

🔜 Search Requests

Generate Reports

Approvals

🕍 Help

Wizard

New Search Refine Search

> **Clone Request Edit Request** Cancel Request

Search Results

Search Detail

Submittal Details

Document Info

Title: Applications Modeling for Supercomputer Architecture

Document Number: 5222321 SAND Number: 2004-2161 P Review Type: Electronic Status: Approved

Sandia Contact: DEBENEDICTIS, ERIK P. Submittal Type: Viewgraph/Presentation

Requestor: DEBENEDICTIS, ERIK P. Submit Date: 05/17/2004

Author(s)

DEBENEDICTIS, ERIK P.

Event (Conference/Journal/Book) Info

Name: Sandia-VNIIEF (Russian Nuclear Weapons Lab) meeting re. contracts

under Gordon-Ryabev accord

City: Vienna Country: Austria State:

Start Date: 05/31/2004 End Date: 06/04/2004

Partnership Info

Partnership Involved: No

Partner Approval: Agreement Number:

Patent Info

Scientific or Technical in Content: Yes

Technical Advance: No TA Form Filed: No

SD Number:

Classification and Sensitivity Info

Title: Unclassified-Unlimited **Document: Unclassified-Unlimited** Abstract:

Additional Limited Release Info: None.

DUSA: None.

Routing Details

Role	Routed To	Approved By	Approval Date
Derivative Classifier Approver	YARRINGTON, PAUL	YARRINGTON, PAUL	05/17/2004
Conditions:			037 177 2004
Classification Approver	WILLIAMS,RONALD L.	WILLIAMS,RONALD L.	05/17/2004
Conditions:			
Manager Approver	PUNDIT,NEIL D.	PUNDIT,NEIL D.	05/17/2004
Conditions:			
Administrator Approver	LUCERO,ARLENE M.	FARRELLY,JEREMIAH	06/25/2007

Created by WebCo Problems? Contact CCHD: by email or at 845-CCHD (2243).

For Review and Approval process questions please contact the Application Process Owner

1 of 1 1/2/2008 2:36 PM

SAND2004-2161P Applications Modeling for Supercomputer Architecture

Моделирование прикладных задач для суперкомпьютерной архитектуры

Erik P. DeBenedictis

Эрик П. деБенедиктис

Overview (Обзор)

- It is important to know how well supercomputer codes will work
- Software lifetimes could be 20+ years, but how well will a future computer run today's software?
- How do we know the supercomputer we are thinking of buying will run our codes until we actually build and pay for it?

- Важно понимать, насколько хорошо будут работать суперкомпьютерные программы
- Срок службы программного обеспечения может достигать 20 + лет - насколько удовлетворительно будет работать компьютер будущего с сегодняшним программным обеспечением?
- Откуда мы знаем, что суперкомпьютер, который мы собираемся приобрести, будет выполнять наши программы к тому времени, как мы его действительно построим и выплатим его стоимость?

Example (Пример)

- Project to build a 65536 processor supercomputer
- Build first 512 processors
- Project full size with math
- Finally commit to full size
- Проект построения суперкомпьютера с 65536 процессорами
- Построение первых 512 процессоров
- План построения полного суперкомпьютера с математическим обеспечением
- Окончательное решение по построению суперкомпьютера

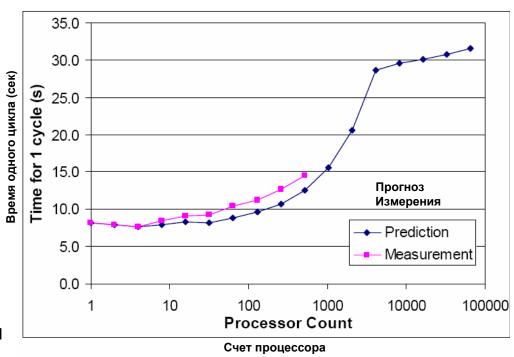
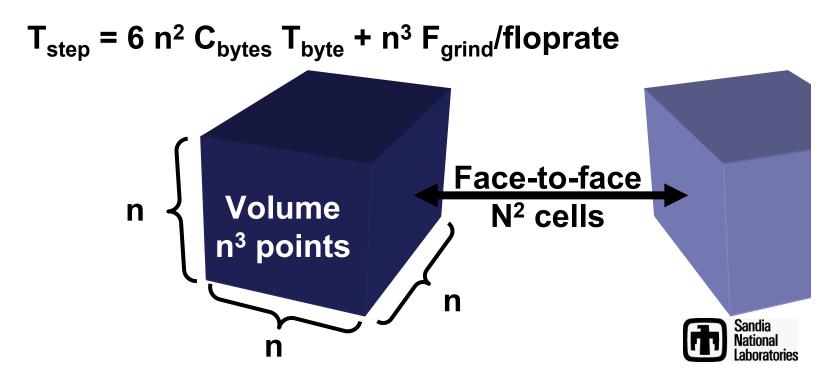


Figure 22. SAGE Performance (timing h) on BG/L

Applications (Прикладные задачи)

- First pick representative applications:
 - Heavy one-node floating point, perhaps Monte Carlo
 - Heavy memory bandwidth, perhaps radiation transport
 - Heavy long distance communications, perhaps FFT or image processing...


- Первоначальный выбор репрезентативных типовых прикладных задач
- Загруженная одноузловая плавающая запятая, например, Монте Карло
- Загруженный диапазон частот памяти, например, перенос радиации
- Загруженная дистанционная линия связи, например, БПФ, или обработка изображения...

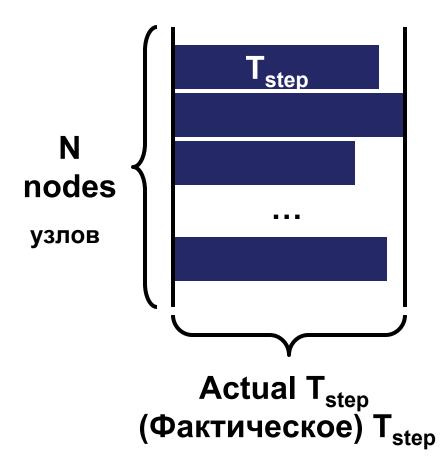
Develop Model (Разработка модели)

- Simple case: finite difference equation
- Each node holds n×n×n grid points

- Простой случай: конечное дифференциальное уравнение
- Каждый узел содержит n×n×n точек матрицы

Realistic Factors (Практические факторы)

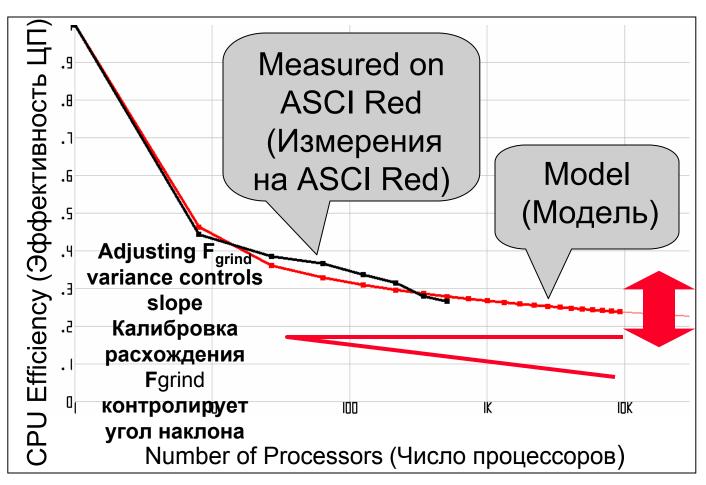
- Parameterize problem
 - Size of problem
 - Size of machine
- Model message transmission as packets with a startup time and time per byte
- Model time to copy data to message buffers
- Model network topology, but only if matters


- Определите параметры задачи
- Размер задачи
- Размер машины
- Моделируйте пакетную передачу сообщения с временем пуска и скоростью передачи байта
- Моделируйте время копирования данных в буфер сообщения
- В случае необходимости, моделируйте топологию сети

Model Load Balance

(Модель баланса нагрузки)

- Assume F_{grind}) has a mean and standard deviation
- T_{step} will be time until slowest node finishes
- Inverse cumulative normal distribution Φ^{-1} ?
- Предположим, что F_{grind}) имеет среднее и стандартное отклонение
- Т_{step} будет временем окончания самого медленного узла
- Обратная функция нормального распределения Ф-1?


Calibrate Values (Калибруйте значения)

- Pick a representative data set
 - Example: Two gasses colliding at centerline of unit cube
- Adjust parameters in model to match observed data
 - Example F_{grind} mean and standard deviation

- Выберите набор типовых данных
 - Пример: Два газа соударяются на оси единичного куба
- Установите параметры модели, соответствующие данным наблюдений
 - Пример F_{grind} среднее и стандартное отклонение

Calibration Example (Пример калибровки)

Adjusting
mean F_{grind}
controls
vertical
position
Калибровка
Fgrind
контролирует
вертикальное
положение

Measurement Tools (Измерительные инструменты)

- Measurements may be impacted by system stability or timing noise
- It may be necessary to measure and compensate for timing stability
- На измерения может повлиять стабильность системы или помехи синхронизации
- Возможно, придется измерять и компенсировать стабильность синхронизации

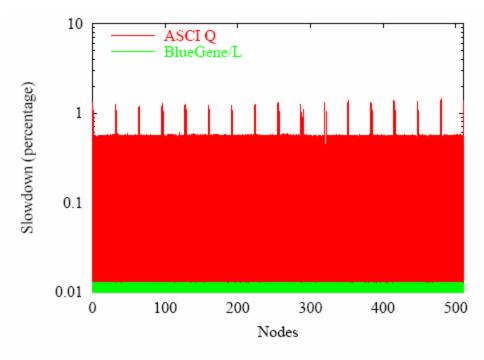
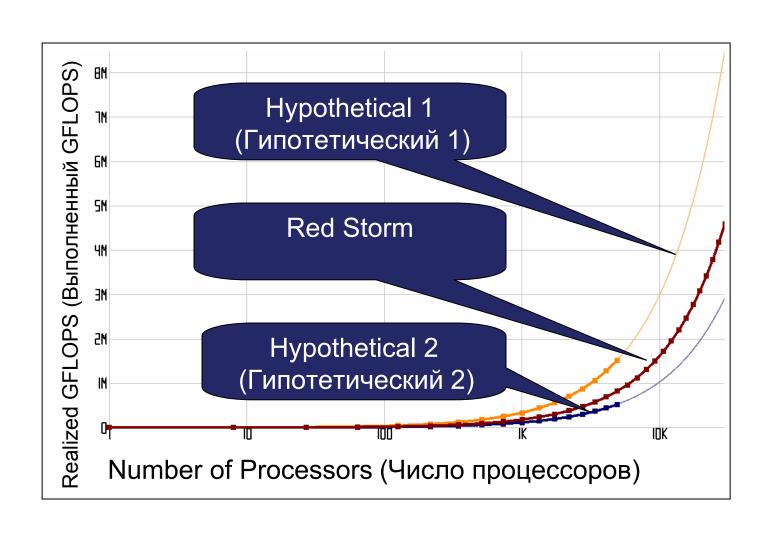



Figure 2. Slowdown due to computational noise on a per node basis.

New Situations (Новые ситуации)

History (История вопроса)

- 2003 Conference on Supercomputations at VNIIEF
 - Project to develop open source measurement tools
 - Project to enhance code libraries of general interest
 - Project to develop modeling technology

- Конференция 2003 года, во ВНИИЭФе по суперкомпьютерным вычислениям
 - Проект разработки измерительных инструментов открытой платформы
 - Проект модернизации библиотек программ общего профиля
 - Проект разработки моделирующих технологий

History (История вопроса)

- E-Mail Contact
 - Several questions, answers, and counter proposals
- Status
 - Modeling technology has greatest mutual interest
 - Measurement tools may become a task of third item

- Контакты по электронной почте
 - Несколько вопросов, ответы и контрпредложения
- Состояние на сегодняшний день
 - Повысился взаимный интерес к моделирующим технологиям
 - Измерительные инструменты могут стать задачей третьего пункта

Agenda Items (Пункты повестки дня)

- Have agreed in principle to study interconnect topology; discuss details
- Have agreed in principle to study "global communications"; discuss other types of communications
- Sergey Stepanenko apparently wrote a paper in 2002 regarding some existing Russian work; discuss paper

- Есть принципиальное согласие изучения топологии соединений; обсуждение деталей
- Есть принципиальное согласие изучения «глобальной связи»; обсуждение других типов связи
- Сергей Степаненко в 2002 году написал статью по существующим Российским работам; обсуждение статьи

Agenda Items (Пункты повестки дня)

- Open question about types of algorithms to study
 - Need a representative set of algorithms to span the space of likely applications
 - Applications must be nonsensitive and/or publicly available
 - To be discussed with Yuri Bartenev in Vienna

- Открытый вопрос о том, какие типы алгоритмов необходимо изучать
 - Нужен репрезентативный набор алгоритмов, охватывающий широкий диапазон возможных прикладных задач
 - Прикладные задачи не должны содержать конфиденциальной информации и/или должны быть общественно доступными
 - Вопрос необходимо обсудить в Вене с Юрием Бартеневым

Agenda Items (Пункты повестки дня)

- US Labs (LANL) has written and released to Web an additional paper on similar material; discuss with Yuri Bartenev
- Американские лаборатории (ЛАНЛ) написали и выставили на Web дополнительные страницы по аналогичным материалам; обсудить с Юрием Бартеневым

Specifications From S. Stepanenko (Технические условия от С. Степаненко)

- Examine and measure architectures with communications topologies including 1D, 2D, 3D Torus, hypercube, crossbar, and fat tree
- Examine global communications patterns, such as
 - All-to-all, all-to one, broadcast

- Проверить и провести измерения архитектуры с топологиями связи, включая 1D, 2D, 3D Torus, гиперкуб, «crossbar» и «fat tree»
- Проверить шаблоны, глобальной связи, таких как
 - Общая связь,
 широковещание,
 централизованная
 связь

Specifications From S. Stepanenko (Технические условия от С. Степаненко)

- Models of Applications
 - Choose a representative set of applications, such as non-sensitive
 SWEEP3D
 - Calibrate model with measurements

- Моделирование прикладных задач
 - Выбор репрезентативного набора прикладных задач, таких, например, как не конфиденциальный проект SWEEP3D
 - Калибровка модели измерениями

