, including 
balance in the processor and memory sub-systems, balance between processor speed and 
interconnect, topological design choices, software issues, and RAS.  

2.3.  Node and Processor Choices 
 
As mentioned above, in designing a new system, we are faced with a number of choices 
for the nodes within the architecture (assuming that we stick with existing building 
blocks rather than moving to a radically new design in which the concept of individual 
nodes becomes blurred). We could have a uni-processor node or a multi-processor node. 
We could choose a vector processor, a semi-commodity super-scalar workstation 
processor, or a commodity superscalar processor. Issues that become important in the 
choice involve cost, cost-performance, balance, scalability, and programming model.  
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2.3.1. Processors Per Node  
 
There are two competing issues in this decision area: on the one hand, memory is a major 
cost factor in large machines. In an MPP, global data must be replicated on each node of 
the system. Otherwise, processes running on a given node can be heavily dependent on 
distant data.  Relying unnecessarily on distant memory accesses leads to excessive 
overhead, load imbalances and loss of scalability. On the other hand, if a shared-memory 
multi-processor node becomes too large, there is a danger that the hardware cost of the 
node will rise unacceptably due to the N2 cost of cache coherency and fast memory 
accesses. In any case, performance can suffer due to computational cost of cache 
coherency and the overhead due to memory contention in a shared-memory programming 
model as well as contention for operating system services. Finally, excessively large 
shared memory nodes either make the cost of the system interconnect rise or lead to 
system imbalance. 
 
The issue of memory waste through duplicated data in uni-processor-based MPPs is not 
as large of a problem as it once was. When typical single-processor memories were in the 
megabyte to tens of megabytes ranges, the cost of duplicating the operating system for 
every processor was unacceptable.  In fact, this was one of the forces leading to the 
development of ultra-lightweight operating system kernels (LWKs) for the compute 
processors in an MPP [14, 15]. If global databases had to be replicated (for example, 
material properties for a radiation hydrodynamics calculation in simulations of stellar 
evolution), the problem only worsened. Today, when a typical single-processor memory 
bank ranges in size from 500 megabytes to 8 or more gigabytes, this has become much 
less of an issue. (Although the computational overhead drivers for LWKs have not gone 
away.)  Replicated data now probably represents no more than 10% of the memory on a 
uni-processor MPP for typical scientific applications.  
 
The issue of computational overhead in shared-memory multi-processors is also not as 
much of a problem as it once was. There now exist optimistic cache coherency 
mechanisms that lessen the computational cost of maintaining coherent memory state, at 
least for modest numbers of processors. The overhead due to memory accesses in a 
shared-memory programming model remains an issue. Basically, all modern shared-
memory multi-processor systems are based on a Non-Uniform Memory Access (NUMA) 
model. In this model, memory access overhead and bandwidth are not independent of 
location in the node. Nonetheless, shared memory models treat them as though they were. 
(And, even if they were “flat” memory spaces, memory access contention grows in 
proportion to the number of processors.) These effects lead to loss of efficiency that can 
become severe as the size of the node increases. 
 
To some extent, modern multi-threading capabilities, e.g. OpenMP [16], allow the 
programmer to code to optimize for locality of reference. Nevertheless, there remain two 
issues with that approach. First, OpenMP requires a global address space not provided by 
most MPPs. Second, it does not scale to hundreds or thousands of processors. In practice, 
this means that a programmer wanting to use shared-memory directives or a threads-
based language is faced with the dilemma of having to use two programming 
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methodologies: shared memory coding for processes within a node, coupled with MPI or 
another message-passing protocol for inter-node processes. In some sense, this is like 
having the worst of both worlds. For that reason, among others, most shared-memory-
based MPPs provide an MPI mechanism for memory accesses within a node as well as 
between nodes. A third issue with shared-memory programming models is the 
phenomenon of code explosion: in the case of directives-based shared memory methods, 
the amount of code in directives and the complexity of those directives add tremendously 
to the difficulty of code development and debugging. They also are not natural tools for 
maintaining locality of memory references. This of course makes it harder to achieve 
high efficiency.  By contrast, distributed-memory message-passing codes (and related 
languages) do not add appreciably to the serial code needed to run on any processor. 
While that is not to say that achieving high performance in MPI codes is now routine, it 
does mean that most of a program’s code base can remain untouched. For shared-memory 
systems based on semi-commodity or commodity processor and memory technologies, 
the memory bandwidth per processor often decreases as the processor count increases. 
This bandwidth sharing will have detrimental effects on performance for bandwidth-
sensitive applications. 
 
Two final issues face shared-memory multi-processor-based MPPs. First, operating 
system services are hard to distribute evenly and effectively. For that reason, a processor 
is often essentially dedicated to OS services.  Competing for services from that processor 
can become the bottleneck in large shared-memory multi-processor nodes. Another issue 
is balance. A large multi-processor node has, by its nature, a very large computing 
capability. That means it requires a high-bandwidth interface into the system 
communications fabric and that the communications fabric needs to have correspondingly 
high bandwidth. There are three simple ways to do this: a multi-rail system as is used, for 
example, in some Quadrics-based systems, or a large router switch with multiple ports 
per node is used or a very powerful network interface and an equally powerful router is 
employed. The first two solutions have not yet been applied effectively in any truly 
balanced system. The full crossbar switch in the NEC Earth Simulator typifies the third 
solution. Such a solution is costly since it stresses technological capabilities and is not 
able to leverage commodity or semi-commodity industrial technologies. All three 
solutions have associated software scheduling issues: in the first and second solutions, 
unless a port per processor in the node is provided (this is usually impractical for large 
shared-memory machines) the network requests of various processors have to be 
scheduled effectively over the several ports of the interconnect. In the third solution, the 
requests of all the processors have to be arbitrated by the network interface.  
 
This analysis, coupled with our positive experience with uni-processor and small (2-
processor) nodes, leads us to favor a uni-processor design, although a two or four-
processor node would possibly be just as effective. 
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2.3.2. Vector, Semi-Commodity, or Commodity Processors 
 
The issue of processor choice is somewhat dependent on the application space in which 
the system will be used. For example, vector processors have long had superior 
performance on weather and some climate codes. The gather-scatter capabilities of 
classic vector architectures like the early Cray machines had real advantages for pattern-
matching applications such as arise in cryptology. Commodity processors have large, 
often multi-level, reasonably fast caches; and so, codes optimized for data locality and 
cache re-use do extremely well on them—especially when cost per unit computing is 
taken into account. Several semi-commodity processors are also available. Interestingly, 
where vendors offer commodity and semi-commodity processor families, the semi-
commodity processors tend to be less cost-effective on many codes than their commodity 
siblings. We show below example of this in the case of Intel’s IA-32 commodity line and 
their IA-64 semi-commodity processors. For all processors, the performance on technical 
applications is typically more dependent on the memory hierarchy (bandwidth, latency 
(including page-miss latency), and the number of registers) and the efficiency of 
instruction execution, and less dependent on the speed of the arithmetic and logical 
functional units. 
 
All modern processors rely on a great deal of fine-grained parallelism. Nearly all are 
pipelined, and many utilize look-ahead and speculative execution. Most are, in principle, 
capable of carrying out multiple instructions per clock cycle and have multiple execution 
units to support that. All current vector processors have an associated scalar unit to carry 
out non-vector operations. Today’s vector machines are also multi-pipe machines. That 
is, they rely on being able to move data through several vector execution units in parallel. 
Generally, these units are programmed in a lockstep or single-instruction-multiple-data 
(SIMD) method.  The advantage of multiple pipes is that the vector units are able to get 
higher peak performance at lower processor speeds. Note however, that the requirements 
on memory latency are actually made more stringent with multiple pipes, since instead of 
paying the latency penalty for starting up a vector for one pipe, it must be paid for all the 
pipes. In addition, the memory bandwidth requirements are not reduced at all by multiple 
pipes. Also note that the overall performance of a vector architecture for many 
applications is as dependent on having a fast scalar processor as it is on having fast vector 
units. This is because for many applications − generally the more realistic ones − the 
average vector length can be quite short. Real problems tend to encounter branching 
conditions quite often. In engineering mechanics, for example, real problems tend to have 
irregular domains and many different materials leading to numerous conditionals and 
poorly vectorizing codes. It is true that nearly all of the first- and second-generation of 
codes in science and engineering (so-called legacy codes) were developed for vector 
architectures and that they often achieved as little as 15-25% of theoretical peak on those 
architectures for realistic problems. It is also true that the fact that early Cray vector 
architectures had scalar computing capabilities that were also fast (in comparison to their 
vector units) and low latency and high bandwidth to memory enabled those relatively 
high efficiencies. Unfortunately, most of today’s vector architectures have relatively slow 
scalar units. Finally, nearly all the legacy codes have by now been re-optimized for 
cache-based commodity and semi-commodity processors; and many would have to be re-
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architected to do well on vector processors. This is less likely to occur for most 
commercially supported codes from ISVs than it is for academic or research codes.  
 
To understand the importance of scalar units consider the following simplified 
application of Amdahl’s Law [17].  Let us compare a vector processor to a (super)scalar 
processor. Assume that the vector processor is N times as fast as the scalar processor on 
vector work and is 1/M times as fast on scalar work.  Let the scalar speed be s. Finally 
assume that a fraction, p, of the total work to be done can be vectorized and that the 
remaining fraction, q(=1-p), must be done in scalar mode. Then the vector speedup (or 
slowdown), S, is defined by the time it takes for the scalar processor to carry out the task 
divided by the time it takes the vector unit to do so. 
 

S = TS / TV  
 
S-1 = [pW / (s N)  + (1-p)W / (s/M) ] / [ W / s] 
 
S= 1/[ p/N + M(1-p) ]. 

 
If we consider a Pentium-4 commodity processor running at about 2 GHz and the Earth 
simulator processor, we could reasonably assume that M = N = 4. This is because the 
peak speed of the Earth Simulator vector unit is 8 gigaFLOPS compared to a peak of 2 
gigaFLOPS for the Pentium-4. At the same time, the scalar speed of the Earth Simulator 
is about 500 megaFLOPS. (This is an over-simplification but not an unreasonable one). If 
that holds, we can assume that  
 

S = 1/[ p/4 + 4(1-p) ]. 
 

This means that for p < 0.8, the Pentium-4 will actually be faster than the Earth Simulator 
on that problem.   
 
Now this analysis is clearly oversimplified: we have assumed single, typical vector and 
scalar performance for the Earth Simulator, and a single performance number for the 
Pentium-4. In reality, the vector speed achieved on the Earth Simulator will depend on 
operations mix and vector length. Here we have basically assumed long vectors. 
Similarly the performance of the Pentium-4 will depend on operations mix and how well 
the data fits into and reuses cache. Nonetheless the numbers used are not in contradiction 
to our actual experience  (see Section 6 below). Note that this model implies that the 
vector processor on the Earth Simulator is 16 times as fast as its scalar unit, which 
reinforces the point about lack of balance between vector and scalar capability in modern 
vector systems. This model also indicates that if 80% of the work were done in the vector 
unit, 80% of the time on the Earth Simulator for such a problem would be spent in non-
vectorizable (scalar) operations. Again, this is consistent with our experience. 
Unfortunately, this shows how difficult it is to achieve high vector performance: 
essentially all the operations have to be vectorized or vectorizable and the vector lengths 
need to be long. At Sandia, codes tend to be used on complex problems with complicated 
geometries and many materials, leading to irregular local memory references and many 
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conditionals. This tends to make vector architectures less favorable for a broad class of 
our applications. By contrast, a typical code modeling fluid flow in the atmosphere would 
involve simpler material properties and a very regular domain; and hence most of its 
work would be in long vectors.  For such problems, the Earth Simulator could have a 
marked performance advantage.   
 
Below we shall see that, in contrast to inner-loop (vector) parallelism, for outer-loop 
distributed-memory parallelism, Amdahl’s Law is much less restrictive of performance. 
This is because most scientific problems have a large degree of data parallelism and are 
intrinsically local. The fine-scale irregular memory references that hurt inner-loop 
parallelization are replaced by infrequent, more regular, communications patterns on the 
larger scales important to outer loop parallelism.  
 
It is important to examine both performance on relevant applications and the cost of that 
performance. In general, vector processor technologies have tended to be an order-of-
magnitude more expensive than are commodity processor technologies in absolute terms. 
Unless that cost disadvantage is compensated by a compelling performance advantage, 
vector systems will be uncompetitive. We shall discuss detailed performance 
comparisons between processor families in Section 5. For our current purposes, it is 
useful to augment our benchmarking and to summarize some of its findings. A favorite 
benchmark for high performance technical computing is the SPECfp2000 set of 
benchmarks from the SPEC CPU2000 suite [18]. The SPECfp2000 suite contains a 
variety of applications. One however is particularly compelling in predicting the 
performance of processors on real science and engineering mechanics calculations. The 
fma3d benchmark is meant to be typical of the expected behavior of important finite-
element mechanics codes.  We show the rounded results of various commodity and semi-
commodity processors on fma3d in Table 2.1. 
 

Table 2.1: Performance of various processors on fma3D from SPECfp200. 

Processor Peak Speed 
(GFLOPS) 

fma3d ratio Normalized 
Fma3d ratio 

IBM Power3 1.5 300 200 
HP Alpha EV6 1.0 420 420 
Intel Itanium II 4.0 776 190 
AMD Athlon 2.25 * 866 380 
Intel Pentium-4 3.06 * 1038 340 
HP Alpha EV68 2.5 1120 450 
IBM Power4 5.2 1020 200 
HP Alpha EV7 2.3 1380 600 

Note that the numbers are approximate and that  * for the AMD Athlon and the Pentium-4 we have 
assumed 1 FLOP per clock cycle. 

 
In this table, we show both the absolute fma3d ratios and the normalized ratios in which 
we have divided the fma3d ratios by the peak speeds of the processors. It should be noted 
that we have only counted one FLOP per clock cycle for the two IA-32 processors, the 
AMD Athlon and the Intel Pentium-4.  It is no surprise that the Alpha EV7 tops both the 
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absolute and the relative performance list, since the EV7 has by far the highest memory 
bandwidth per FLOPS and the lowest page miss latency, measured in clock cycles, of any 
of the processors shown. Perhaps more surprising is that the two least expensive 
processors, the commodity Athlon and Pentium-4, have competitive absolute 
performance and that their relative performance is only bested by the three Alpha 
processors, the EV6, EV68 and EV7. On a per-dollar basis, these two processors have by 
far the best performance.  Equally surprising to some will be the fact that they both 
outperform the Itanium II in both absolute and relative performance on this benchmark, 
even though their costs are about an order of magnitude less. If we discount two SPECfp 
benchmarks that are extremely cache friendly, the results for the rest of the SPECfp2000 
benchmarks are similar. 
 
In Section 6, we show that these results foreshadow the outcome of benchmarking these 
processor architectures on real science and engineering applications. The benchmarks in 
Section 6 also show that on a price-performance basis, commodity processors in general 
outperform the Earth Simulator vector processor on typical Sandia applications. In some 
cases, for example in the case of the EV7, the absolute performance is greater than that of 
the Earth Simulator processor.  
 
It is worth outlining our experience on what determines processor performance based on 
over 30 years of dealing with processor efficiency issues. Key attributes include: 
 

• Key enablers of high performance on real applications: 
o Functional Units: 

 Good integer performance − HPC codes have many integer 
operations 

 Simple architectures − easier to compile for high performance 
 Short pipelines − deals with branches more effectively 

o Memory subsystems: 
 Many registers − needed to take advantage of instruction 

parallelism 
 Simple cache hierarchies − multi-level caches increase latency 
 Support for large memory pages − avoiding TLB misses greatly 

reduces latency 
 Short cache lines − reduces latency 
 Wide paths and fast clocks into memory 
 Integrated memory controllers − good for both bandwidth and 

latency 
 

• What does not help real performance: 
o Excessive instruction level parallelism − hard to utilize effectively 
o Multiple multiply-add units − good for LINPACK benchmark [19] and not 

much else 
o Compiler optimizations that often fail to compile or give the wrong results 
o Failure to meet ANSI standards 
o Complex architectures – these make compilation difficult and inefficient 
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o Specialized functional units that are difficult to schedule and feed with 
data 

 
The results in Table 2.1 can be rationalized the basis of these observations.  Such a 
discussion requires a report in its own right; so we forego a more detailed discussion 
here, and simply offer the above observations as a framework useful for analyzing the 
performance characteristics of a given application on a given processor. 
 
In any case, as discussed in Section 3 below, these and similar considerations led us to 
rank the processor choices for Red Storm based on effectiveness for our design, ignoring 
cost for the moment, as follows. 
 

1. HP Alpha EV7 
2. AMD Opteron 
3. Intel Pentium-4 and AMD Athlon 
4. IBM Power-4 
5. Intel Itanium II 

 
When we take into account performance relative to price, this ranking changes 
somewhat: 
 

1. AMD Opteron 
2. Intel Pentium-4 and AMD Athlon 
3. HP Alpha EV7 
4. IBM Power-4 
5. Intel Itanium II 

 
Note that we could not include the Cray X-1 and the Earth simulator in these results. This 
is because neither Cray nor NEC has published (as of February 2003) specFP2000 results 
for their processors. However, we do compare the performance of selected real 
applications on the closely related NEC SX-6 to that on semi-commodity and commodity 
processors in Section 5 below.  
 
It should also be noted that we have not provided performance data for the AMD 
Opteron. We have carried out extensive testing of beta Opteron hardware. Those tests are 
under non-disclosure agreements and cannot be discussed in this paper.  However, the 
complete architecture has been published by AMD. In addition, as of February 2003, 
AMD has released a preliminary overall SPECfp2000 ratio for the Opteron. According to 
AMD, it achieved a ratio of 1170. 
 
The highest comparable number listed by SPEC as of February 2003 is for the Itanium II 
with a ratio of 1431 [20]. The large Itanium II number is largely due to outstanding 
performance on swim (3373) and art(4178). The art benchmark is a graphics 
benchmark that appears to fit entirely in cache; and swim is a cache friendly shallow-
water fluid dynamics application. The SPECfp2000 results for the Itanium II are quite 
“peaky” with a high ratio of 4178 on art and a low ratio of 726 on mesa. By contrast 
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the results for the two IA-32 architectures are much less peaky: the AMD Athlon shows a 
high of a little over 1200 on swim, galgel and mesa, and a low of a little under 600 on 
art and ammp; the Intel Pentium-4 (as reported by Dell) shows a high of 1800 on swim 
and a low of a little under 600 on sixtrack. The Opteron individual benchmark 
results, which have not been published, should show behavior close to that of the Athlon, 
based on architectural heritage and our experience testing them on our applications. 
 
Using performance weighted by cost as a metric, the Opteron was the clear winner in our 
architectural considerations. Also of importance to our considerations was its full 
backward compatibility with the IA-32 architecture. Our Pentium-4 IA-32 codes run 
without recompile on the Opteron. To this point in our testing, they run more efficiently. 
The architectural simplicity makes it quite likely that the full 64-bit compilers will 
compile quickly and produce quite efficient code. The fast, open HyperTransport [21] 
interface integrated into the Opteron was also an important consideration because it made 
the job of designing a fast, relatively inexpensive, low-latency interconnect for Red 
Storm much more feasible. Finally, the integrated memory controller reduces memory 
latency and cuts the cost and complexity of the chipset considerably. 
 

2.4. Communication and Topology 

2.4.1. Communication Mechanisms 
 

Processor issues not withstanding, the fundamental reason that some architectures are less 
effective for large problems is due to the lack of balance between computational speed 
and the speed at which data can be delivered to and from the processor that needs it. This 
obviously includes local memory bandwidth and latency and, for multi-processor nodes, 
cache coherency and memory contention issues. However, having dealt with those above, 
we now concentrate on distant memory accesses.  We state, without further elaboration, 
since it is the experience of many in the community, that truly coherent, shared memory 
approaches to distant memory accesses do not scale using existing technological 
capabilities. So, at a minimum, the system must deal with distant memory accesses 
differently than it does with local memory loads and stores. There are currently two 
common methods of doing this. First, by using global address spaces and some test and 
set mechanism (e.g. lightweight barriers), distant memory can be accessed directly by its 
address. One example of this is the global address space technology underlying the 
SHMEM library on the Cray T3E [22].  Unless this method allows entire vectors to be 
loaded or stored based on a single instruction execution, it is obviously non-scalable. It 
should also allow for gather-scatter capabilities to deal with non-uniform-stride vectors. 
The Cray T3E provided both of these capabilities. The second method is by using an 
explicit message-passing mechanism, such as MPI. 
 
In principle, the first mechanism can be enabled in software through message passing. In 
fact, doing so leads to unacceptable overheads, and so is not utilized in practice. So far, 
direct memory access mechanisms that have been applied have allowed an advantage of 
about a factor of 5-10 for single-word and short vector puts and gets relative to MPI 
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message passing on the same architecture. There are national security applications for 
which direct-memory addressing capability, together with gather-scatter capabilities, is a 
real advantage.  For most science and engineering applications, however, experience has 
shown that message lengths can be sufficiently large to reduce such an advantage to a 
minimal effect. In addition, nearly all, modern, massively parallel applications are written 
in MPI, so MPI was a Red Storm requirement in any case.  In our design studies, we 
made MPI and portions of MPI-2 a requirement, and noted that direct memory addressing 
and gather-scatter capability would be good future architectural improvements. 
 

2.5. Balance Requirements and Network Topology: 
 
For applications to be able to take advantage of MPP architectures, they must minimize 
serial work fraction [17]; they must minimize load imbalance; and they must also 
minimize the parallelization overhead. Overhead typically is dominated by 
synchronization and communications. For the architectures we consider, synchronization 
occurs through explicit message passing; so we lump them together henceforth.  Early on, 
Amdahl’s Law was taken to imply that parallelization beyond a hundred processors was 
extremely difficult to achieve. In fact, on balanced MPPs, applications routinely achieve 
high parallel efficiency on thousands of processors when the job size is scaled up linearly 
with the number of processors. They achieve high efficiency on hundreds of processors 
for large fixed-size jobs. This is because the serial work can be controlled to be in the 
noise on most scientific and engineering applications. It also is because sophisticated load 
balancing methods have been developed and implemented that achieve high degree of 
load balance while simultaneously minimizing communications overhead.  We expect to 
achieve typical parallel efficiencies of 70% or higher for our most important applications 
at the full system scale (10,000 or more processors). That we can do so is due to the 
inherent parallelism of most physically based problems: for the most part, nature is 
inherently local and inherently parallel. Nonetheless, we shall fail to achieve acceptable 
performance unless we design the communications capabilities of our system to match 
the processing and local memory speeds.  
 
What is required for this balance depends on the network topology and on the scale of the 
system. Balance is achieved at lowest required bandwidth relative to processing speed for 
a network that is a complete graph. That is, for a network in which every node has a bi-
directional link connecting it to every other node.  Clearly such a network has an O(N2) 
or greater cost, where N is the number of nodes. The most achievable way of providing 
such connectivity is a non-blocking crossbar switch.  Other switch-based networks 
include multi-level, crossbar-based networks such as those provided by IBM in ASCI 
Blue Pacific and ASCI White machines. They also include fat-tree networks such as 
those previously used in the CM-5 from Thinking Machines Corporation and those 
provided by Quadrics (and its predecessor, Meiko) as well as similar Clos networks 
provided by Myricom. These high-connectivity trees have the property that the cross-
section bandwidth is high and is preserved at all levels of the tree. However, they do not 
share the contention-free properties of the full crossbar. Fat-tree networks reduce this 
contention by the randomness of path selection. They have the advantage that the 
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diameter of the network grows only as log(N) for N nodes. Nonetheless, they require 
O(NlogN) network switches to connect N nodes. For large networks, this can be a 
marked disadvantage compared to mesh networks which require O(N) switches. In 
addition, along with all other large-switch networks, they suffer from long wires and 
from wire-length induced latencies. They also have less locality than do meshes, which 
can be a disadvantage for algorithms that take advantage of locality (most algorithms do). 
Butterfly networks share many properties with fat-trees. At least one major system was 
Butterfly-based: that provided in the late 1980’s and early 1990’s by BBN Corporation. 
We do not discuss butterflies further because, where they differ, the features of fat-trees 
are superior. 
 
Other low-diameter networks include hypercubes. These have a uniform log(N) diameter 
for N nodes. However, they require log(N) ports per processor which can become 
impractical for large systems. Also, for large systems, they inevitably entail long wire 
lengths. Nevertheless, they were the basis of some of the most successful early MPPs: the 
nCUBE10 with 1024 processors, the nCUBE-2 with up to 8192 processors, the Mark-n 
hypercubes from JPL, as well as the Intel iPSC-1, iPSC-2, and iPSC-860. They still show 
up in some NUMA architectures, notably the SGI Origin series.  
 
One-, two-, and three-dimensional meshes are often chosen for interconnects. All meshes 
involve N/P network switches for N nodes, where P is the number of nodes connected 
into a single network router. Most commonly, P=1. One-dimensional meshes, or rings 
have only two advantages: they are extremely simple and they involve only a few and 
short wires. They require the greatest bandwidth per FLOPS of any interconnect scheme; 
and they are guaranteed to face contention issues. They also have the greatest diameter of 
any network. Today, they are virtually unused.  
 
Two-dimensional meshes provide a lower diameter than do rings. [The diameter of a d-
dimensional mesh is O(N1/d).] They also reduce contention and have relatively few, short 
wires. [The number of wires in a d-dimensional mesh is essentially (d•N).] Their biggest 
disadvantage is that they require both relatively high bandwidth per FLOPS and have 
significant contention, because much of the traffic in simulations of 3-dimensional 
problems will be non-local.  
 
Three-dimensional meshes have numerous advantages: their bandwidth requirements per 
FLOPS are similar to, or for algorithms with a great deal of locality of communications, 
perhaps lower than those of a fat-tree; they only require short wires; their dimension 
means that most communications in three-dimensional simulations will be nearest 
neighbor; their diameter grows as N1/3, which for reasonable-sized systems is not that 
different from the logk(N) for a fat-tree, where k is the degree of the tree (typically 4). 
The number of switches required is actually less than that for fat trees if N is large since 
N becomes less than  (N/P) logp(N) for N > PP. Wiring is especially an advantage for 
meshes over all other kinds of interconnects. As described below in Section 3, Red Storm 
uses a three-dimensional mesh interconnect. 
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2.5.1. Balance Requirements 
 
Our experience indicates that taking into account network topology, a well-balanced, 
10,000-processor system with a three-dimensional mesh interconnect and uni-processor 
nodes will require about one byte/sec of processor-to-processor interconnect bandwidth 
for each FLOPS of processing speed in order to achieve high-scalability across the 
spectrum of our applications. This requirement is not that different if we were to utilize 
fat-tree interconnects. It is somewhat lower (perhaps as low as 1/2 byte/sec per FLOPS if 
we were to utilize a full crossbar interconnect. However, such a crossbar would be 
prohibitively expensive for Red Storm.  
 
This issue should not be understated. If a parallel system has a parallel efficiency of 90% 
on large jobs, then doubling the communications speed only provides a 5% gain in 
performance. By contrast, doubling the processor speed will provide an 80% gain in 
performance. On the other hand if the system on that application has a 10% parallel 
efficiency, then doubling communications speed provides an 80% gain in performance 
while doubling the processor speed provides only a 5% gain in performance. So, it is 
important to understand where a design is on the efficiency curve.  For most current 
generation supercomputers, at the 10,000 processor level, typical parallel efficiencies will 
be 10% or less on many important applications.  The Cray T3E, the Earth Simulator and 
the ASCI Red system are the notable exceptions to this rule. 
 
Let us look at balance in modern supercomputers.  In Table 2.2, we compare architectural 
balance of several designs produced within the past several years. For comparison, we 
include the design goals for Red Storm. 
 

Table 2.2: Comparison of balance of Red Storm to existing systems. 

Machine Node speed rating 
(megaFLOPS) 

Link BW (MB/s) Balance Ratio 
(bytes/FLOPS) 

T3E  1200 1200 1.0 
ASCI Red# 400 800 (533) 2.0 (1.33) 
ASCI Red* 666 800 (533) 1.2 (0.67) 
ASCI Blue 
Mountain^ 

500 800 1.6 

ASCI Blue 
Mountain** 

64000 1200 0.02 

ASCI Blue Pacific 2650 300(132) 0.11(0.05) 
ASCI Q^ 2500 650 0.26 
ASCI Q** 10000 400 0.05 
ASCI White 24000 2000 0.083 
Earth Simulator 64000 32000 0.5 
ASCI Red Storm^^ 4000 6400 1.6 
#ASCI Red before processor upgrade, *ASCI Red after processor upgrade from 200 MHz to 333 MHz, 
^ASCI Blue Mountain and Q: intra-node balance, **ASCI Blue Mountain and Q: inter-node balance, 
^^From ASCI Red Storm Design Requirements 
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In this table, note that the Balance Ratio is the ratio of peak processing speed of a node to 
link bandwidth in the interconnect.  For ASCI Red and ASCI Blue Pacific, the practical 
bandwidth limitation is not the link bandwidth but rather the bus bandwidth within the 
node. This is noted by giving the reduced values in parentheses. For ASCI Blue Mountain 
and ASCI Q, there are two sets of entries. For both cases of these shared-memory 
systems, the intra-node network balance is shown first and then the inter-node balance. 
 
To see the importance of balance, consider the following Amdahl’s Law-type 
considerations. First, Amdahl’s Law for parallel computers states that the speedup 
achievable for a problem running on N processors over the same problem running on 1 
processor is given by 
 

SA = [1 + fs] / [1/N + fs], 
 
where fs is the serial fraction of the workload.  Now, to achieve a parallel efficiency of 
80% on 10,000 processors, Amdahl’s law implies that the serial fraction must be less than 
0.000025. Contrary to the expectations of many in the community prior to work at Sandia 
on scaled speedup [23], applications often achieve this kind of efficiency. Now Amdahl’s 
Law understates the problem. A more limiting factor in parallel efficiency is overhead 
due to communications.  To a good approximation, we may calculate the real speedup as  
  

S = [SA] / [1 + f c Rp/c], 
 
where fc is the fraction of work devoted to communications overhead and Rp/c is the ratio 
of processor speed to communications speed (the inverse of the balance ratio from 
above). In Table 2.3, we show the effect of communications balance on four hypothetical 
applications on two hypothetical machines. The two machines are presumed identical, 
except that the first has a balance ratio of 1 and the second a balance ratio of 0.05. These 
two choices more or less span the range of architectures in Table 2.2. The four 
applications have communications overhead fractions of 0.001, 0.01, 0.05, and 0.10.  In 
all four cases we assume zero serial work for simplicity.  
 
Table 2.3:  Machine efficiency as a function of balance factor and communications overhead fraction. 

Communications fraction Balance ratio 0.001 0.01 0.05 0.10 
1.0 0.999 0.99 0.95 0.91 
0.05 0.98 0.83 0.50 0.33 

 
From this table, we see that if the workload is most highly compute bound or 
embarrassingly parallel, it is not necessary to invest in a highly balanced network. If 
however, a large fraction of the workload has significant communications overhead, then 
it pays to do so.  In the not terribly extreme case that 10% overhead is incurred due to 
communications, having a poor balance in the network could lead to the effective loss of 
the majority of the system’s capability. For these reasons we have chosen to provide a 
highly balanced network in ASCI Red Storm. 
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2.6. Software Issues 
 

Our software architecture is covered extensively in Section 4 below. Here, we simply 
note the choices that we considered and the design decisions we arrived at. As noted 
above in this section, reliability and scalability are strongly dependent on software design 
and execution.  Because of cost and maintainability considerations, we wanted to 
leverage as much existing open-source software as was feasible and wise in the design of 
Red Storm. One choice − in dealing with operating systems − was whether to utilize a 
proprietary UNIX or an open-source UNIX, either BSD or Linux. Because we had 
extensive internal experience with Linux, and because the known shortcomings of Linux 
would not come into serious play (due to the limited manner in which we would employ 
it on Red Storm), we chose Linux.  We then faced the issue of whether to deploy Linux 
throughout the system, as is done on clusters such as Cplant™, or to limit the function of 
Linux to only those partitions of the system that would depend critically on full UNIX 
services. As noted above, we chose to limit Linux to the service and I/O partitions, and to 
rely on a lightweight kernel (LWK) operating system, Catamount, on the compute nodes. 
Catamount is the third generation of lightweight kernels developed at Sandia in 
partnership with the University of New Mexico. It is a simple port of the Puma operating 
system [15] that we developed for the Intel Paragon and re-deployed as Cougar on the 
ASCI Red system. Of course, Cougar had to be modified to meet the requirements of the 
new architecture. However, the LWK design philosophy is nearly identical to that 
employed on our previous machines. It would have been desirable to enhance or re-
design portions of the operation system environment, but our limited time and budget 
prevented us from making any significant modifications for Red Storm. 
 
One area in which we decided to make extensive software changes in moving from ASCI 
Red to Red Storm was in the area of parallel file systems. I/O has been the Achilles’ heel 
of nearly every MPP built. It was fairly straightforward to create a very powerful 
hardware system to support I/O. In contrast, making a full-featured, high-performance 
file system to take full advantage of that hardware was beyond our scope. We had to 
choose to leverage on-going open-source efforts. It is important to understand the 
challenges facing a designer wanting to get full features and high performance in a 
parallel file system for an MPP on the scale of Red Storm. At any given time there will 
be jobs from tens of users on the system. These jobs will compete for I/O resources in an 
asynchronous fashion. If we think of the compute nodes generically as parallel clients and 
the I/O nodes as servers, we can have many parallel clients requesting I/O services 
simultaneously. In such a situation, load imbalance between I/O nodes and compute 
nodes and among I/O nodes could destroy efficiency. Well-designed applications will 
attempt to stage I/O internally so as to avoid self-contention. However, many applications 
developers may not have expended the same degree of rigor in developing I/O strategies 
as they have in parallelization techniques. In addition, individual code designers cannot 
mitigate the problems caused by asynchronous contention for resources among different 
jobs. These issues put an enormous burden on the parallel file system. It is critical to size 
the service and I/O partitions adequately to handle the expected I/O traffic. Otherwise I/O 
is fully capable of become the serialization bottleneck that reduces the performance of the 
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system unacceptably.  From an architecture point of view, I/O and parallel file systems 
are among the biggest risks we face in developing a balanced architecture. 
 
3. The Red Storm Computer System 
 
The following sections describe the goals and requirements of the Red Storm architecture 
and provide details on the hardware components of the system. 

3.1.  Red Storm Architectural Goals 
 
As mentioned above, Sandia has a long history in MPP computing, starting with the first 
1024 processor nCUBE-10 computer system that was installed at Sandia in 1987. Since 
then, Sandia has had two 1024 processor second generation nCUBE-2 MPPs, a 16K 
processor Thinking Machines CM2, a 3600+ processor Intel Paragon, and Sandia’s 
current supercomputer, the Intel ASCI Red machine with over 9500 processors. Sandia 
also has over 2500 processors in the Cplant™ cluster. Over this period, computing 
technology has changed dramatically. However, the basic characteristics that made the 
first nCUBE-10 a highly scalable machine and ASCI Red highly scalable are the same. 
These are a communication network that provides a high computation to communication 
ratio, a highly scalable operating system and system software, an integrated system 
design, and a level of reliability that allows for meaningful work to be accomplished 
between interrupts. 
 
The following goals for future large parallel computer system architecture and 
performance were developed based on Sandia’s extensive experience in MPP computing. 
The Red Storm architecture and performance requirements are based on these goals. The 
major goals are: 
 

1. Balanced system performance. The balance between processor, memory, 
interconnect, and I/O performance needs to provide good overall performance on 
a broad set of scientific and engineering application codes. These application 
codes need to achieve good parallel efficiency at the level of ten thousand or more 
processors. 

2. Usability. The functionality of system hardware and software must meet the 
needs of users for very large scale MPP computing, and not general purpose 
computing.  

3. Scalability. System hardware, software, and performance scale from a single 
cabinet system to a system with approximately thirty thousand processors. The 
physical system size and equipment part count need to scale linearly with the 
computational power of the system. 

4. Reliability. The machine needs to stay up long enough between interrupts to 
make real progress on completing application runs, at least 50 hours Mean Time 
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Between Interrupts (MTBI). Sandia’s application codes may run for a hundred or 
more hours on a single problem. For these kinds of applications, the measure of a 
supercomputer’s reliability is MTBI of the application code and not percent 
availability. To reiterate, it is possible to have a machine with 99% availability 
that is nearly useless for our workload because it has a high application interrupt 
rate.   

5. Upgradeability. System performance needs to be able to be upgraded with a 
processor swap or board swap and additional cabinets to a factor of three or 
greater in capability. Supercomputers are expensive, and it is highly desirable to 
be able to relatively easily extend the life of the machine through an upgrade, 
rather than through complete replacement. 

6. Red/Black Switching. It is important for Sandia to have the ability to switch 
major portions of its large capability supercomputers between classified and 
unclassified computing environments. Most code development, and a significant 
fraction of Sandia’s work, can be done in the unclassified environment; however, 
many calculations must be done in the classified environment. Red/Black 
switching of major sections of the machine between environments allows Sandia 
to have access to its largest capability computing resource in both environments, 
although not simultaneously.  

7. Space, Power, Cooling. Leading edge capability supercomputers are very large, 
and require a significant amount of power and cooling. Dense packaging and 
careful design can substantially reduce the system physical size and the power and 
cooling needed to operate it.  

8. Price/Performance. Excellent performance per dollar is possible through the use 
of high volume commodity parts where feasible.  

All of these goals except for Red/Black switching are generally applicable to large 
parallel supercomputers. 

3.2. Red Storm Architecture and Performance Requirements  
 
The Red Storm architecture requirements were designed to produce a system that meets 
the above goals. The major architectural requirements for Red Storm are:  

1. Red Storm is a tightly coupled MPP that is designed to be a single system and 
not a cluster. This requirement is designed to help meet the goal of system 
balance and to avoid many of the scaling issues that have plagued large clusters. 
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2. Red Storm has a fully connected three-dimensional mesh interconnect in 
which each processor has one bi-directional connection to the primary 
communication network. This requirement addresses system scalability and 
upgradeability. Mesh interconnects grow linearly in size with the number of 
nodes. As the system size increases the complexity of a mesh interconnect does 
not increase, although, the number of hops to get from one end of the mesh to 
another does increase. The maximum size of Red Storm is limited by the number 
of entries supported in the interconnect router tables. This limit is 32 thousand. 

3. Red Storm has three functional hardware partitions; 1) service and I/O, 2) 
compute, and 3) Reliability, Availability, and Serviceability (RAS) and 
system management. This requirement addresses system balance and overall 
performance by requiring dedicated hardware for application code support, 
application code execution, and system management and monitoring.  

4. The Red Storm compute node partition is divided into three sections, and the 
service and I/O node partition, and the RAS and system management 
partitions are divided into two sections each to support Red/Black switching. 
This requirement provides Sandia with the flexibility to operate Red Storm in 
multiple classified and unclassified configurations while always providing the 
users with access to their data.  

5. The Red Storm Operating System (OS) is partitioned to match the hardware 
partitioning with a full UNIX or UNIX-like OS on the service and I/O nodes, 
a lightweight kernel (LWK) on the compute nodes, and a real-time or real-
time like OS on the RAS nodes with a full UNIX or UNIX-like OS on the 
system management workstations. The user interface is a full UNIX while the 
compute node OS is a LWK which provides minimal OS overhead and optimal 
application code performance. The LWK requirements preclude demand paging 
and a number of other functions that would negatively impact system 
performance. Using an LWK on the compute nodes also increases the overall 
system reliability as the LWK has far less code paths that can potentially fail than 
a full OS. 

6. The Red Storm disk storage system is divided into two sections to match the 
service and I/O nodes and to support both classified and unclassified 
computing. This requirement is necessary for Red/Black switching. 

7. Red Storm compute nodes are diskless and perform all disk storage and 
external network I/O through the service and I/O nodes. This requirement is 
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necessary for Red/Black switching. However, it also exists to keep the compute 
node OS simple and to increase system reliability by not having a very large 
number (>10,000) unprotected disks spread throughout the system.  

8. All disk storage in Red Storm is RAID 3 or RAID 5. Each RAID has parity 
and it’s own hot spare disk. These requirements address system reliability. 

9. Red Storm has an independent RAS and system management network that is 
designed to monitor the system and provide a path for system management 
without interfering with application code performance. For a system of the 
size of Red Storm a comprehensive RAS system is absolutely necessary for 
maintenance and reliability. 

10. Red Storm is required to have an MTBI of 50 hours for application codes, 
where the interrupt is caused by a failure in system hardware or software. 
Further, Red Storm is required to have an MTBI of 100 hours for rebooting 
the system because of a failure in system hardware or software. The length of 
time between interrupts is the best indicator of system reliability for 
supercomputers. These machines need to run very large problems for very long 
times. 

11. Red Storm is built from high-volume Commodity Off The Shelf (COTS) 
parts wherever feasible. Red Storm has a limited number of custom parts. In 
addition to the network interface/router chip, which was designed specifically for 
Red Storm, the CPU boards and the packaging are unique to the machine. The rest 
of the parts in the system are either high-volume commodity parts or at least 
standard production items. 

The Red Storm performance requirements, together with the architectural requirements, 
result in a computer system that meets the above goals. The performance requirements 
were designed to produce a computer system with balanced performance. The major 
performance requirements are: 

1. Low-latency interconnect. Nearest neighbor MPI latency as measured by a 
ping/pong test divided by 2 is less than 2.0 µs. 

2. High-bandwidth interconnect.  Each link of the three-dimensional interconnect 
has a peak bandwidth greater than 1.5 bytes/FLOPS (peak) of the compute 
processor. 
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3. High minimum bi-section bandwidth. The minimum bi-section bandwidth is 
the bandwidth through the plane of the three-dimensional compute node mesh 
that has the least bandwidth. The minimum bi-section bandwidth is at least 0.05 
bytes/FLOPS (peak) of the full machine. 

4. Sustained high I/O bandwidth. The sustained bandwidth requirement for I/O in 
Red Storm is ~0.0025 bytes/FLOPS (peak) of the machine. 

5. High external network bandwidth. Sustained external network bandwidth 
from/to Red Storm of 0.00125 bytes/FLOPS. 

6. Scaled real performance. Performance that scales linearly or nearly so with 
problem size for Sandia’s application codes.  

3.3. The Sandia Red Storm Computer System 
 
The Red Storm computer system is under development by Cray Inc. The first Red Storm 
machine is being built for Sandia and is expected to be operational at Sandia in 
Albuquerque, New Mexico, in August of 2004. 

3.3.1. Physical Layout 
 
The Sandia Red Storm supercomputer will have 124 CPU cabinets and 16 Red/Black 
switch cabinets. The 140 cabinets are laid out in four rows of 35 cabinets each. This 
cabinet layout is shown in Figure 3.1 below. Out of the 124 CPU cabinets, 108 cabinets 
will have compute nodes and 16 cabinets will have service and I/O nodes. The service 
and I/O node cabinets are equally split between the classified and unclassified partitions 
with eight on each end of the machine. The compute node cabinets are split into three 
sections with seven cabinets in each row normally unclassified and seven cabinets in each 
row normally classified. (In Figure 3.1, the normally classified cabinets are shown in red 
and the normally unclassified cabinets are shown in black.) The other thirteen cabinets in 
each row will be switched between the unclassified environment and the classified 
environment as needed. (These cabinets are shown as white in Figure 4.1.) In addition, 
under special circumstances, all of the compute nodes may be switched to the classified 
or unclassified environments. 
 
The eight service and I/O node cabinets on each end of the machine are divided equally 
among the four rows, two cabinets per row. These cabinets will not be switched between 
the classified and unclassified environments. All disk storage connections and all external 
network connections to the machine are through these cabinets. 
 
The Red/Black switch cabinets, four cabinets per row, provide for making or breaking a 
connection between Y and Z planes in the high performance machine interconnect. 
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Except for cable connections, these cabinets are empty. They do not require power or 
cooling. 
 
All CPU and Red/Black switch cabinets are the same physical dimensions, 24”W x 48”D 
x 80”H. The total floor space required for the machine, including 48” of access on all 
sides and in all isles, is 2808 square feet. When the disk storage cabinets are included the 
total machine size is approximately 3000 square feet. 
 
 

 

3.3.2. CPU Cabinet Configuration 
  
Each compute node cabinet has three card cages. Each card cage has eight compute node 
boards, and each compute node board has four AMD Opteron processors and four high-
performance NIC/router chips. In addition, each board has a RAS processor and a 
number of Voltage Regulator Modules (VRMs).   Each Opteron processor has four 
memory slots for DDR DIMMs. As shown in Figure 3.2, the node boards are oriented 
vertically and the direction of airflow through the cabinet is from bottom to top. Each 
card cage has a passive back plane that provides cable connections for connecting card 
cages together and internal connections for the boards within the card cage. 
 

 
Classified Unclassified

Switchable Nodes

I/O and Service 
Nodes 

I/O and Service
Nodes 

Disconnect Cabinets

Disk storage system
not shown 

Normally Normally 

Figure 3.1: Sandia Red Storm System Cabinet Layout 
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The service and I/O node cabinets are very similar to the compute node cabinets. The 
same card cage and backplane are used, and there are eight boards per card cage. 
However, each service and I/O node board has two AMD Opteron processors and four 
NIC/router chips. These boards also have four DDR DIMM slots per processor. In 
addition, they have PCI-X slots for disk storage connections and for external network 
connections. 
 

3.3.3. Topology 
 
The compute nodes are configured in a 27 x 16 x 24 (X, Y, Z) three-dimensional mesh, 
and the service and I/O nodes are configured in a 2 x 8 x 16 (X, Y, Z) three-dimensional 
mesh. There are 16 x 24 (Y, Z) or 384 links in the mesh at each Y, Z plane. Of these, 128 
(8 x 16) are connected on the interface between the service and I/O nodes and the 
compute nodes. The minimum bi-section is 16 x 24 (Y, Z) for the compute nodes and 2 x 
8 (X, Y) for the service and I/O nodes. At each point in the mesh, service and I/O node 
and compute node, there is a high performance router. 
 
Each router has 7 bi-directional ports. Six of the ports are used to make the three-
dimensional mesh and the seventh port connects to the NIC. The NIC connects to the 
AMD Opteron through a HyperTransport [21] link. 
 
The 108, compute node cabinets have a total of 10,368 single processor nodes. Each 
compute node cabinet has 96 nodes/processors configured in a two-dimensional mesh of 
4 x 24 (Y, Z). The 8 service and I/O node cabinets on each end of the machine have a 
total of 256 single processor nodes. Within each service and I/O node cabinet there is a 
two-dimensional mesh of 2 x 16 (Y, Z).  
 

3.3.4. RAS and System Management Design 
 
Red Storm has a comprehensive RAS and system management capability. The classified 
and unclassified environments each have a primary Red Storm Management Workstation 
(RSMW) and an online backup. These workstations are connected to the Red Storm 
system cabinets through a tree structured, switched, and dedicated Ethernet. 
 
Each Red Storm cabinet has a RAS processor (L1) and each Red Storm CPU board has a 
RAS processor (L0). The cabinet L1 processor controls power-on of the CPU cabinet and 
it monitors the L0 processors. The L1 also acts as a concentrator for L0 messages that go 
to the RSMW. The L1 processor is connected to the cabinet L0 processors through a 
dedicated Ethernet. 
 
The L0 processor on each board performs most of the monitoring functions, including 
checking for the node heartbeat, and it provides a link to the Opteron processors and the 
NIC/router chips. JTAG is also implemented on each board to provide hardware 
monitoring through the L0 processor and with direct connection to the board. 
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3.3.5. System Software 
 
Red Storm has three operating systems. The service and I/O nodes run a full version of 
the Linux operating system that has been functionally optimized for various service and 
I/O node functions such as I/O and user support. As mentioned above, the compute nodes 
run a LWK named Catamount.  The RAS nodes run a stripped down version of Linux, 
and the RSMW runs a full version of Linux. 
 
Details of the high-performance system software architecture used on computes nodes, 
including the high-performance message-passing layer and scalable job loader, are 
provided in Section 4 below.  The Red Storm runtime environment also provides users 
with a batch scheduler (PBS), a compute node allocator, and libraries for MPI, I/O, and 
math. The compute node allocator tries to optimize job placement based on the topology 
of the network, but will assign jobs any available nodes if necessary to accommodate the 
job within scheduling constraints. 
 
Red Storm has two file systems available to users, a UNIX File System (UFS) and a 
parallel file system. UFS is a serial file system that is implemented on a RAID. The 
parallel file system is designed to provide striping of files across many RAIDs and to 
provide very high performance I/O. The specific parallel file system that will be provided 
on Red Storm has not been determined at this time. Several open-source and commercial 
parallel file systems are under evaluation. 
 
The Red Storm software environment includes a number of tools. These include 
compilers, a parallel debugger, and a performance monitor. Compilers for Fortran, C, and 
C++ are included. In addition to compiling on Red Storm, users will have the option of 
compiling their codes for Red Storm using a cross-compile environment on an Opteron 
workstation. The parallel debugger included in the Red Storm tools is TotalView. 
TotalView has become a de-facto standard for ASCI machines. The performance-
monitoring tool has yet to be selected. It will provide a user interface for counting a wide 
variety of operations in the Opteron processor. 
 
A Graphical User Interface (GUI) tool is being developed for displaying system 
management and monitoring data on the RSMW. Also, an accounting package from 
another Cray product is being ported to Red Storm. 
 

3.3.6. Performance 
 
Sandia’s current supercomputer, ASCI Red, has proven to have very good application 
scalability on a broad set of scientific and engineering problems. Red Storm will be better 
balanced than ASCI Red. Red Storm will have a better node memory system, a higher 
performance interconnect, and a much higher performance I/O system. The memory 
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bandwidth per peak floating point operation per second is higher and the latency to local 
node memory is significantly lower than on ASCI Red. 
 
The Red Storm interconnect will have higher bandwidth links and more of them than in 
ASCI Red for a similar size system. Even relative to the peak performance of its nodes, 
Red Storm’s link bandwidth will be higher than ASCI Red’s. The minimum bi-section 
bandwidth in Red Storm will be substantially higher than in ASCI Red because of the 
higher bandwidth links and because the minimum bi-section plane has six times as many 
links. In addition, because of increase processor performance and a smart NIC, MPI 
latency will be around a factor of seven lower in Red Storm than in ASCI Red. 
 
Disk I/O bandwidth on Red Storm will be approximately a factor of 50 greater than it is 
on ASCI Red. For some applications, I/O performance is a limiting factor in the overall 
performance of ASCI Red. 
 
A detailed comparison of ASCI Red and Red Storm is given in Table 3.1. 
 
 

Table 3.1: Comparison of ASCI Red to Red Storm 

 ASCI Red Red Storm 

Full System Operational Time 
Frame 

June 1997 (Processor and 
Memory Upgrade in 
1999) 

August 2004 

Theoretical Peak (Tflops) 3.15 41.47 

MP-Linpack Performance 2.379 >30 (est.) 

Architecture Distributed Memory 
MIMD 

Distributed Memory 
MIMD 

Number of Compute Nodes  
Processors per Node 

4,730 
2 

10,368 
1 

Number Service and I/O Nodes, 
each end 

73 256 

Processor Intel P II @ 333 MHz AMD Opteron @ 2.0 
GHz 

Compute Node Memory 1.2 TB 10.4 TB (eventually 
expandable to 83 TB) 

Memory per Compute Node 256 MB 1.0 GB 

System Memory B/W 2.5 TB/s 55 TB/s 

 Disk Storage 6.25 TB each end 120 TB each end 
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Table 3.1: Comparison of ASCI Red to Red Storm 

 ASCI Red Red Storm 

Parallel File System B/W 1.0 GB/s each end 50 GB/s each end 

External Network B/W 200 MB/s each end 25 GB/s each end 

Interconnect Topology 3-D Mesh, 38 x 32 x 2 
(X, Y, Z) 

3-D Mesh, 27 x 16 x 24 
(X, Y, Z) 

Interconnect Performance 
      MPI Latency 
      Bi-Directional Link B/W 
      Minimum Bi-Section B/W 

 
15 µs 1 hop, 20 µs max 
800 MB/s 
51.2 GB/s 

 
2.0 µs 1 hop, 5.0 µs max 
6.0 GB/s 
2.3 TB/s 

Full Machine RAS System 
      RAS Network 
      RAS Processors 

 
10 Mbit Ethernet 
1 for each 32 CPUs 

 
100 Mbit Ethernet 
1 for each 4 CPUs 

Operating Systems 
      Service and I/O Nodes 
      Compute Nodes 
      RAS Nodes 

 
TOS (OSF1) 
Cougar (LWK) 
VX-Works 

 
LINUX 
Catamount (Cougar) 
LINUX 

Red/Black Switching 
(Processors in each section) 

2260 - 4940 - 2260 2688 – 4992 - 2688 

System Foot Print ~2500 sq ft ~ 3000 sq ft 

Power/Cooling Requirement 850 KW 1.7 MW 
 
 
The Red Storm computer system will be operational at Sandia in August of 2004. It will 
have a peak performance of a little over 40 teraFLOPS. It will have greater than 55 TB/s 
of memory bandwidth. The Red Storm interconnect will have over 120 TB/s of 
interconnect bandwidth. Each end of Red Storm, classified and unclassified, will be able 
to sustain 50 GB/s of disk I/O bandwidth and 25 GB/s of external network bandwidth. 
Sandia expects to achieve greater than 25 teraFLOPS on the MP-Linpack benchmark. 
More importantly, Sandia expects to achieve excellent parallel efficiency on very large 
ASCI problems running on the full machine, all 10,368 compute nodes.  
 
 
4. Sandia’s High Performance Computing Software Architecture 
 
In this section, we describe our architecture for scalable, high performance system 
software. The system software architecture that we have developed is a vital component 
of a complete system.  System software is an important area of optimization that directly 
impacts application performance and scalability, and one that also has implications 
beyond performance. System software not only impacts the ability of the machine to 
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deliver performance to applications and allow scaling to the full system size, but also has 
secondary effects that can impact system reliability and robustness. The following 
sections present an overview of our system software architecture and provide important 
details necessary to understand how this architecture impacts performance, scalability, 
reliability, and usability. We discuss examples of how our architecture addresses each of 
these areas and present reasons that we have chosen this specialized approach.  This 
section concludes with a discussion of the specifics of the implementation of this 
software architecture for Red Storm. 
 

4.1. Target System Architecture 
 
Our target system architecture partitions the nodes of a massively parallel system based 
on functional considerations. We partition the nodes into three natural sets: compute 
nodes, service nodes, and I/O nodes. More generally, we can envision having other 
partitions, such as database partitions and visualization partitions. In the context of 
system software design, the primary advantage of partitioning is that it allows the system 
software to be tailored to specific needs. See [24] for a more complete description of 
functional partitioning. 
 
The compute partition is dedicated to delivering resources to parallel application 
processes. The needs of applications and the usage model of the machine largely 
determine the functional requirements of compute nodes. We view parallel applications 
as being resource constrained, such that they can scale to consume all of at least one type 
of resource (e.g., memory, memory bandwidth, processing, network bandwidth, etc.) 
provided by the system. In considering these applications, the primary concern is 
reducing execution time. A single run of a resource-constrained application may use the 
entire system for several days. In our architecture, we restrict the functionality that is 
locally available on compute nodes to the absolute minimum that is required by our 
important applications.  The usage model of the machine, which emphasizes reducing 
execution time for one or a few parallel applications, allows us to employ a space-sharing 
model for the compute nodes. In this model, the allocator binds a group of compute nodes 
to a single user. We also assume that the compute partition is homogeneous. 
 
The service partition provides access to the compute partition. As a minimum, nodes in 
the service partition support user logins (authentication) and parallel application launch. 
More typically, these nodes also perform a variety of other activities such as compiling 
codes, editing files, sending email, and checking the status of the nodes and jobs in the 
compute partition. The functions of the service partition are, in general, those functions of 
a workstation, which, when moved into the high- performance realm, involve the 
interaction of serial, user-directed interfaces with parallel application codes. In our 
architecture, these service functions are decomposed into an interface component that 
runs in the service partition and a scalability component that runs in the compute 
partition. Most interface components run as sequential programs on a single service node.  
The I/O partition provides access to a global parallel file system, and may also contain 
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nodes that provide access to secondary storage systems or high performance network 
interfaces to other systems. 
 

4.2. The Puma/Cougar Operating System 
 
Puma [15] is the second-generation lightweight compute-node kernel designed and 
developed by Sandia and the University of New Mexico.  Intel, with help from Sandia, 
ported Puma from the Intel Paragon to ASCI Red, at which time Intel productized it as 
Cougar.  Sandia continued development of Puma as a research project while Intel 
continued to develop Cougar specifically for ASCI Red. While there are subtle 
differences between the implementations of the two, we consider them to be identical in 
the context of this paper, and for simplicity, we will refer to Cougar henceforth. The 
following provides an overview of the important components and characteristics of 
Cougar, including our high-performance data movement layer called Portals. 
 
Cougar consists of a Quintessential Kernel (QK) and a Process Control Thread (PCT). 
The QK is the lowest level of the operating system. It sits on top of the hardware and 
performs hardware services on behalf of the PCT and user-level processes. The QK 
supports a small set of tasks that require execution in privileged supervisor mode, 
including servicing network requests, interrupt handling, and fault handling. It also 
fulfills privileged requests made by the PCT, including running processes, context 
switching, virtual address translation and validation. However, the QK does not manage 
the resources on a compute node. It simply provides the necessary mechanisms to enforce 
policies established by the PCT and to perform specific tasks that must be executed in 
supervisor mode. 
 
The PCT is a privileged user-level process that performs functions traditionally 
associated with an operating system. It has read/write access to all memory in user-space 
and is in charge of managing all operating system resources. This involves process 
loading, job scheduling, and memory management.  While QKs do not communicate with 
each other, the PCTs on the nodes that have been allocated to a parallel application 
communicate to start, manage, and tear down the job. 
 
The PCT and the QK work together to provide a complete operating system. The PCT 
will decide what physical memory and virtual addresses a new process is to have and at 
the behest of the PCT, the QK will set up the virtual addressing structures for the new 
process that are required by the hardware.  The PCT will decide which process is to run 
next and at the behest of the PCT, the QK will flush caches, set up the hardware registers, 
and run this process. There is a clear separation between resource management and kernel 
task execution. The PCT is responsible for setting the policies and the QK is responsible 
for enforcing them. 
 
One of the important characteristics of Cougar is that it is based on multiple levels of 
trust. A QK trusts other QKs as well as the other operating systems that run in the other 
partitions of the machine. This also implies that all of the operating systems trust the 
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network, since messages can only be placed on the network by another operating system. 
QKs do not trust PCTs or user-level processes. The PCT trusts the QK and other PCTs. 
PCTs do no trust user-level processes. User-level processes trust both the QK and the 
PCT. This trust model is necessary to achieve high performance from the network. Since 
the network is trusted, privileged information in a message, such as the source of the 
message, does not need extensive verification. 

4.2.1. Processor Modes 
 
In this section, we describe the different ways in which Cougar can manage multiple 
processors on a compute node. In Cougar, a single processor, the system processor, 
manages all of the resources on a node. This is the only processor that performs any 
significant processing in supervisor mode. The remaining processors, if any, run 
application code and only rarely enter supervisor mode. These processors are called user 
processors. For the sake of this discussion, we assume that a node has only two 
processors and that there is a single user process. See [25] for a more detailed description 
of the implementation of these different modes. 
 
The simplest mode of operation is to run the kernel and the user-level process on the 
system processor and simply ignore the user processor. This mode is colloquially referred 
to as heater mode, since the user processor only generates heat. System calls from a user 
process are initiated by a trap instruction to the kernel, which handles the request and re-
establishes the context of the user process.  This mode does not provide any significant 
performance advantages, but it is the simplest mode to make operational and has 
historically been the default mode. 
 
Kernel co-processor mode runs the kernel on the system processor and the user-level 
process on the user processor. In this mode, the QK polls the external devices and looks 
for system call requests from the user-level process. Since the time to transition between 
user mode and kernel mode can be significant, this mode offers the possibility of 
increased performance for handling system calls and servicing devices. This mode is also 
sometimes referred to as message co-processor mode, since the kernel is able to dedicate 
a processor to servicing the network. 
 
In user co-processor mode, the kernel and the user process run on both processors. 
However, the kernel and user codes that run on the user processor do so in a very limited 
way. The kernel code running on the user processor does not perform any management 
activities. It simply notifies the system processor of requests. The user code that runs on 
the user processor must run within the same context as the process on the system 
processor and is limited in the system calls that it can make. Access to the user processor 
from within an application is via an interface for running co-routines. Because of this 
non-standard interface, most application programs rarely use this mode, and those that do 
use a specialized version of a standard math library. 
 
Finally, virtual node mode supports running the kernel and a user process on the system 
process and a separate user process on the user process. As the name implies, this mode 



36 

treats each processor as a separate node. The available memory on a node is divided in 
half and two separate user address spaces are created. All kernel services are fully 
supported on both processors, but the kernel runs only on the system processor. There is 
no support for shared memory, so data transfers between the two processes on a node 
must be done via the network. This mode has the advantage of using all of the processors 
on a node in a manner that is transparent to the application code or user. 
 
The user chooses the mode in which a parallel application runs when the job is started.  
Application co-processor mode is the only mode that requires an appropriate library be 
linked into the application before it is run. The user can easily switch between heater 
mode, kernel co-processor mode, and virtual node mode without any modifications to the 
application simply by specifying the desired mode to the parallel job launcher. 
 

4.2.2. Portals 
 
Message passing performance is a critical aspect of massively parallel, distributed 
memory machines.  Even a single memory copy in the network stack can severely impact 
performance. For this reason, we have designed a flexible communication mechanism 
that allows data transfers directly from user memory on one node to user memory on 
another. We call this mechanism Portals. The following provides an overview of the 
important details of Portals in Cougar. See [15] for a more complete discussion. 
 
One of the important features of Portals in Cougar is that all of the structures associated 
with message passing are in user-space. The kernel is only responsible for traversing 
these data structures and depositing messages into user-space based on the content of the 
structures. The kernel does not enforce any specific protocol or provide any buffering of 
messages. This allows the kernel to remain at a fixed size regardless of the size of the 
parallel job or the amount of network resources a job requires. 
 
All protocols are implemented at the user-level. Because of this, Portals must be flexible 
enough to support a wide variety of protocols. Parallel application message passing 
libraries, like MPI [12], as well as I/O protocols, and communication between the PCTs 
all must use Portals. 
 
A Portal is referenced through an index into a Portal table, where each table entry refers 
to either a match list or a memory descriptor. A memory descriptor describes the layout 
of the memory associated with the Portal. Matching lists provide Portals with a matching 
semantic that can be used to bind specific messages to specific memory regions. Each 
entry of the matching list has a memory descriptor associated with it. A Portal may refer 
to a memory descriptor directly or to multiple memory descriptors indirectly through a 
matching list. The Portal table, matching lists, and memory descriptors all reside in user 
space. 
 
An important feature of Portals is the ability to deliver messages without the direct 
involvement of the user-level process. Once the Portal structures have been put in place 
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to receive a message, a process need not poll the network in order for the data transfer to 
complete. The process need not even be running for the kernel to deposit the message 
directly into the process' memory.  This capability, in conjunction with kernel co-
processor mode, provides the ability to fully overlap computation and communication, 
even for somewhat complex protocols like those required by an MPI implementation. 
Portals are also connectionless, which eliminates the overhead associated with connection 
establishment and also helps to reduce the amount of state that is needed for message 
passing. 

4.2.3. Parallel Runtime System 
 
An additional important component in our system software architecture is the parallel 
application launcher. Since we have removed many of the services of a traditional 
operating system from our compute node kernel, the runtime system plays an integral role 
in providing services to parallel applications. In our environment, the parallel job 
launcher not only interacts with the PCTs on the compute nodes to start the job, it 
provides services to the application while it is running. This section provides an overview 
of our parallel runtime system. 
 
One of the challenges in any massively parallel processing system is providing a parallel 
runtime environment that allows for fast startup of parallel jobs. Since our primary goal is 
to reduce the amount of time required to achieve a solution, it is critical for a large-scale 
parallel machine to start jobs as efficiently as possible. While most suppliers of large-
scale parallel computing platforms emphasize delivering performance to an application 
once it is running, few address the time spent getting the application started. On many 
systems, this time can be significant. 
 
The parallel job launcher component of our runtime system is called yod. Yod contacts a 
compute node allocator to obtain a set of compute nodes, and then communicates with a 
primary PCT to move the user's environment and executable out to the compute nodes. 
The primary PCT works with the secondary PCTs in the job to efficiently distributed this 
data to all of the compute nodes participating in the job. 
 
Once a job has started, yod serves as an I/O proxy for all standard I/O functions. 
Compute node applications are linked with a library that redefines the standard I/O 
library routines and some system calls. This library implements a remote procedure call 
interface to yod, which actually performs the operation locally and then sends the result 
to the compute node process. Yod also disseminates some UNIX signals that it receives 
out to the processes running in the parallel job. When yod receives a signal, it sends a 
message to the primary PCT, which distributes the message to the other PCTs in the job 
and delivers the desired signal to the application process. This feature can be very useful 
for operations such as user-level checkpointing and killing jobs. 
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4.3. Reasons for a Specialized Approach 
 
We have chosen a specialized approach to system software rather than a commodity-
based approach.  Our early experiences with the limitations of the OSF/1AD [26] 
operating system on the Intel Paragon led to the design and development of our own 
system software, namely the SUNMOS [14] and Puma [15] lightweight kernels. As we 
discussed above, these lightweight kernels are in important part of a more complete 
approach to system software that involves the operating system, network communication 
stack, and parallel runtime system. Simply stated, our approach to system software is an 
optimization based on the hardware architecture, the programming model, the usage 
model of the machine, and the requirements of large-scale parallel applications. The 
following sections discuss these optimizations in more detail. 
 

4.3.1. Optimizing Compute Node Resources 
 
In this section we describe the features of our software architecture that are aimed 
specifically at maximizing the resources delivered to parallel application processes. 
 
Maximizing the amount of CPU time delivered to a parallel application process is critical 
to achieving high performance and scalability. Our lightweight kernel was designed to 
minimize the amount of processing the operating system takes away from the application 
process. 
 
Unlike traditional full-featured operating systems based on UNIX, our lightweight kernel 
does not continuously take timer interrupts to analyze the state of the node. For example, 
a Linux 2.4 kernel running on an Alpha processor takes an interrupt every millisecond to 
assess the state of the machine and perform housekeeping activities. Our kernel and 
scheduler are designed to avoid such spurious activities and only require processing to 
perform critical functions. Our environment does not support running daemon processes 
on compute nodes, so only the QK, PCT, and application compete for the CPU(s). 
 
The ability to choose the way in which multiple processors on a node are used can have a 
great impact on performance. For codes that are memory bandwidth or network 
bandwidth limited, the application may benefit from running in kernel co-processor mode 
rather than application co-processor mode. The user is given explicit control and can 
determine which method is best. 
 
Cougar supports virtual addressing to provide memory protection between all of the 
processes on a node. However, it does not provide demand-paged virtual memory. Since 
our nodes are diskless, paging would be prohibitively expensive and would interfere with 
the activities of other nodes using the same network paths and disks. In our experience, 
most well designed parallel applications avoid paging in environments where it is 
supported. Regardless, applications are much better at determining which memory pages 
are not needed anymore. These pages can be filled with more data from disk. Taking 
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advantage of high performance I/O and network access is much more efficient than a 
general memory page replacement strategy implemented in the operating system. 
 
Our architecture is also designed to maximize the amount of memory resources delivered 
to parallel applications. By definition, our lightweight kernels are meant to minimize the 
footprint of the operating system. Both SUNMOS and Cougar consumed less than 1% of 
the memory on even a small-memory compute node, in contrast to UNIX-based operating 
systems that can consume several megabytes. Memory footprint was critical on the 
Paragon where OSF/1-AD consumed more than half of the available memory on a node.  
The trend toward larger memory capacity on compute nodes has somewhat lessened the 
importance of a small footprint. However, we still consider memory usage in the context 
of the entire system, where wasting one or two megabytes per compute node ends up 
wasting tens of gigabytes of memory on the machine. 
 
We also maximize the amount of memory given to an application by providing a 
connectionless networking layer that relies on structures in user-space. The size of 
Cougar is fixed. It is not dependent on the size of the parallel application and does not 
change with the amount of message passing that an application performs. The application 
is given control over how much of its memory is to be used for buffering messages. 
 
In addition to memory size, our architecture also attempts to maximize memory 
bandwidth delivered to applications. The Cougar kernel is designed to use a larger 
memory page to avoid the overhead of translation lookaside buffer (TLB) management. 
Larger memory pages mean reducing TLB flushes that can significantly degrade memory 
performance. Most traditional UNIX operating systems use the smallest memory page 
that is supported by the processor in order to implement virtual memory paging 
efficiently. 
 
Our architecture is also intended to maximize network performance. The QK and Portals 
have been designed to minimize message passing latency and provide the full bandwidth 
of the network. Since all message passing structures are in user-space, they can be 
manipulated directly by the application without going through the kernel. Cougar uses a 
physically contiguous memory model where virtual addresses map directly to physical 
addresses. In this model, translation and validation of user virtual addresses is done 
through a simple offset and bounds check calculation. And since Cougar does not support 
virtual memory paging, there is no need to insure that the memory pages used in a 
network transfer are resident. These characteristics all help to significantly reduce the 
amount of overhead required by the Cougar to perform a network transfer. In addition, a 
latency-bound application is likely to use kernel co-processor mode to reduce the impact 
of context switching on message startup. 
 
There are also design features that are aimed at maximizing network bandwidth. Portals 
are designed to deliver messages directly into user-space without any intermediate 
memory-to-memory copies. The ability of Portals to overlap computation and 
communication is intended to allow applications to perform useful work while large data 
transfers are ongoing. A side effect of our space-sharing model is that processes in a job 
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are gang scheduled by default. This is especially important for tightly coupled 
applications that compute and communicate at regular intervals. The runtime system also 
plays a part in attempting to maximize network bandwidth. Our architecture includes an 
intelligent compute node allocator understands the topology of the network. An allocator 
can assign nodes to a job in a way that minimizes the number of network hops between 
nodes. 
 
Finally, our system software architecture also aims to increase the robustness and 
reliability of the system. A simple, small, compute node operating system is much easier 
to make reliable than a large, monolithic, full-featured operating system. One of the 
reasons for the separation in functionality between the QK and PCT is so that the QK can 
always be available to service the network. Even when faced with a failure of the PCT, 
which is equivalent to a traditional operating system crashing, the QK is able to continue 
to function and service the network. This is an extremely important feature for the 
Paragon and ASCI/Red machines where failure to service the network at a single node 
will eventually cause the entire network to lock up. Pushing the complexity of the 
operating system out to the runtime significantly reduces the complexity of the 
lightweight kernel. 

4.4. Basic Principles 
 
There are several basic principles upon which our system software architecture is based. 
We discuss them here for completeness. 
 
It is necessary to divide the machine into logical partitions based on functionality. 
Different parts of the system have different functional requirements, and partitioning 
allows us to tailor the system software on a node to its particular function. Partitioning 
reduces the conflicts that can occur between performance requirements and features. 
 
There are fundamental differences between parallel systems and distributed systems. 
Most system software architectures for parallel machines are an attempt to scale 
distributed computing models.  There are fundamental differences in resource acquisition, 
resource management and functionality.  Distributed systems are designed for dynamic 
environments and coarse-grain parallelism, while parallel systems are generally static and 
must support fine-grain parallelism. Subtle differences can make a large difference in the 
design of system software. For example, parallel systems can leverage the fact that the 
network is trusted, while distributed systems cannot. 
 
Individual compute nodes should be as independent as possible. Nodes should be able to 
function on their own. A consequence of this is that the system software on one node 
should communicate with another node only when absolutely necessary. 
 
Achieving high performance and scalability for applications requires that system software 
limit its use of resources as much as possible. In some cases, this means exposing low-
level details of the system to the user. We attempt to mitigate this approach as much as 
possible using user-level libraries.  It is often necessary to sacrifice transparency and 
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portability to achieve the highest performance. This strategy also has the side effect of 
making the low-level system software less complex and easier to manage. 
 
Finally, the simplest approach to system software is usually the best. Massively parallel 
computing is inherently complex. The system software should take steps to reduce 
complexity wherever possible. This “simple-is-better” approach to system software has 
demonstrated high-performance, has been shown to be highly scalable, and has been a 
key attribute in deploying and maintaining a reliable massively parallel computing 
system. 
 

4.5. Software Architecture Implementation for Red Storm 
 
We have modified our software architecture implementation slightly from the description 
above specifically for Red Storm.  The following discusses those changes. 
 
The Red Storm machine will have single processor nodes, which eliminates the need for 
the multi-processor modes that previous implementations of our lightweight kernels have 
provided.  This functionality has been removed from Catamount.  However, it is possible 
for future Red Storm systems to have up to four-way SMP nodes. 
 
The Portals messaging architecture was designed specifically for the high-performance 
network interface on the Intel Paragon and ASCI/Red machines.  For the Cougar 
implementation, Portals are data structures in user-space that are traversed by the QK 
when a message arrives from the network.  While we believe this is an optimal 
implementation for those platforms, the lack of a functional programming interface for 
Portals limited its applicability to commodity high-performance networks or other 
networks where there is a programmable or intelligent network interface.  For this reason, 
we developed a programming interface that allows Portals data structures to be placed 
where it is most optimal for a given network [27].  For Red Storm, Portals structures exist 
partly on the network interface/router chip, where the processing of messages is 
performed.   This allows for the network interface to perform much like a message co-
processor of the previous machines.  A side effect of this change is that all Portals-related 
code can be removed from the QK, which further simplifies its implementation.  
 
 
5. The Earth Simulator 
 
In order to make this paper relatively self-contained, a brief description of the Earth 
Simulator is included. This is taken from [3] essentially verbatim with only minor 
editing. 
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5.1. Hardware architecture 
 
The Earth Simulator is a distributed-memory parallel computer system  consisting of 640 
processor nodes (PNs) connected by  640 x 640 single-stage crossbar switches. Each 
node is a system with a shared memory multi-processor with 8 vector-type arithmetic 
processors (APs), a 16-GB main memory unit (MMU), a remote access control unit 
(RCU), and an I/O processor. The peak performance of each AP is 8Gflops. The Earth 
Simulator as a whole thus consists of 5120 APs with 10 TB of main memory and peak 
performance of about 41 teraFLOPS. 
 
Each AP consists of a 4-way super-scalar unit (SU), a vector unit (VU), and main 
memory access control unit on a single LSI chip. The AP operates at a clock frequency of 
500 MHz with some circuits operating at 1GHz. Each SU is a super-scalar processor with 
64KB instruction caches, 64KB data caches, and 128 general-purpose scalar registers. 
Branch prediction, data pre-fetching and out-of-order instruction execution are all 
employed. Each VU has 72 vector registers, each of which can has 256 vector elements, 
along with 8 sets of six different types of vector pipelines: addition/shifting, 
multiplication, division, logical operations, masking, and load/store. The same type of 
vector pipelines works together by a single vector instruction and pipelines of different 
types can operate concurrently to the crossbar switches and receiving data. Thus the total 
bandwidth of inter-node network is about 8TB/s. Several data-transfer modes, including 
access to three-dimensional (3D) sub-arrays and indirect access modes, are realized in 
hardware. In an operation that involves access to the data of a sub-array, the data is 
moved from one PN to another in a single hardware operation, and relatively little time is 
consumed in this processing. 
 
The overall MMU is divided into 2048 banks and the sequence of bank numbers 
corresponds to increasing addresses of locations in memory. Therefore, the peak 
throughput is obtained by accessing contiguous data, which are assigned to locations in 
increasing order of memory address. 
 
The fabrication and installation of the Earth Simulator at the Earth Simulator Center of 
the Japan Marine Science and Technology Center was completed by the end of February 
2002. 
 

5.2. Programming Model 
 
If we consider vector processing as a sort of parallel processing, then we need to consider 
three-level parallel programming to attain high levels of sustained performance for the 
ES. 
 
The first level of parallel processing is vector processing in an individual AP; this is the 
most fundamental level of processing by the Earth Simulator.  The compilers apply 
automatic vectorization techniques to programs written in conventional Fortran 90 and C. 
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The second level is that of shared-memory parallel processing within an individual PN.  
Microtasking and OpenMP are used to support a shared-memory parallel programming 
model. The microtasking capability is similar in style to that provided for Cray vector 
processors, and the same functionality is implemented for the Earth Simulator. 
Microtasking is applied in two ways; one (AMT) provides automatic parallelization by 
the compilers and the other (MMT) allows manual insertion of microtasking directives 
before target do loops. 
 
The third level is distributed-memory parallel processing that is shared among the PNs. 
The distributed-memory parallel programming model is supported by MPI. The 
performance of this system for the MPI_Put() function of the MPI-2 specification was 
measured. The maximum throughput and latency for an MPI put operation is 11.63 GB/s 
and 6.63 µs, respectively. Only 3.3 µs is required for barrier synchronization; this is 
because the system includes a dedicated hardware system for global barrier 
synchronization among the PNs. 
 
 
6. Application Benchmarks 
 
In this section, we report on a series of single processor benchmark studies comparing the 
SX-6 vector processor used in the Earth Simulator against a standard scalar 
microprocessor, a 2 GHz Intel Xeon. Although the Xeon is theoretically capable of two 
floating point operations per clock, in practice compiled code can only take advantage of 
one operation per clock in most cases. Therefore we assume, for the purposes herein, one 
floating-point operation per clock and hence 2 gigaFLOPS peak, while the SX-6 
processor has a theoretical peak of 8 gigaFLOPS [28]. Thus naively we might expect the 
SX-6 to outperform the Xeon by a factor of four. 
 
In more detail, we note that the Xeon was configured with 512KB of L1 cache and ran a 
Linux kernel (v2.4.18); applications were built using the Intel version 7.0 compilers.   
The SX-6 system used is located at the Arctic Research Supercomputer Center, consists 
of eight processors with a memory of 64 GB shared by all eight processors, and runs the 
Super-UX variant of Unix; NEC compilers were used.  Just one of the eight processors 
was used in these studies. 
 

6.1. Linpack  
 
One benchmark frequently used to characterize the performance of processors is the 
Linpack Benchmark [19].  Linpack was compiled with generically available Basic Linear 
Algebra Subroutines (BLAS) and with vendor-supplied BLAS.  Table 6.1 below shows 
the data for both systems. 
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Table 6.1:  Linpack speed as a function of processor and BLAS type. 

Processor Solver 
Type 

BLAS 
Source 

BLAS 
Type 

GFLOPS 
(n=100) 

GFLOPS 
(n=1000) 

Xeon Lapack Vendor Scalar .969 1.65 
Xeon Linpack Compiled Scalar .710 .249 
Xeon Linpack Vendor Scalar .633 .249 
SX-6 Lapack Vendor Vector 1.16 7.76 
SX-6 Linpack Compiled Vector .260 1.338 
SX-6 Linpack Vendor Vector .309 1.338 
SX-6 Linpack Compiled Scalar .092 .108 

 
 

 
From this data we can compute the speed of the SX-6 relative to that of the Xeon, as 
shown in Table 6.2 below. 

 
Table 6.2: Linpack speed of the SX-6 relative to that of the Xeon as a function of BLAS type. 

Solver, BLAS Type SX-6/Xeon 
(n=100) 

SX-6/Xeon 
(n=1000) 

Lapack, Compiled vector/scalar 1.198 4.7 
Linpack, Compiled vector/scalar .37 5.37 
Linpack, Vendor vector/scalar .49 5.44 
Linpack, Compiled both scalar .14 .43 

 
 
Clearly for the SX-6 to compete on a problem similar to Linpack the vector unit must be 
employed.  
 

Table 6.3:  Approximate percentage of peak performance achieved on Linpack for the two 
processors in their best case. 

Processor % Peak 
(n=100) 

% Peak 
(n=1000) 

SX-6 14.5 95 
Xeon 48.4 82.5 

 
We note also that although Linpack is a problem that vectorizes well, the SX-6 is not 
dramatically outperforming the Xeon on percentage of peak computational rate for large 
vectors. 
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6.2. Livermore Fortran Kernel Results 
 
Another benchmark developed by McMahon of LLNL is the Livermore Fortran Kernels 
(LFK), known colloquially as the "Livermore Loops" [29]. This benchmark was 
assembled from a number of the kernels used in simulation codes in use at LLNL. The 
kernels are exercised for several different problem sizes from within a single code. 
Because the benchmark contains a number of kernels, no one characterization of net 
performance is appropriate to all cases.  McMahon indicates a preference for the 
geometric mean of all kernels hence we have adopted that approach. 
 
  

Table 6.4:  Speed on Livermore Loops in gigaFLOPS using geometric mean over all kernels. 

Processor LFK speed 
(GFLOPS) Relative speed 

SX-6 vector .407 1.12 
Xeon .364 1.0 

SX-6 scalar .113 .31 
 
 
We note here that in this metric the Xeon is quite competitive with the SX-6. However, 
there are some kernels on which the SX-6 excels, so for applications rich in these 
operations the geometric mean will greatly under predict performance. Hence we 
examine a fragment of the kernel (23) for which the SX-6 performance advantage is the 
largest.  We find this to be a vector evaluation of a Planckian distribution taken from a 
hydrodynamics code: 
 
 do 
  w(k) = x(k)/(exp(Y(k)) - fw) 
 enddo 
 
As the SX-6 provides hardware support for vector division while the Xeon does all 
division in software, the performance discrepancy is easily understood.   
 
We next examine the kernel and span for which the SX-6 performance advantage is the 
smallest (.07). Clearly, this cannot be vectorized: 
 
 do i=2,n 
   W(i)=.01 
     do k=1,i-1 
               W(i) += B(i,k)*W(i-k) 
      enddo  

enddo 
 
 
 



46 

The single best performer was the following kernel taken from a hydrodynamics code: 
 
 do k 

x(k) = q+ y(k) * (r*Z(k+10)+t*Z(k+11)) 
 enddo 
 
On this, the Xeon obtained 59% of its peak performance, and the SX-6 was 1.4 times as 
fast. More generally, one observes that the mean expressed as a percentage of peak 
performance across all the LFK benchmarks is higher for the Xeon than for the SX-6, and 
one sees a much wider variation in performance for the SX-6 than for the Xeon.     
 
Benchmarks are valuable, but do not tell the entire story.  The full application must be 
run in order to obtain reliable performance information.  In studying the performance of 
the SX-6, we chose to use the same applications and test problems that were used in 
evaluating candidate platforms for Red Storm.  Of the four applications used, two have 
been ported and are working on the SX-6.  We discuss results from these applications 
below. 

6.3. CTH Results 
 
CTH [30] is a multi-material, large deformation, strong shock wave, solid mechanics 
code developed at Sandia National Laboratories. CTH is a finite difference code. It has 
models for multi-phase, elastic, visco-plastic, porous and explosive materials. Three-
dimensional rectangular meshes; two-dimensional rectangular, and cylindrical meshes; 
and one-dimensional rectilinear, cylindrical, and spherical meshes are available. CTH 
uses second-order accurate numerical methods to reduce dispersion and dissipation and 
produce accurate, efficient results. 
 
For the Red Storm evaluation, a test problem was created that met the following criteria: 
1) It had to stress processor performance (minimal I/O). 2) It had to run on ASCI Red 
(which has 256 MB of memory per 2-CPU node).  Based on these requirements, a test 
problem known as Cframe205 was generated.  Cframe205 was also used to assess 
performance on the SX-6. 
 
The traditional figure of merit used when measuring performance of CTH is the grind 
time, defined as the time to iterate a single cell of the mesh through one time step.  Grind 
time is proportional to the reciprocal of the more familiar metric of scaled speedup. The 
following table shows CTH performance data for several systems of interest. 
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Table 6.5: CTH grind time on various processors. 

Machine Grind Time (µs) Performance vs. ASCI 
Red 

ASCI Red 90.5 1.00 
2 GHz Xeon 11.5 7.86 
900 MHz Itanium II 12.8 7.07 
SX-6 (vector) 10.1 8.96 
SX-6 (scalar) 49.4 1.83 
 
 
The scalar result from the SX-6 is included to further underscore how the performance 
depends upon the use of the vector processor.  Using the F_PROGINF utility on the SX-
6, one can obtain more information about the utilization of the vector units.  CTH utilized 
the vector units 20% of the time, and the average length of the vectors used was 61. Thus 
performance suffers from both the scalar portions of the calculations and the 
underutilization of the vector units when they are being used. 
 
Might one do better?  Increasing the problem size would presumably increase the length 
of the arrays being passed to the vector units, and improve performance.  Because CTH is 
a structured-grid code, this is experiment is straightforward.  The problem size was 
increased by a factor of 4 by doubling the number of cells in X and Y, and rerun on both 
platforms.  Monitoring the memory during execution confirms that both jobs are now 
consuming over 700 MB.  The grind times are now 9.4 µs for the SX-6 and 12.3 µs for 
the 2 GHz Xeon.  The average vector length rises to 88, but the time spent in the vector 
units remain at approximately 20%.  For this problem we see the SX-6 outperforming the 
Xeon by approximately 30%. 
 
Other experiences with the SX-6 (ARSC, ORNL refs) indicate that substantial gains can 
be obtained by performance analysis and optimization; what are the prospects for CTH?  
Examining the profile for CTH on the SX-6, we see  
        

Table 6.6: Profile of CTH routines on the SX-6 

% Time Seconds Cumulative 
Seconds # Calls µs/call Name 

19.6 14.9 14.9 900 16.56 eleb_ 
11.3 8.59 23.49 1800 4.769 elde3_ 
5.9 4.51 27.99 7289920 0.000 diatom_volume_fraction
5.8 4.43 32.42 900 4.92 dimin_ 
5.0 3.78 36.19 900 4.20 elygp_ 
4.1 3.14 39.33 880 3.57 erpy_ 
4.1 3.10 42.43 77440 0.040 erfaxs_ 
3.9 2.96 45.40 929280 0.0032 convcy_ 
3.8 2.88 48.28 900 3.21 eosmap_ 
3.4 2.59 50.87 79200 0.0326 erfaz_ 
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Based on Amdahl's law, optimizing the leading 10 routines completely would lead to 
only a 1.44x speedup, and would require the editing (and major removal) of 
approximately 7000 lines of source. 
 
Achieving major speedup for CTH on the SX-6 through optimization is then a labor-
intensive process with dubious likelihood of success.  At best, one might take the 30% 
improvement over the Xeon mentioned above, and raise it to a factor of approx. 100%.  
(1.3*1.44 = 1.8) 

6.4. ITS Results 
ITS (Integrated Tiger Series) is a Monte Carlo radiation transport computer code which 
has been used to model objects in a radiation environment, such as X-rays.  It was 
originally written in the 1970’s, and continues to be used and modified  to meet new 
needs at Sandia.  As with CTH, for the Red Storm procurement a test problem was 
generated.  The table below shows the execution times for this test problem on the 
systems under discussion. 
 

Table 6.7: ITS execution time on various processors. 

Machine  Time  (sec) Performance 
 vs. ASCI Red 

ASCI Red 2389 1.00 
2 GHz Xeon   281 8.5 
900 MHz Itanium II 2238 1.07 
SX-6 (vector) 3618 .66 
SX-5 (scalar) 3903 .61 

 
We see that ITS behaves poorly on the SX6, and that the vector and scalar versions of the 
application have comparable performance. This is not surprising, as the basic structure of 
the application is scalar:  Each particle to be tracked is iterated separately to completion 
before starting the next.  There is litte opportunity for vectorization. 
 
 
7. Performance Comparisons and Projections  
 
We will now develop a model for the performance of various supercomputers on a key 
application of interest to DOE.  The CTH shock hydrodynamics code is one of the most 
heavily used codes at Sandia.  To compare the relative performance of Red Storm and the 
Earth Simulator, we first developed an analytical model for the performance of CTH on a 
sample problem and calibrated this model against the existing supercomputer ASCI Red. 
 
CTH is a shock physics code. The full code simulates fully-compressible shock 
hydrodynamics of complex, multi-material, solid, liquid, and gaseous fluids and 
structures with realistic materials properties in an arbitrary three-dimensional domain. It 
provides advanced methods for Adaptive Mesh Refinement (AMR) and accurate 
interface tracking, as well as advanced methods to suppress Eulerian numerical diffusion 
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[30]. However, the sample problem considered here consists specifically of two gasses in 
a cubic region without AMR. The sample problem has an initial interface running 
through the cubic region at a 45° angle to all axes. The two gasses are initially confined 
to opposite sides of the interface and are moving towards the interface at a constant 
velocity at t=0. The behavior for t>0 is that the gasses collide, forming a shock wave, and 
mix near the interface. 
 
Computationally, CTH solves a coupled set of three-dimensional finite difference 
equations. Assuming for purposes of exposition in this paper that all dimensions are 
cubes of integers, the supercomputer is a P3 array, each processor of which owns an N3 

mesh of cells. The processors repeatedly compute different aspects of the problem’s 
physics and exchange boundary values during a single time step before doing a global 
synchronization to compute the next time step value. In the two-gas simulation, there are 
25 cycles of computing and boundary exchange before doing the global synchronization. 
 
The analytical model and machine parameters are described in Appendix A.  To 
demonstrate the validity of the model, Figure 7.1 shows the correlation between the 
model and actual runtimes on ASCI Red. The figure assumes each processor owns a 203 
mesh of cells regardless of the number of processors. 
 
We then evaluated the model with parameters appropriate to Red Storm and two sets of 
parameters for the Earth Simulator. Since Red Storm has not been built yet, the 
parameters (in Appendix A) are our best estimates based on the design and on contractual 
requirements. For one set of Earth Simulator parameters, we used published parameters 
where feasible, and used the results of CTH benchmarks on a SX-6 (same processor as 
Earth Simulator) at the Arctic Region Supercomputer Center. The benchmarks indicated 
that the Earth Simulator should get about 5% of peak efficiency on CTH. To address the 
possibility that CTH could be tuned to make better use of vectors, we created a second set 
of Earth Simulator parameters with a 15% of peak efficiency on CTH. The 15% of peak  
is a best case and has not been demonstrated. In fact, it exceeds our estimates (~10% of 
peak) based on measurements reported in Section 6.3 of the best performance achievable 
for this application of CTH on the Earth Simulator’s vector processors. Such a 
performance enhancement would require a major re-design of code data structures and 
algorithmic approach. 
 
Figure 7.2 is a graph showing the overall performance of Red Storm and the Earth 
Simulator at 5% and 15% of peak efficiency. This graph is hypothetical in that it projects 
efficiency for all processor counts from one to over thirty thousand, even though the 
Earth Simulator only exists for 5144 processors. 
 
The graph is not too surprising. The AMD Opteron used in Red Storm is somewhat 
newer than the SX-6 used in the Earth Simulator, and it stands to reason that it would out 
perform it on real benchmarks. However, if CTH could be vectorized, the vector 
architecture of the SX-6 would give it a boost over the Opteron. 
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Figure 7.1: CTH CPU efficiency to calibrate the model to ASCI Red 
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Figure 7.2: Overall system throughput by processor count 
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Figure 7.3 adds the effect of cost by illustrating the number of useful CTH FLOPS per 
dollar of machine cost. Figure 7.3 is based on cost parameters in Table A.1 in Appendix 
A. However, Figure 7.3 linearly scales the costs of the Earth Simulator and Red Storm by 
the number of processors. This is a simplification: it ignores the disproportionately large 
cost of increasing the Earth Simulator’s crossbar as well as a quantity discount for 
purchasing a larger machine. In sum, it probably significantly under-estimates Earth 
Simulator cost for very large machines. 
 
The conclusions are striking: While the Earth Simulator and Red Storm are about equal in 
performance on a processor-to-processor basis, Red Storm costs quite a bit less per 
processor. 
 

 
Figure 7.3: Realized FLOPS/dollar 

 
 
8. Conclusions  
 
In this paper, we have provided an overview of the Red Storm system architecture.  This 
architecture has been developed based on our extensive experience designing and using 
large-scale, massively parallel systems on real-world science and engineering 
applications.   We have also provided performance comparisons and projections that 
demonstrate the cost effectiveness of this approach compared to a large-scale vector-
based machine, the Earth Simulator. 
 
The Earth Simulator performs very well on a class of scientific applications that are well 
suited to vectorization.  However, based on our testing of Sandia application codes on the 
NEC SX-6 vector processor and the Intel Pentium 4 scalar processor, we expect that Red 
Storm will outperform the Earth Simulator on these representative codes on a per-
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processor basis.  We also expect that these codes will achieve higher parallel efficiency 
on Red Storm compared to the Earth Simulator. 
 
In addition to single node and parallel performance, we expect that Red Storm will have a 
price/performance advantage over the Earth Simulator of a factor of two to three, after 
accounting for the differences in introduction dates for these systems. If the costs of 
space, power, and cooling are accounted for, the advantage may rise to a factor of four or 
more. The basic reason for the price/performance advantage of Red Storm is the use of 
high volume commodity processors and a more cost-effective network topology. 
 
We believe that the Earth Simulator represents a convergence of the traditional MPP 
design and vector design philosophies, and this convergence is a valuable development in 
the realm of advanced computing. We can  also envision that other systems designed with 
this convergence could provide a common, commodity-like, infrastructure and supply 
vector nodes to some application communities and scalar nodes to others—or even allow 
mixing and matching scalar and vector processors in heterogeneous applications. Such an 
approach would serve to share the benefits and amortize the cost of supercomputers 
across a larger set of prospective customers and sponsors. 
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Appendix A.  
 
We assume for purposes of exposition that the total number of processors Ptotal = P3, for 
an integer P. Each processor is assumed to “own” an N3 array of cells, for an integer N. 
The total problem size is therefore P3N3 cells. 
 
The useful computational work in each time step is modeled analytically as C0N3, and the 
value of C0 has been measured by 1 processor runs on ASCI Red as C0 = 3503 FLOPs. 
This yields, 
 
Tcomp = C0N3/Rflops. 
 
However, it turns out that the work performed by each processor varies up or down 
depending on the physics within that processor. In other words, a processor can simulate 
two perfectly mixed gasses at rest in less time than two gasses in turbulent mixing. We 
model this by assuming C0 is a random variable with a standard deviation C1, and 
furthermore assume that all the variances in C0 are in phase during a time step in one 
processor. For the two-gas benchmark problem, we measure C1 to be 1500. Thus, the 
additional time per time step due to this load imbalance will be, 
 
Tloadbalance = Φ-1(1-1/(Ptotal+1)) C1 N3/Rflops, 
 
where Φ-1 is the inverse of the cumulative normal distribution. 
  
CTH transmits all the data on each face as a single MPI message. The length of this 
message will be 
 
Smsg = C3(N+2)2, 
 
Where C3 is 240 bytes for a two-gas problem. 
 
The communications time will be 
 
Tcomm = 25 Nmaxfaces Lc + 25 Nmaxfaces Smsg /Bc, 
 
Where Nmaxfaces is the number of faces where communications occurs for a mesh of Ptotal 
processors (e. g. for Nmaxfaces = 3 when Ptotal = 8 because processors in a 2x2x2 mesh only 
communicate on three of the six faces), and Lc and Bc are the MPI latency and 
bandwidth parameters [see LANL paper ref]. 
 
CTH also performs a global synchronization each time step. It will be ignored here 
because its effect is on the order of 10-5. 
 
The total time per cycle is therefore given as Tcycle = Tcomp + Tloadbalance + Tcomm 
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Table A.1: Model parameters 

Parameter ASCI Red Red Storm 
Earth 

Simulator 
 5% Peak 

Earth 
Simulator  
15% Peak 

RFlops 66 MFLOPS 640 MFLOPS 400 MFLOPS 1.2 GFLOPS 
Lc 17 µs 3 µs 6.63 µs 6.63 µs 
Bc 400 MB/s 6 GB/s 11.63 GB/s 11.63 GB/s 
Cost @ Procs $45M @ 9460 $90M @10368 $400M @ 5120 $400M @ 5120 
 
 
 


