DeBENEDICTIS,

Nearest Neighbour Concurrent Processor

E.Brooks, G Fozx,R. Gupta, 0. Martin, S. Otto
Caltech High Energy Physics Group

FE. DeBenedictis

Caltech Computer Science

Introduction

Recently there has been substantial progress in the understanding of quan-
tumn field theories using numerical calculations in regions where the coupling is
large and so normal perturbation series methods are inapplicable.Field theories
involve an infinite number of degrees of freedom labelled by a vector <x> and
some discrete index.For instance in QCD,<x> runs over four dimensional space
while the discrete index (for the pure gauge theory with no quarks) labels the
elements of a 3 by 3 unitary matrix.As we describe in detail in the next
section,current results are encouraging but the present calculations are far too
limited to allow significant conclusions.

It is our understanding that the proper solution of this problem does NOT
involve giant (e.g.CRAY) computers.These are not more cost effective than VAX
class machines;rather they offer possibility of doing in a week something that
would take a year on the VAX Further the speed of very fast computers is limited
to something like a 100 times the VAX.In fact the correct method of solution of
quantum field theories (and no doubt many other problems) lies in parallel (con-
current) processing.In the past parallel processing has not been succesful
becauce one has not been able to design suitable general purpose compilers to
take advantage of the hardware architecture. However it is easy to see that our
numerical algorithms for field theories have just the structure necessary to
allow straightforward epplication of parallel processing.The first step is to
replace the continuous label <x> by a discrete set by dividing space time into a
lattice If each dimension is divided into N parts,we get N"d sites for a problem in
d dimensions. For the real problem d=4 but there is a lot of interesting physics
even in one space and one time dimension:d=2.1t is worth noticing that essen-
tially no physically observable quantities (eg masses) have been calculated in
any field theory even for d=2 Now we have to calculate integrals of the form

INT (PHY(l) WGT() d(fi1) d(fi2) d(6M))

Here M is total number of variables = N*d * L. where L is number of independent
degrees of freedom at each site.

WGT(fi) is a positive weight function which contains the dynamics.In the sta-
tistical physics spin analogy,

WGT(fil,fi2, ... AN)= exp(-H/KT)

while in the quantum field theory case YWGT{fi1.fi2, ... fiM)=exp (-S)
where S is the action.

Finally the function PHY(fi1,.. iM) contains the physics .For instance choos-
ing PHY to correspond to correlation function between the fields at different
sites,this function falls off exponentially wih distance between the sites and one
can find the mass spectrum of theory from the rate of fall off. Other choices of
PHY give different observables and in fact there are better choices of PHY to
find the mass spectrum.

-2-

This multidimensional integral is solved by monte carlo techniques.Each set
of values of the integration variables is called a sweep.This involves specifying a
value for each of the M fi's. THere are some clever but simple methods for choos-
ing the fi's according the weight function WGT (called importance sampling).If
the fi's are chosen in this way,our integrals just become

Average over sweeps of PHY(each sweep).

To get good answers one needs many sweeps;the current studies are
too limited to estimate how many for realistic problems (see discussion in sec-
tion 2) but at least a million sweeps are probably necessary for interesting prob-
lems. As one also needs N™100(about 10 sites inside a particle and a world
whose total extent is also about 10 particles!),the number of sites needed is very
large ;say 1079{for the product of L*N"d) for QCD{Quantum
Chromodynamics,the gauge theory of quarks and gluons) in four dimensions.
The calculation of a sweep according to the importance sampling algorithm is an
iterative technique starting at the previous sweep.(ie at previous point in M
dimensional fi-space) This technique calculates a new value of fi at each site
solely based on the values of the nearest neighbour fields. This is the critical
feature of algorithm but it is very general as its validity only depends on locality
of interaction;something for which there is a lot of theoretica predjudice and
experimental evidence. The calculation of the new field value at a site might
involve 100->1000 computer instructions and so total number of operations to
solve QCD is around 10" 6(#sweeps)*10"9(#variables)*1000(#operations/site) On
a VAX an operation takes about 3mus and so one needs about 1075 years to com-
plete problem. However the independence of the field generating algorithm at
each site and the fact that you only need to know about nearest neighbours
implies that a very simple concurrent processing algorithm is possible. Taking
the simplest case,we imagine a computer at each site to perform the
updating. We have N“d computers with nearest neighbour connections.

T _ P ___ ¥ _%___k__*&

|
St __ e _ ¥ ______*

In the above, - and | denote connecting lines and * a computer. The
normal periodic boundary conditions imply that the computers at each end are
also connected to each other. It is the clear that the above architecture can be
easily implemented;each computer needs just to be able to run programs
accessing its own memory and at the of each cycle,transfer its new site value to
its neighbours. There is no problem in the concurrent algorithm and one can
gain a factor of N”d !In practice the *'s above will represent computers each
holding a block of B neighbouring sites (eg 2*2*2*2 cube of values for B=B etc.).
For QCD one can imagine 1076 computers each with 100 sites costing perhaps
810 million. As this is comparable in cost to a single experiment in high energy
physics,it seemns likely that the community would consider this a good invest-
ment if one can show there was a good chance of solving QCD. The above esti-
mates suggest that the factor of ~1076 improvement over a normal sequential
computer should allow one good possibilities of solving QCD. At the moment we
do not know enough about simpler systems to know if this conclusion is
optimistic.ln the above diagram,one can choose * either to be a specialized chip
or a general purpose microprocessor.lnitially we need to investigate a bunch of

-3-

theories and many choices of PHY to refine our techniques.Thus it is appropiate
to use a general purpose microprocessor.

We propose an initial system of 84 computers arranged either in a line
or a small (8 by B) square array.This will be interfaced to the unibus of a PDP11
or VAX which will initiate our machine and accumulate results.Programs for the
computers will be written in C,compiled on the PDP11/45 and down loaded into
microcomputers.With this system,we will have the power of about sixteen VAXs
for about one fifth the cost of a single VAX!

We can use this system not just to learn about the concurrent architecture
but also to sclve many physics problems We should be able to solve all two
dimensicnal theories and make a start on the important three dimensional
case.ln particular we want to look at the SU(R) gauge theory in d=3 dimensions.

If we are succesful,the next step would be about a 1000(30 by 30 say) com-
ponent system which should be able to solve most three dimensional theories
and make a stab at the four dimensional case After this we may know enough to
see if the grandiose million unit machine mentioned above is warranted.

Technical features of the array

The first prototype of the computing array will consist of 84 processing
units arranged in & square B*8 array. Each processor has the capability of com-
municating asyncronously with the controlling computer and its nearest neigh-
bors. The edges of the computing array are connected to give periodic boun-
dary conditions (fig 1). The ports between the processors are operated asyncro-
nously so that each processor can have its own internal clock to prevent timing
problems as the physical size of the computing array becomes large.

The basic mode of operation is one in which each processor carries out its
own program independently. Each independent process is loaded and initiated
by the host computer. This type of operation can be used in situations where
the host is very loaded and would benefit from offloading smali jobs that can run
independently. A good example of this case would be offloading of graphics
pipes, document processing and small numerical jobs that are known to load our
system down during normal working hours. Since the intention here is to create
a general purpose machine, once the array processor has become superceeded
by & larger unit for physics calculations it will still be very useful for the
offloading of small jobs and therefore wili have a long lifetime.

In large calculations such as lattice calculations in field theory and large
matrix diagonalizations that occurs in all branches of physics and engineering,
the entire computing array would be used at one time. Ir lattice calculations
two basic operations need to be performed. The first is the generation of a new
lattice configuration or “update”. The second is the sum over the lattice of some
value computed at each site. The cooperation between processors that is
required by these tasks is eflected by using handshaking on the ports that con-
nect the processors. In the case of lattice updates each processor needs to know
the values of certain variables on its nearest neighbors. Thus the first section of
the program in each processor is the call to a subroutine that puts the apropi-
ate values on the output ports and receives appropiate values on the input
ports. As each processor completes this task, it becomes free to update the
values of its internal variables. When is has completed the update a signal is
sent to the host so that the host may initiate a new process on the computing
array.

-2-

In the case of taking a sum over the lattice a different kind of cooperation
between the elements of the computing array is needed. Consider the square
B*8 array (fig 1). The first column of processors must send their value to the
right and second column waits for the variable to be passed. When the values
are received the second column adds them to its internal variables and passes
the partial sum to the right. This proceeds along the columns until the partial
sums have appeared in the last column. Once this has happened the sum is
completed along the last column and the total sum is delivered to the host by
the corner processor. It must be noted that this is the most simple summing
method and not necessarily the optimum one. One could pipe line the sum
through the array if the next update did not depend on the value of some sum in
the current lattice configuration. In cases where the sum is needed for any
further computation to proceed on the array it is possible to add a very few
extra interconnections and do the sum in a binary tree. This results in a sum
occuring in a time that grows as the log of the total number of processors as
opposed to the cube root of the number of processors (considering the three
dimensional array). The increase in cost of adding the binary tree summing
feature amounts to only a few percent of the total cost of the computing array.

Ve intend to base our computing array on Intel's 8086 microprocessor.
This microcomputer has a 16-bit wide data path and can directly address 1
megabyte. We have chosen this unit as it operates at 10 mhz and has a compan-
ion numerical data processor (Intel's 8087) that will be introduced this year.
When the companion NDP is added the instruction set is enhanced to include
floating point instructions in 32, 64 and BO bit precision. The floating instruc-
tions include sin, cos, exp, and log along with the four regulars. The 8087-NDP
also adds an internal stack of eight individually addressable B0 bit registers.
This stack increases throughput as it reduces the load on the 16 bit data buss
that connects to memory.

The combination of the BD86-CPU and the BOB7-NDP result in a computer
with about one fifth of the power of the vax for numerical computation that is
memory intensive. In computations that can take advantage of the eight regis-
ter stack the processor will be faster yet. A 64 element array of these units will
have the computing power of approximately 15 vaxes. Each individual processor
will have 1/0 ports to connect it to both the host computer and the neighboring
processors. The basic processor will have 128k bytes of programable memory
(dynamic ram) and 4k bytes of read only memory (EPROM). The read only
memory will be used to house the monitor for the processor. See (fig 2) for a
block diagram for the individual processing unit.

td 2¢

i

8086| (8087 I-0 L
CPU | |[NDP PORTS

128K

O X
5=
X

-3-

As the BOB7-NDP will not be available till later this year we intend to initially
implement the floating instructions with software which runs at about 1/50 the
speed of the B0B86-B0B7 combination. During this time we will be generating the
software interface to the host computer which will either be the HEP vax or the
11/45. By the time that the B0OB7-NDP will be available we will be able to plug it
in and remove the software emulator and be running at a speed comparable to
15 vaxes. With 128k bytes of ram on each processor we will have a machine with
B8 megabytes at our disposal and will be able to do some interesting physics com-
putations. It is estimated that we can build these individual processors for
about $500 each making the hardware cost of the computing array $32,000. The
actual cost of building and bringing the machine into service (including labor
costs) will probably be around $50,000.

DeBenepicTiS

A note on the physical construction of the NNCP
E. Brooks

Current computers benefit well from the card cage-backplane type of con-
struction as all cards need to be connected to the system bus and power. the
backplane provides this function in an efficient manner. The NNCP on the other
hand has a nearest neighbor connection system of ports that the processors use
to communicate with each other along with the usual connection to the host that
could be served well by a backplane. Since the communication between the pro-
cessors is the factor which determines the speed of the machine the wiring rats
nest which would occur if the NNCP were physically constructed in the usual
card cage system must be avoided. Although wiring the 4*4*4 cube with the
usual construction techniques is feasible (The wiring problem is getting very
severe however) if one considers building larger machines a simple and elegant
solution to the problem needs to be found. Fortunately there is such a solution
to the problem. The wiring rats nest and long cables can be avoided if one builds
a physical architecture that follows the the 3-dimensional logical architecture.
This is indeed the reason for stopping at a 3-dimensional logical architecture.
This means building a 3-dimensional machine and abandoning the currently used
methods of constructing computers. 1 show here that such a physical architec-
ture is possible and that use of it removes the objections that people have
against using standard TTL signals on cables by removing or shortening most of
them. The few long cables that are left can be handled by special drivers since
the long cables represent a small percentage of the connections in the machine.
Since the fraction of long cables is small the cost incurred by the use of special
drivers for them is small.

Consider the 4*4*4 cube NNCP computer as being built of 4 planar levels
each of which is a 4*4 array. Each level will require at most 3 inches of vertical
sBpace including space which is a generous overestimate. Even with this spacing
the NNCP is only one foot thick. This space is thicker that the usual card cage
spacing to allow for distributing cable connections over the surface of the board.
Notice that this is the first break with traditional construction. Usually boards
are 8lid into the card cage with all connections at the edge of the card. The rea-
son for the connectors distributed over the board surface is to be able the make
the connections to the boards above and below a given board with a very short (3
inches) cable. Cables that are this short can be wired directly to the buss on the
board without noise problems.

As it is not feasible to etch large enough pc boards to contain the whole 4*4
for such a small project as the 4*4*4 cube 1 propose that the 4*4 surface be con-
gtructed from 2*2 processor array boards. In larger machines it would be possi-
ble to use 4*4 processor boards which would further reduce connector and cable
cost. The logical (physical) layout of each board is shown in the following figure.
The individual processors will require one square foot of board space at most so
the 2*2 array can be constructed on a board that is 24*24 inches o~ less.

al11/s

LC

The desirable features of this type of construction are that all cables except
those that meke up the cube boundary connections are 3 inches or less in
length. The cables that connect the top and bottom of the array are less than
one foot in length. The cables that connect the opposite edges of the 4*4*4
array are about 4 feet in length Only B of the 192 cables in the system are 4
foot long and thus will require special buffering. Another 16 of the cables are 1
foot long and thus "might"” require special buflfering. The other 168 cables will
be 3 inches or less in length and will be able to be connected directly to com-
puter busses without the need for special attention. Of these there 84 connec-
tions internal to the 2*2 array boards that will not need cables or connectors at
all. Connections to the host can be made by busses that run through the array
vertically. These busses will be short and one could also use these to distribute
power and ground from a mother board below the array.

It is obvious that the 3 dimensiona! physical architecture will remove many

Udb

lco

-3-

of the problems and associated with constructing the NNCP array. It is also
obvious that servicing the array will be difficult unless modular construction is
used. The 2*2 card module provides for this within the 4*4*4 array. In the case
of a much larger machine the array could be constructed from 4*4*4 sub arrays.

Computer Science Issues Relevant to the
Nearest Neighbor Concurrent Processor Proposal

DeBenenicTis

A History of Similar Projects

A dgeneralization can be drawn from a historical analysis of concurrent multiprocessor
networks: the potential performance of the machine Is proportional 1o the number of
processors, and the fraction of that performance realized is related to the clarity of the
algorithm programmed on the machine. The impressive projects are those with many
processors with an extremely well understood algorithm. Unfortunately, many of these

projects were less than successful, but most succeeded in implementing algorithms like
those proposed here.

Two highly publicized multiprocessor projects have been undertaken at CMU, C.mmp and
CM™. C.mmp was a 16 processor network consisting of PDP-11s, and CM* is an
open-ended star connection, currently with 50 processors. Both projects involved
proaramming various algorithms on the respective multiprocessors. in both cascs
numecrical analysis problems were successfully implemented on the networks, but more
ambilious problems such as distributed operating systems were less successful.

Alain Martin (Philips, Eindhoven, the Netherlands) implemented a 36-processor grid folded
back in two dimensions to form an interconmection called a twisted torus. His work
addresses very well the problem of distributing computations across an ensemble in such

a way that each processor may have many concurrent processes eligible for execution,
and the load is kept reasonably well balanced.

Bmwning1 described programming a tree connecled ensemble. The variety of problems
that were addressed incinded solution of np-complete graph problems, sorting. and
veactor and matrix operations. The number of concurrent processors was extromely large
- a million processors was typical in her thesis.

H. 1. Kung:)2 at CMU has studicd elgorithms and corresponding communication structures

for pipelined computational arrays that he refers to as systolic arrays. Similar work in
this style, however generalized to asynchronous data flow and using more stable and
advanced numerical methods has becen done by S. Y. Kung ™ and Lennart Johnsson

lliac IV was the most famous machine of this genera, but is distinguished from those
described above by only having one instruction stream. The single Instruction stream

Browning, Sally, The Tree Machine: a Highly Concurrent Computing Environment, PhD
thesis, Caltech Computer Science, January, 1980.

2Secﬂon entitled Algorithms for VLSI Processor Arrays, in Mead and Conway,
Introduction to VLS| Systems, Addison-Wesley, 1880.

3University of Southern California.

aCaItech Computer Science Department.

introcduced so many problems in programming and communication that is it no lonaor
technologically appropriate.

1his proposal is for the construction of a machine similar in many ways to those
described above, and will use well understood algorithms. The present proposal, white
being for a modest 64 processors, can be viewed as a feasibility study for a machine
wilh a million processors. The algorithms that are expected to be implemented on these
processors are all of the numerical type: PDEs and matrix operations.

The Performance of an Array Connected Network for Nearest Neighbor
Problems '

The performance of concurrent processors can be evaluated In a variety of ways, stich
as fractional utilization of floating point capacity, or simply as a cost/performance ratio.
The present proposal is for 64 concurrent processors, each with a significant amount of
ChU capacity. It is easily seen that the potential floating point capacity is very great,

and the cost is very small. It remains to be shown that this floating point capacity can
he efficiently used.

The major use of this concurrent processor is expected to be solving differential
cquations on a uniform, rectangular lattice. The lattice will be represented by an array
of values, with each processor representing many points of the lattice. There should be

no arqument that the lattice values in each processor should all be adjacent, to minimire
communication between processors

Within each processor there is only one impediment to continuous floating point
operation, the necessity to communicate nearest neighbor lattice *values between
processors. We must develop a quantatative idea of the fraction of time that will be
spent on this communication at the exclusion of numerical calculation.

Consider a two-dimensional lattice problem being solved on the proposed 64 processor
machine. The entire lattice will consist of more than 64 points, say m points. In this
case each processor will contain the lattice values for m/64 points. The iteration cycie
for each processor will consist of communicating values for all boundry points to and from
other processors and evaluating the iteration function m/64 times. f the processor
rnprnannts a square array of m/6G4 points then the number of points along the edqge is K
m/6A°". 1his Is exactly the number of lattice values that must be transmitted alonq
each communication pathway to an adjacent })rocessor. Since the number of
communicated valucs is related to the square-root’ of the number of processing steps.

As the size of each processor increases the ratio of processing steps to communications

For example, if the entire problem were a 2-dimensional square, the processors
should divide the entire problem into smaller squares.

6 .
lanoring the four corner points.

7ln gencral, for k-dimensions the number of communicated values varies as the
(k-1)/k power.

steps increases.
A Performance Example

Consider the proposed machine solving a three dimensional nearest ncighbor problem
where the elements of the latlice are 3x3 unilary matrices. The iterative step will
consist of replacing each lattice element with a weighted sum of itself and its six
ncarest neighbors. Since this Is a three dimensional problem belng implemented on a two
dimensional array some mismatch will necessarily occur. We choose to flatten the space
alonqg one dimension into a two dimensional problem.

The proposed processors will have 128k bytes of memory. Assume that about 100k of
this is available for storing lattice points. Each lattice point is a matrix with 6 complex
entriecs. Since we will represent each real number as 4 bytes, each lattice point will

require 48 bytes. Each processor will have a storage capacitly of a little more than
2000 lattice points.

The entire problem can then be a 48x48x48 array of lattice points. Each processor

wotld contain 8 6x6x48 slice of the total solid. Of the 128k bytes in each processor,
32914 will be used.

Assume that the time to transfer on latlice point to each adjacent processor is 2 mSB.

The number of lattice points on the boundry to each adjacent processor is 6x48=288,
and the time to transfer these values will be about 576 mS.

The computation performed on each lattice point will consist of seven matrix
midtiplications, and six additions. Each 3x3 matrix mulliplication consists of 27 complex
mulliplications and 18 complex additions. A complex multiplication consists of 4 real
multiplications and 2 rcat additions, and a complex addition consists of 2 real additions.
The total number of real operations is 7x27x4 = 756 multiplications and 7x(27x2+18x2)
= 630 additions. Assume 20 uS average for operand setup and a multiply or addition and’

the computation time per lattice point is 27.7mS. Total time for the entire array is 18
seconds.

Summarizing, the machine will he able to preform an iteration on a A8x48x48 array of
3x3 matrices in approximately 48 seconds. The 48 seconds will be all computation
except for §76mS of Interprocessor communication. In this example the fractional
floating point utilization is about 99%.

Laplace's Equation

The previous example yielded attractive results due to the larae amount of time required
to manipulate matricles with complex entrics, and the number of lattice points in each
processor. We will consider another nearest neighbor problem where the efficiency will
not be aided in this way: solving Laplace's equation on a small square lattice of 8x8
points. Each lattice point consists of a single real humber, or 4 bytes.

810 uS to service each port for one byte, 4 ports, 48 bytes per lattice point.

The time to transfer one lattice point to an adjacent processor is 160 uSg. The number
of lattice points to transfer is 1, or the total time will be 160 uS per iteration.

Fach lteration conslists of replacing each lattice point with a simply weighted averaqe of
its four ncighbors. The weights are 1,1,1,1, and 4, and hence do not require any real
multiplications. The updaling can be done with .6 floatling additions. Again assuming 220

uS for an operation we find an iteration will take 120 uS. CPU utilization is now under
50%.

Fifty percent utilization of a processor, although somewhat wasteful is better than
average for multiprocessor programs.

Other Potential Architectures

Why was an array network chosen over other networks such as a tree, a bus, a
hypercube, or a simple VNM ' 7? We will briefly discuss each of these architectures.

A tree network is less expensive and well suited to this sort of computation, but is not
as qood as an array. A tree is less expens1l\{e because each processor has, on the
average, two connections to other processors . The organization of the tree causes a
botticneck at the root, however.

This effect of this bottleneck can be analyzed by calculating the number of values that
must he transmitted through the root node. Recall that an array processor must transmit
lattice values for all lattice points on the boundary of its area. This number was the
square root of the number of points in that particular array element. The root processor
has similar behavior: the root node must transfer all boundary points of its left subtree to
its right subtree, and vice versa. Again, the number of lattice points is the square root
of the number of lattice points in the subtree. Unlike the array, however the size of a

subtree Is half the size of the entire problem, not 1/64th or an amount determined by the
number of nodes in the trec.

The number of values transmitted through the root node of an equlvalantly slzed tree
hetwork would be about 8 times as large as hetween elements of an array. This would
increase the communications overhead to an intolerably large amount in some cases.

A bus connected network is even worse. In a bus connected architecture all the values
transmitted on the array network are transmitted, but on the same bus. The resulting
traffic on that bus would be 2566 times as large as on any of the array connections.

Other networks are known, but less well understood. Hypercubes have the advantaqe of
offering a maximum Iinterconnection distance between processors of log n. n the number
of processors. While this is attractive for some problems, it is not well upderstood for
nearcest neighbor problems. (The maximal interconnection distance in the array

91 0 uS to service each port for one byte, 4 ports, 4 bytes per lattice point.

10 .
Von Neuman machine, or conventional computer.

11 .
Leaf processors have one connection, all others have three.

processor, for hearest neighbor problems, is 1.)

An array network appears to be near optimal for these sorts of problems. tach element
of the array has a processing unit that is used at close to 100% efficiency, as is the
processing unit of a VNM. The total amount of memory in the entire array is about the
same as that In a VNM solving the same sized problem.

	NNCP-Memo-000
	NNCP-Memo-001
	NNCP-Memo-002
	NNCP-Memo-003
	NNCP-Memo-004
	NNCP-Memo-005
	NNCP-Memo-006
	NNCP-Memo-007
	NNCP-Memo-008
	NNCP-Memo-009
	NNCP-Memo-010
	NNCP-Memo-011
	NNCP-Memo-012
	NNCP-Memo-013

