
--.

DEBENEDiCTIS,

Nearest Neighbour Concurrent Processor

E.Brooks, G.Fo%,R. Gupta, 0. Martin., S. Otto

Caltech High Energy Physics Group

E. DeBenedictis

Caltech Computer Science

Introduction
Recently there has been substantial progress in the understanding of quan­

tum field theories using numerical calculations in regions where the coupling is
large and so normal perturbation series methods are inapplicable.Field theories
involve an infinite number of degrees of freedom labelled by a vector <x> and
some discrete index.For instance in QeD, <x> runs over four dimensional space
while the discrete index (for the pure gauge theory with no quarks) labels the
elements of a 3 by 3 unitary matrix.As we describe in detail in the next
section,current results are encouraging but the present calculations are far too
limited to allow significant conclusions.

It is our understanding that the proper solution of this problem does NOT
involve giant (e.g.CRAy) computers.These are not more cost effective than VAX
class machines;rather they offer possibility of doing in a week something that
would take a year on the VAX.Further the speed of very fast computers is limited
to something like a 100 times the VAX.In fact the correct method of solution of
quantum field theories (and no doubt many other problems) lies in parallel (con­
current) processing.In the past parallel processing has not been succesful
becauce one has not been able to design suitable general purpose compilers to
take advantage of the hardware architecture. However it is easy to see that our
numerical algorithms for field theories have just the structure necessary to
allow straightforward application of parallel processing.The first step is to
replace the continuous label <x> by a discrete set by dividing space time into a
lattice.!f each dimension is divided into N parts.we get N-d sites for a problem in
d dimensions. For the real problem d=4 but there is a lot of interesting physics
even in one space and one time dimension:d=2.It is worth noticing that essen­
tially no physically observable quantities (eg masses) have been calculated in
any field theory even for d=2.Now we have to calculate integrals of the form

INT (PHY(fi) WGT(fi) d(til) d(fi2) d(fiM))

Here M is total number of variables = N....d • L where L is number of independent
degrees of freedom at each site.

WGT(fi) is a positive weight function which contains the dynamics.In the sta­
tistical physics spin analogy,

WGT(fil,fi2, ... tiM)= exp(-H/kT)
while in the quantum field theory case WGT(fil,fi2, ... fiM)=exp (-S)

where S is the action.
Finally the function PHY(fil, .. tiM) contains the physics .For instance choos­

ing PHY to correspond to correlation function between the fields at different
sites, this function falls otT exponentially wi'~h distance between the sites and one
can find the mass spectrum of theory from the rate of falloff. Other choices of
PHY give different observables and in fact there are better choices of PHY to
find the mass spectrum.

(0

-2-

This multidimensional integral is solved by monte carlo techniques.Each set
of values of the integration variables is called a sweep.This involves specifying a
value for each of the M fl's.mere are some clever but simple methods for choos­
ing the ii's according the weight function WGT (called importance sampling).!f
the fi's are chosen in this way,our integrals just become

Average over sweeps of PHY(each sweep).
To get good answers one needs many sweeps:the current studies are

too limited to estimate how many for realistic problems (see discussion in sec­
tion 2) but at least a million sweeps are probably necessary for interesting prob­
lems. As one also needs N""'lOO(about 10 sites inside a particle and a world
whose total extent is also about 10 partic1es!),the number of sites needed is very
large ;say 10.... 9(for the product of L·N.... d) for QCD(Quantum
Chromodynamics,the gauge theory of quarks and gluons) in four dimensions.
The calculation of a sweep according to the importance sampling algo:-ithm is an
iterative technique starting at the previous sweep. (ie at previous pobt in M
dimensional !'i-space) This technique calculates a new value of fi at each site
solely based on the values of the nearest neighbour fields. This is the critical
feature of algorithm but it is very general as its validity only depends on locality
of interaction;something for which there is a lot of theoretica predjudice and
experimental evidence. The calculation of the new field value at a site might
involve 100->1000 computer instructions and so total number of operations to
solve QCD is around 10.... 6(#sweeps)·10....9(#variables)·1000(#operations/site) On
a VAX an operation takes about 3mus and so one needs about 10.... 5 years to com­
plete problem. However the independence of the fleld generating algorithm at
each site and the fact that you only need to know about nearest neighbours
implies that a very simple concurrent processing algorithm is possible. Taking
the simplest case,we imagine a computer at each site to perform the
updating.We have N....d computers with nearest neighbour connections.

I I I I I I I I

I I I I I I I I

In the above, - and I denote connecting lines and • a computer. The
normal periodic boundary conditions imply that the computers at each end are
also connected to each other. It is the clear that the above architecture can be
easily implemented;each computer needs just to be able to run programs
accessing its own memory and at the of each cycle. transfer its new site value to
its neighbours. There is no problem in the concurrent algorithm and one can
gain a factor of N....d !In practice the ·'s above will represent computers each
holding a block of B neighbouring sites (eg 2·2·21P2 cube of values for B=8 etc.).
For QCD one can imagine 10....6 computers each with 100 sites costing perhaps
$10 million. As this is comparable in cost to a single experiment in high energy
physics,it seems likely that the community would consider this a good invest­
ment if one can show there was a good chance of solving QCD.The above esti­
II10ates suggest that the factor of ""'10.... 6 improvement over a normal sequential
computer should allow one good possibilities of solving QCD. At the moment we
do not know enough about simpler systems to know if this conclusion is
optimistic.In the above diagram,one can choose • either to be a specialized chip
or a general purpose microprocessor.Initially we need to investigate a bunch of

(-

- 3-

theories and many choices of PHY to refine our techniques.Thus it is appropiate
to use a general purpose microprocessor.

We propose an initial system of 64 computers arranged either in a line
or a small (B by B) square array.This will be interfaced to the u..11ibus of a PDPll
or VI\X which will initiate our machine and accumulate results. Programs for the
computers 'will be written in C,compiled on the PDPll/45 and down loaded into
microcomputers.With this system,we will have the power of about sixteen VAXs
tor about one fifth the cost of a single VAX!

We can use this system not just to learn about the concurrent architecture
but also to solve many physics problems.We should be able to solve all two
dimensional theories and make a start on the i.rnportant three dimensional
case.In particular we want to look at the SU(2) gauge theory in d=3 dimensions.

If we are succesful.the next step would be about a 1000(30 by 30 say) com­
ponent system which should be able to solve most three dimensional theories
and make a stab at the four dimensional case.After this we may know enough to
see if the grandiose million unit machine mentioned above is warrc.nted.

Technical fealures of the array
The first prototype of the computing array will consist of 64 processing

units arranged in a square e·B array. Each processor bas the capability of com­
municating asyncronously with the controlling computer and its nearest neigh­
bors. The edges of the computing array are connected to give periodic boun­
dary conditions (fig 1). The port.s between the processors are operated asyncro­
nously so that each processor can have it.s own int.ernal clock t.o prevent timing
problems as the physical size of the computing array becomes large.

fig!

The basic mode of operation is one in which each processor carries out its
own program independently. Each independent process is loaded and initiated
by the host comput.er. This type of operation can be used in situations where
the host is very loaded and would benefit from offloading small jobs that can run
independently. A good example of this case would be offloading of graphics
pipes, document processing a.nd small numerical jobs that are known to load our
system down during normal working hours. Since the intention here is to create
8. general purpose machine. once the array processor has become superceeded
by a larger unit for physics calculations it. will still be very useful for the
oIDoading of small jobs and therefore will have a long lifetime.

In large calculations such as lattice calculations in field theory and large
matrix diagonalizations that occurs in all branches of physics and engineering.
the entire computing array would be used at one time. In lattice calculations
two basic operations need to be performed. The first is the generation of a new
lattice configuration or "update". The second is the sum over the lattice of some
value computed at each site. The cooperation between processors that is
required by these tasks is effected by using handshaking on the ports that con­
nect the processors. In tbe case of lattice updates each processor needs to know
the values of certain variables on its nearest neighbors. Thus the first section of
the program in each processor is the call to a subroutine that puts the apropi­
ate values on the output ports and receives appropiate values on the input
ports. As each processor completes this task. it becomes free to update the
values of its internal variables. When is has completed the update e. signal is
lent to the host so that the host may initiate e. new process on the computing
array.

~2-

In the case of taking a sum over the lattice a different kind of cooperation
between the elements of the computing array is needed. Consider the square
B·B array (fig 1). The first column of processors must send their value to the
right and second column waits for the variable to be passed. When the values
are received the second column adds them to its internal variables and passes
the partial sum to the right. This proceeds along the columns until the partial
sums have appeared in the last column. Once this has happened the sum is
completed along the last column and the total sum is delivered to the host by
the corner processor. It must be noted that this is the most simple summing
method and not necessarily the optimum one. One could pipe line the sum
through the array if the next update did not depend on the value of some sum in
the current lattice configuration. In cases where the sum is needed for any
further computation to proceed on the array it is possible to add a very few
extra interconnections and do the sum in a binary tree. This results in a sum
occuring in a time that grows as the log of the total number of processors as
opposed to the cube root of the number of processors (considering the three
dimensional array). The increase in cost of adding the binary tree summing
feature amounts to only a few percent of the total cost of the computing array.

We intend to base our computing array on Intel's B086 microprocessor.
This microcomputer has a 16-bit wide data path and can directly address 1
megabyte. We have chosen this unit as it operates at 10 mhz and has a compan­
ion numerical data processor (Intel's 80B7) that will be introcuced this year.
When the companion NDP is added the instruction set is enhanced to include
doating point instructions in 32, 64 and 80 bit precision. The fioating instruc·
tions include sin, cos, exp, and log along with the four regulars. The BOB7-NDP
also adds an internal stack of eight individually addressable BO bit registers.
This stack increases throughput as it reduces the load on the 16 bit data buss
that connects to memory.

The combination of the 80B6-CPU and the 80B7-NDP result in a computer
with about one filth of the power of the vax for numerical computation that is
memory intensive. In computations that can take advantage of the eight regis­
ter stack the processor will be faster yet. A 64 element array of these units will
have the computing power of approximately 15 vaxes. Each individual processor
will have 110 ports to connect it to both the host computer and the neighboring
processors. The basic processor will have 128k bytes of programable memory
(dynamic ram) and 4k bytes of read only memory (EPROM). The read only
memory ~ill be used to house the monitor for the processor. See (fig 2) for a
block diagram for the individual processing unit.

L . ..

8086
CPU

80B7
NDP

I-O
poRTS

tig2

i Lt K
,. ROM

128K
RAM

-3-

As the BOB7-:NDP will not be available till later this year we intend to initially
implement the ftoating instructions with software which runs at about 1/50 the
speed of the BOB6-BOB7 combination. During this time we will be generating the
software interface to the host computer which will either be the HEP vax or the
11/45. By the time that the BOB7-NDP will be available we will be able to plug it
in and remove the software emulator and be running at a speed comparable to
15 vaxes. With 12Bk bytes of ram on each processor we will have a machine with
8 megabytes at our disposal and will be able to do some interesting physics com­
putations. It is estimated that we can build these individual processors for
about S500 each making the hardware cost of the computing array S32,000. The
actual cost of building and bringing the machine into service (including labor
costs) will probably be around S50,000.

DEBENEDICTIS

A nole on the physical construction of the NNCP

E. Broo/cs

Current computers benefit well from the card cage-backplane type of con­
struction as all cards need to be connected to the system bus and power. the
backplane provides this function in an efficient manner. The NNCP on the other
hand has a nearest neighbor connection system of ports that the processors use
to communicate with each other along with the usual connection to the host that
could be served well by a backplane. Since the communication between the pro­
cessors is the factor which determines the speed of the machine the wiring rats
nest whicll would occur if the NNCP were physically constructed in the usual
card cage system must be avoided. Although wiring the 4·4·4 cube with the
usual construction techniques is feasible (The wiring problem is getting very
severe however) if one considers building larger machines a simple and elegant
solution to the problem needs to be found. Fortunately there is such a solution
to the problem. The wiring rats nest and long cables can be avoided if one builds
a physical architecture that follows the the 3-dimensional logical architecture.
This is indeed the reason for stopping at a 3-dimensional logical architecture.
This means building a 3-dimensional machine and abandoning the currently used
methods of constructing computers. I show here that such a physical architec­
ture is possible and that use of it removes the objections that people have
against using standard TIL signals on cables by removing or shortening most of
them. The few long cables that are lert can be handled by special drivers since
the long cables represent a small percentage of the connections in the machine.
Since the fraction of long cables is small the cost incurred by the use of special
drivers tor them is small.

Consider the 4·4·4 cube NNCP computer as being built of 4 planar levels
each of which is a 4·4 array. Each level will require at most 3 inches of vertical
space including space which is a generous overestimate. Even with this spacing
the NNCP is only one foot thick. This space is thicker that the usual card cage
spacing to allow for distributing cable connections over the surface of the board.
Notice that this is the first break with traditional construction. Usually boards
are slid into the card cage with all connections at the edge of the card. The rea­
80n for the connectors distributed over the board surface is to be able the make
the connections to the boards above and below a given board with a very short (3
inches) cable. Cables that are this short can be wired directly to the buss on the
board without noise problems.

AB it is not feasible to etch large enough pc boards to contain the whole 4·4
for such a small project as the 4·4·4 cube I propose that the 4·4 surface be con­
structed from 2·2 processor array boards. In larger machines it would be possi­
ble to UBe 4·4 processor boards which would further reduce connector and cable
cost. The logical (physical) layout of each board is shown in the following figure.
The individual processors will require one square foot of board space at most so
the 2~ array can be constructed on a bo.ll'd that is 24·24 inches 01" less.

o ~ 0

-2-

,
"

The desirable features of this type of construction are that all cables except
those that make up the cube boundary connections are 3 inches or less in
length. The cables that connect the top and bottom of the array are less than
one foot in length. The cables that connect the opposite edges of the 4·4·4
array are about 4 feet in length. Only 8 of the 192 cables in the system are 4
toot long and thus will require special buffering. Another 16 of the cables are 1
foot long and thus "might" require special buffering. The other 168 cables will
be 3 inches or less in length and will be able to be connected directly to com­
puter busses without the need for specLal attention. Of these there 64 connec­
tions internal to the 2~ array boards that will not need cables or connectors at
aiL Connections to the host can be made by busses that run through the arrfiY
vertically. These busses will be short and one could also use these to distribute
power and ground from a mother board below the array.

It Is obvious that the 3 dimensional physical architecture will remove many

U (. b

· -

-3-

of the problems and associated with constructing the NNCP array. It is also
obvious that servicing the array will be difficult unless modular construction is
used. The 2·2 card module provides for this within the 4·4·4 array. In the case
of a much larger machine the array could be constructed from 4·4·4 sub arrays.

Computer Science Issues Relevant to the
Nearest Neighbor Concurrent Processor Proposal

A History of Similar Projects
DEBENEDICTIS

1\ qp.nmoti7ation con be 'drawn from a historical analysis of concurrent multiprocessor
networks: the potcntinl performance of the machine Is proportional to thp. numher of
prnces~ors, and the frnction ·of that performance reoli7ed is rein ted to the c10rity of the
IIlq')rllhm 'proqrnmmecl on t1H~ machine. The impressive projects Are those with mnny
p ..oc~~~sors with lin p.xtremp.ly well understood Alnorlthm. UnfortunAtely, mAny of the-se
projects were less thon slIccC'!ssful, but most, succep.ded In Implementing al~orlthms like
those proposed here.

Two hl~,hly puhliclzed multiprocessor projects have been undertAken at CMU, C.mrnp nnd
CM'". C.mmp was a 16 processor network consisting of PDP-11 s, and CM- is nn
open-ended star connection, currently with 50 processors. Both projects Involved
prnqrnrnming vnrious algorithms on the respective multiprocessors. In both cClses
numerical analysis prohlems were successfully implementC'!d on the np.tworks, but more
amhitious prohlems such as clistributed opNatinu systC'!ms were less succp'sf;ful.

I\lnin MMtin (Philips, Eindhoven, the Netherlands) implemC'!nted a 36-processor grid folrlcd
back In two dimfmsions to form on interconlH~ction called a twisted torus. His work
Addresses very well the problem of distributing computations across an ensemble in such
a way that each processor may have many concurrent processes eligible for execution.
And the load Is kept rensontlbly w~~11 balanced.

Orownlnq 1 described programming a tree connected ensemble. The variety of prohlC'!ms
thot were addressed inchlded 1;olution of np-complete graph problems, sorting. llnd
vp.r~tnr And mAtrix Opp.rAtions. Tho numher of concurrent processors WAS extronwly lorne
- II million procp.ssors was typical in her thesis.

H. 1. KunQ2 At CMU has studied algorithms llnd corresponding comnllmlcotloll structures
for "Ipp.lined computational arrays that he refers to as systolic arrays. Similnr work In
this style, howp.ver genp.rall7ed to asynchronous data fl0

3
w and using more stal~o and

advElnced numerical methods has been done by S. Y. Kung and Lennart Johnsson .

Illiac IV was the most famous machine of this genera, but Is distinguished from thosp.
dp.scrihed above by only having one Instruction stream. The sln~lle Instruction strel'm

1 r3rowning, Sally, The Tree Machine: a Hiqhly Concurrent Computing Environment:.. rhO

thesis, Caltech Computer Science, .January, 1n80.

2Scction entitled Alr.lorithms !-~ VLSI Processor Arrays, In Mead and ConWAy,

~!odllctlon to VlSI Systems, Addison-Wesley, 1980.

3University of Southern California.

4 0Caltoch Computer Science npnrtment.

2

introduced so many probl~ms In progrAmming and communication thAt Is it no 10lHwr
technoloqicolly appropriate.

1 his proposAl Is for the construction of a machine similar in many ways to those
d(!~crlhcd ahove. and will use well understood algorithms. The present proposal, while
bcinQ for a modest 64 processors, can be viewed as a feasibility study for 8 machine'
with fl million processors. The algorithms that are expected to be Implemented on these
procp.ssors ore all of the numerical type: POEs and matrix operations.

The Performance of an Array Connected Notwork for Nearest Neighbor

Problems

1 he performance of concurrent processors' con be ~vallJoted In a variety of ways. stich
as fractional utilization of floatlnq point capacity. or simply as a cost/pP.rformance rntlo.
1he prr.:,;nnt proposAl Is for 64 concurrent procn:'isors, eBch with B slqnlflr.nnt omount of
CPU cnpncity. It is cosIly seen thnt tl10 potential floating point capacity Is VNy ~Irf'nt.

nnd the cost Is very small. It remains to be shown thot this floating point capAcity con
he efficiently used.

Thr. mAjor lISe of this concurrnnt processor Is expected to be solving difforentinl
equntions on a uniform. rectflngular lattice. The lattice will be represented by on nrrny
of vnlue:;, with each processor ropresenllnq many points of the lattice. There should he
no arqtlment that the lattice values In each processor should all be adjacent. to minlmi7n
communication between processors

5
.

Within each processor there is only one impediment to continuous flonting pnlnt
opp.rntion. t.he necessity to communicate nearest neighbor lattice' values between
proce:,;sors. We must develop a qUlHitatative idea of the fraction of time that will bn
spent on this communication at the exclusion of numerical calculation.

Consider il two-dimensional lattice problem being solved on the proposed 6'1 proc{'ssor
mnr-hine. 1 hn f!ntire lattic~ will consist of more thAn 64 points. say 01 points. In this
cnsc eAch procf!ssor will contain the lattice values for 01/64 points. The Iteration cyel(!
for each processor will consist of communicating vailles for all boundry points to nncl frClm

other processors and evalllntinq the iteration function 01/64 times. If the procnssnr- ("
rn p rp.Or')1ts 11 squnrp. nrray of m/G4 points then thf! numher of points alonn the ('dqr' Is)
Ol/GIl ''-'. 1 his Is exactly the number of lattice vailles that must be tronsmittnd nlonq
f!nch communication pathwny to an adjacent processor. Sincf! the numher of
communicatp.d ,vollies is relnted to the sqllare-root of the numher of pror.essinfl step:,.
/l.s the size of each processor increases the ratio of processing steps to communir.otions

5 For example. if the entire problem were a 2-dimensional square, the processors

should divide the entire problem Into smAller squares.

61Qnoring the four corner points.

7
In general, for k-rlimensions the number of communicated values varies 6S the

(k-l)/k power.

3

steps Increases.

A Performance Example

Con:-older the proposed machine solving a three dimensional nf~8rest ncl~lhbor prohlem
whore the elements of the latlice are 3x3 unitary matticcs. The Iterative st£'p will
consist of .,eplacln~1 eoch Inttlce elp.ment with n weighted sum of itself and Its six
nearest neiqhbors. Since this is a three dimensional problem being Implemented on n two
dimensional array some mismatch will necessarily occur,. We choose to flatten the spnce
lllonq one dimension Into a two dimensional probl£'m.

1 he proposed processors will have 128k bytes of memory. Assume that nbollt 100k of
this is available for storing latticE' points. Each lattice point is a matrix with u complex
entries. Since we will represent each real number as 4 bytes. each lattice point will
require 48 bytes. Each processor will have a storRge cnpaclty of a ,little more thnn
2000 lattice points.

1 he entire problem can then be 8 48x48x48 array of lattice points. Each processor
would contain II 6xf)x48 slice of the total solid. Of the 128k bytes in eAch processor,

n29"" will be lIsed.

ASSllllle that the time to transfer 011 lattice point to each adjacent ,processor Is 2 mS8 .
The numbP.r of lattice points on the boundry to each AdjAcent processor is 6x48=288.
and the time to transfer these values will be about 576 mS.

Th£' computation performed on each lattice point will consist of sC'vcn mntrlx
multlplicntlons. and six additions. Each 3x3 matrix multiplication consists of 27 complex
multiplications and 18 complex additions. A complex multiplication consists of " real
multiplications and 2 real additions. and a complex addition consists of 2 real additions.
The tot;)1 number of real operations is 7x27x4 = 756 multiplications and 7x(27x2+ 1Rx2)
= 6~0 flddition~. Assume 20 uS overaue for operand setup and a multiply or addition nnd '
th~ computation time per lattice point is 27.7mS. Total time for the entire fUrRy is lIn
seconds.

Sllmmllri7in~I, the mllchine will he ahle to preform an iteration on a 48x48x48 arrny of
3x3 nwtrices in approximately 118 seconds. The 48 seconds will be all computotion
except for 576niS of Interprocessor communication. In this example the fractionlll
floating point utilization Is about 99%.

laplace's Equation

The previous example yielded attractive results dlle to the larqe amollnt of time rcqllirpd
to millllpllinte matricles with complex entries, and the number of lattice points In ench
processor. We will consider another nearest neighbor problem where the efficiency will
not be aided i!l this way: solvino Laplace's equation on 8 small square lattice of 8x8
polnt~. Each lattice point consists of a single reol number, or 4 bytes.

8 10 uS to service each port for one byte. 4 ports. 48 bytes per lattice point.

1 he time to transfer one lattice point to an adjacent p;ocessor Is 1GO uS9 . The numher
of lattice points to transfer Is 1, or the total time will be 1GO uS per Iteration.

F. nr.h Itp.rntlon consists of replacing cach lattice point with a simply welrlhted avcrnrle of
Its four neighbors. The wei{lhts are 1,1,1,1, and 4, And hence do not require Llny relll
multiplications. The updating can be done with. 6 floating additions. Again assuminfl 20
uS for· an operation we fInd an Iteration will take 120 uS. CPU utilization Is now under
50%.

Fifty perccnt utilization of a processor, although somewhat wasteful Is better than
averflqe for mlllliprocessor programs.

Other Potential Architectures

Why wns an array np.twork chosen over othp.r networks such as a tree, n bus, II
10hyperclIbc, or a simple VNM ? WP. will briefly discuss ench of these archltccturf!s.

1\ tree network Is less expensive and well suited to this sort of computation, hut is Ilot
AS noocl as nn array. A tree Is less expensi~e because ench prpcessor hns, all the
avnrll{le, two connections to other processors 1 . The or~nnl7.ntion of the tree COUSf!S a
bottleneck at the root, however.

This effnct of this hottleneck can be analyzed by calCUlating the number of valucs thnt
must hn transmitted throllgh the root node. Recall that an auay processor mllst trnnsl1lit
lattice values for all lattice points on the boundnry of Its area. This number WllS the
square root of the number of points In that particular array element. The root processor
has similAr behavior: the root node must transfer all boundary points of its left subtree to
its ri{lht subtree, and vice versa. Again, the number of lattice points Is the squnre r()ot
of thp. number of Inttice points In the subtree. Unlike the array, however the size of 0

slIhtrne Is half the size of the entire yroblem, not 1/04th or an amollnt dctcrminC'd by thp
number of nodes in the tree.

The number of values transmitted through the root node of an equivalently SIUHI trep.
network would be about 8 times as large as between elements of an arrflY. This would
increllse thp. communications overhead to an Intolerablx Illrgn amollnt in some cases.

1\ bus connected network Is even worse. In II bus connected IHchitecture 011 thn vllhlC'S
transmlttp.d on the array network are transmitted, but on the same bus. The resllltlnrl
traffic on thnt hus wOllld he 256 times as large as on any of the array connections.

Othe.r networks nre known, but less well understood. Hypercllbes have the advalltnqp of
offering a maximum Interconnection distance between processors of log ·n. n the numher
of processors. While this Is attractive for some problems, it is not well understood for
nearest neighbor problems. (The maximal interconnection distance In the array

9
10 liS to service each port for one byte, 4 ports, <1 bytes per lattice point.

10Von Neuman machine, or conventional computer.

11 leaf processors have one connection, all others have three.

5

processor, for heerest nel~lhbor problems, is 1.)

An ArrAy network appears to be near optimal for these sorts of problems. Each elemcnt
of the array has a processing IInlt that Is used at close to 100·" efficiency, AS Is tho
processing unit of a VNM. 1he total amollnt of memory In the entire array Is about tho
same as that In a VNM solving the same sized problem.

	NNCP-Memo-000
	NNCP-Memo-001
	NNCP-Memo-002
	NNCP-Memo-003
	NNCP-Memo-004
	NNCP-Memo-005
	NNCP-Memo-006
	NNCP-Memo-007
	NNCP-Memo-008
	NNCP-Memo-009
	NNCP-Memo-010
	NNCP-Memo-011
	NNCP-Memo-012
	NNCP-Memo-013

