Review & Approval System - Search Detail

Document Info

<table>
<thead>
<tr>
<th>Title</th>
<th>Extreme Supercomputing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number</td>
<td>5225718</td>
</tr>
<tr>
<td>SAND Number</td>
<td>2004-4707 P</td>
</tr>
<tr>
<td>Review Type</td>
<td>Electronic</td>
</tr>
<tr>
<td>Status</td>
<td>Approved</td>
</tr>
<tr>
<td>Sandia Contact</td>
<td>DEBENEDICTIS, ERIK P.</td>
</tr>
<tr>
<td>Submittal Type</td>
<td>Viewgraph/Presentation</td>
</tr>
</tbody>
</table>

Author(s)
- DEBENEDICTIS, ERIK P.

Event (Conference/Journal/Book) Info

- Name: Seminar at University of Notre Dame, CS & Eng. and Center for Nano Science and Technology
- City: South Bend
- State: IN
- Country: USA
- Start Date: 09/13/2004
- End Date: 09/13/2004

Partnership Info
- Partnership Involved: No
- Partner Approval: YARRINGTON, PAUL
- Agreement Number: YARRINGTON, PAUL

Patent Info
- Scientific or Technical in Content: Yes
- Technical Advance: No
- TA Form Filed: No

Classification and Sensitivity Info
- Title: Unclassified-Unlimited
- Abstract: Document: Unclassified-Unlimited
- Additional Limited Release Info: None.
- DUSA: None.

Routing Details

<table>
<thead>
<tr>
<th>Role</th>
<th>Routed To</th>
<th>Approved By</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivative Classifier Approver</td>
<td>YARRINGTON, PAUL</td>
<td>YARRINGTON, PAUL</td>
<td>09/14/2004</td>
</tr>
</tbody>
</table>

Conditions:
<table>
<thead>
<tr>
<th>Review & Approval System - Search Detail</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification Approver</td>
<td>WILLIAMS, RONALD L. WILLIAMS, RONALD L.</td>
</tr>
<tr>
<td>Conditions:</td>
<td>09/16/2004</td>
</tr>
<tr>
<td>Manager Approver</td>
<td>PUNDIT, NEIL D. PUNDIT, NEIL D.</td>
</tr>
<tr>
<td>Conditions:</td>
<td>09/17/2004</td>
</tr>
<tr>
<td>Administrator Approver</td>
<td>LUCERO, ARLENE M. FARRELLY, JEREMIAH</td>
</tr>
<tr>
<td></td>
<td>05/24/2007</td>
</tr>
</tbody>
</table>
Extreme Supercomputing

Erik P. DeBenedictis
Sandia National Laboratories

Presentation at University of Notre Dame
September 13, 2004
The Baseline

** ETA: January 2005

** Performance
- Peak of ~40 TF
- Expected MP-Linpack performance >20 TF
- Aggregate system memory bandwidth ~55 TB/s
- Interconnect
 - Aggregate sustained interconnect bandwidth > 100 TB/s
 - MPI Latency - µs neighbor, 5 µs across machine
 - Bi-Section bandwidth ~2.3 TB/s
 - Link bandwidth ~3.0 GB/s in each direction
- I/O System
 - Sustained 50 GB/s disk I/O bandwidth for each color
 - Sustained 25 GB/s external network bandwidth for each color

** Design Parameters
- True MPP, Designed to be a single system
- Fully connected high performance 3-D mesh interconnect
- Topology - 27 X 16 X 24 compute nodes and 2 X 8X 16 service and I/O nodes
- 108 compute node cabinets and 10,368 compute node processors (AMD Sledgehammer @ 2.0 GHz)
- ~10 TB of DDR memory @ 333 MHz (1.0 GB per processor)
- Red/Black switching - ~1/4, ~1/2, ~1/4
- 8 Service and I/O cabinets on each end (256 processors for each color)
- 240 TB of disk storage (120 TB per color)
- Functional hardware partitioning - service and I/O nodes, compute nodes, and RAS nodes
- Functional system software partitioning - LINUX on service and I/O nodes, LMK (Catamount) on compute nodes, stripped down LINUX on RAS nodes
- Separate RAS and system management network (Ethernet)
- Router table based routing in the interconnect
- Less than 2 MW total power and cooling
- Less than 3,000 square feet of floor space
Outline

• The Computing of Physics: The Need for Zettaflops
 • Limits of Moore’s Law
 Today’s Technologies
 • An Expert System/Optimizer for Supercomputing
 • The Physics of Computing:
 Reaching to Zettaflops
 • Roadmap and Future Directions
Simulation of Physics on a Computer

- Space is divided into cells, each with computer variables representing the physical state of the volume represented by the cell.
- The computer updates the state of a cell for successive time intervals ΔT based on some physical laws.
- I.e. $S_{ijk}' = f(S_{ijk}, \text{states of nearby cells})$
Fourth Power Scaling Rule

Reference

2× spatial resolution,
2× time steps → 2^4× FLOPS
Global Climate

• **Objective**
 – Collect data about Earth
 – Model climate into the future
 – Provide “decision support” and ability to “mitigate”

• **Approaches**
 – Climate models exist, but need they more resolution, better physics, and better initial conditions (observations of the Earth)

• **Computer Resources Required**
 – Increments over current workstation on next slide
FLOPS Increases for Global Climate

<table>
<thead>
<tr>
<th>Issue</th>
<th>Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensembles, scenarios 10×</td>
<td>Embarrassingly Parallel</td>
</tr>
<tr>
<td>Run length 100×</td>
<td>Longer Running Time</td>
</tr>
<tr>
<td>New parameterizations 100×</td>
<td>More Complex Physics</td>
</tr>
<tr>
<td>Model Completeness 100×</td>
<td>More Complex Physics</td>
</tr>
<tr>
<td>Spatial Resolution 10^4× (10^3×-10^5×)</td>
<td>Resolution</td>
</tr>
<tr>
<td>Clusters Now In Use (100 nodes, 5% efficient)</td>
<td></td>
</tr>
</tbody>
</table>

Based on these inputs, various portions of the Modeling and Data Assimilation System will require anywhere from 10^7 to 10^{13} GFLOPS of computational resources. In other words, the range of computational resources needed is 10^{16} to 10^{21} Floating Point Operations per Second. For the curious, the range can also be stated as 10 PetaFLOPS to 1 ZettaFLOPS.

4.1.2. Anticipated Computing Technology Capabilities

At first glance, the numbers discussed in the previous section appear so high as to be impossibly ludicrous. However, with the expected growth in computing capabilities, the lower end of this spectrum actually falls within the domain of possibility.

• “…the ultimate goal of making the computing underlying the design process so capable that it no longer acts as a brake on the flow of the creative human thought…”

• Requirement 3 Exaflops

• Note: In the context of this report, this requirement is for one or a few engineers, not a supercomputer center!
Outline

• The Computing of Physics: The Need for Zettaflops
 • Limits of Moore’s Law
 • Today’s Technologies
• An Expert System/Optimizer for Supercomputing
• The Physics of Computing: Reaching to Zettaflops
• Roadmap and Future Directions
8 Petaflops
80 Teraflops
Projected ITRS improvement to 22 nm (100×)
Lower supply voltage (2×)
Red Storm contract

Reliability limit
750KW/(80k_B T)
Esteemed physicists
(T=60°C junction temperature)

Derate 20,000 convert logic ops to floating point
Floating point engineering (64 bit precision)

Derate for manufacturing margin (4×)
Estimate

Uncertainty (6×)
Gap in chart

Improved devices (4×)
Estimate

Projected ITRS improvement to 22 nm (100×)
ITRS committee of experts

80 Teraflops
40 Teraflops

Assumption: Supercomputer is size & cost of Red Storm: US$100M budget; consumes 2 MW wall power; 750 KW to active components

2×10²⁴ logic ops/s
Thermal Noise Limit

This logical irreversibility is associated with physical irreversibility and requires a minimal heat generation, per machine cycle, typically of the order of kT for each irreversible function.

– R. Landauer 1961

kT “helper line,” drawn out of the reader’s focus because it wasn’t important at the time of writing

– Carver Mead, Scaling of MOS Technology, 1994
Metaphor: FM Radio on Trip to Chicago

- You drive to Chicago listening to FM radio
- Music clear for a while, but noise creeps in and then overtakes music

Analogy: You live out the next dozen years buying PCs every couple years

- PCs keep getting faster
 - clock rate increases
 - fan gets bigger
 - won’t go on forever

Why…see next slide

• Generalization of Moore’s Law
 – Projects many parameters
 – Years through 2016
 – Includes justification
 – Panel of experts
 • known to be wrong
 – Size between Albuquerque white and yellow pages

International Technology Roadmap for Semiconductors (ITRS), see http://public.itrs.net
Semiconductor Roadmap

<table>
<thead>
<tr>
<th>YEAR OF PRODUCTION</th>
<th>2010</th>
<th>2013</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM ½ PITCH (nm)</td>
<td>45</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>MPU / ASIC ½ PITCH (nm)</td>
<td>50</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>MPU PRINTED GATE LENGTH (nm)</td>
<td>25</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>MPU PHYSICAL GATE LENGTH (nm)</td>
<td>18</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Physical gate length high-performance (HP) (nm) [1]</td>
<td>18</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Equivalent physical oxide thickness for high-performance T_{ox} (EOT) (nm) [2]</td>
<td>0.5-0.8</td>
<td>0.4-0.6</td>
<td>0.4-0.5</td>
</tr>
<tr>
<td>Gate depletion and quantum effects electrical thickness adjustment factor (nm) [3]</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>T_{ox} electrical equivalent (nm) [4]</td>
<td>1.2</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Nominal power supply voltage (V_{dd}) (V) [5]</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Nominal high-performance NMOS sub threshold leakage current, I_{off} (at 25°C) ($\mu A/\mu m$) [6]</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Nominal high-performance NMOS saturation drive current, I_{dd} (at V_{dd} at 25°C) ($\mu A/\mu m$) [7]</td>
<td>1200</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Required percent current-drive "mobility/transconductance improvement" [8]</td>
<td>30%</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>Parasitic source/drain resistance (R_{sd}) (ohm-μm) [9]</td>
<td>110</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>Parasitic source/drain resistance (R_{sd}) percent of total resistance [10]</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
</tr>
<tr>
<td>Parasitic capacitance percent of ideal gate capacitance [11]</td>
<td>31%</td>
<td>36%</td>
<td>42%</td>
</tr>
<tr>
<td>High-performance NMOS device $t(C_{gate} * V_{dd} / I_{off-NMOS})$ [12]</td>
<td>0.39</td>
<td>0.22</td>
<td>0.15</td>
</tr>
<tr>
<td>Relative device performance [13]</td>
<td>4.4</td>
<td>7.2</td>
<td>10.7</td>
</tr>
<tr>
<td>Energy per ($W/L_{gate}=3$) device switching transition ($C_{gate} * (3 * L_{gate}) * V^2$) (fJ/Device) [14]</td>
<td>0.015</td>
<td>0.007</td>
<td>0.002</td>
</tr>
<tr>
<td>Static power dissipation per ($W/L_{gate}=3$) device (Watts/Device) [15]</td>
<td>9.7E-08</td>
<td>1.4E-07</td>
<td>1.1E-07</td>
</tr>
</tbody>
</table>

White—Manufacturable Solutions Exist, and Are Being Optimized
Yellow—Manufacturable Solutions are Known
Red—Manufacturable Solutions are NOT Known
Scientific Supercomputer Limits

<table>
<thead>
<tr>
<th>Best-Case Logic</th>
<th>Microprocessor Architecture</th>
<th>Physical Factor</th>
<th>Source of Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Exaflops</td>
<td>800 Petaflops</td>
<td>Reliability limit</td>
<td>Esteemed physicists</td>
</tr>
<tr>
<td>25 Exaflops</td>
<td>200 Petaflops</td>
<td>Derate 20,000 convert logic ops to floating point</td>
<td>Estimate</td>
</tr>
<tr>
<td>4 Exaflops</td>
<td>32 Petaflops</td>
<td>Derate for manufacturing margin (4×)</td>
<td>Estimate</td>
</tr>
<tr>
<td>1 Exaflops</td>
<td>8 Petaflops</td>
<td>Uncertainty (6×)</td>
<td>Gap in chart</td>
</tr>
</tbody>
</table>

Expert Opinion

- 2×10²⁴ logic ops/s
- Reliability limit: 750KW/(80k_BT) (T=60°C junction temperature) ([Esteemed physicists](#))

Estimate

- 100 Exaflops → 800 Petaflops
- 25 Exaflops → 200 Petaflops
- 4 Exaflops → 32 Petaflops
- 1 Exaflops → 8 Petaflops

Assumption:

- Supercomputer is size & cost of Red Storm: US$100M budget; consumes 2 MW wall power; 750 KW to active components

Physical Factors

- Derate for manufacturing margin (4×)
- Uncertainty (6×)
- Improved devices (4×)
- Projected ITRS improvement to 22 nm (100×)
- Lower supply voltage (2×)

Source of Authority

- Estimate
- Gap in chart
- ITRS committee of experts

Floating point engineering

- 64 bit precision

Derate for manufacturing margin

- 4×

Uncertainty

- 6×

Improved devices

- 4×

Projected ITRS improvement

- 100×

Lower supply voltage

- 2×

Red Storm

- Contract
Personal Observational Evidence

- Have radios become better able to receive distant stations over the last few decades with a rate of improvement similar to Moore’s Law?

- You judge from your experience, but the answer should be that they have not.

- Therefore, electrical noise does not scale with Moore’s Law.
Outline

• The Computing of Physics: The Need for Zettaflops
• Limits of Moore’s Law Today’s Technologies
 • An Expert System/Optimizer for Supercomputing
• The Physics of Computing: Reaching to Zettaflops
• Roadmap and Future Directions
Supercomputer Expert System

Application/Algorithm run time model as in applications modeling

Logic & Memory Technology
design rules and performance parameters for various technologies
(CMOS, Quantum Dots, C Nano-tubes …)

Interconnect
Speed, power, pin count, etc.

Physical
Cooling, packaging, etc.

Expert System & Optimizer
(looks for best 3D mesh of generalized MPI connected nodes, μP and other)

Time Trend
Lithography as a function of years into the future

Results
1. Block diagram picture of optimal system (model)
2. Report of FLOPS count as a function of years into the future
Sample Analytical Runtime Model

- Simple case: finite difference equation
- Each node holds \(n \times n \times n \) grid points

- Volume-area rule
 - Computing \(\propto n^3 \)
 - Communications \(\propto n^2 \)

\[
T_{\text{step}} = 6 n^2 C_{\text{bytes}} T_{\text{byte}} + n^3 F_{\text{grind/floprate}}
\]
Expert System for Future Supercomputers

• Applications Modeling
 – Runtime
 \[T_{\text{run}} = f_1(n, \text{design}) \]
• Technology Roadmap
 – Gate speed = \(f_2(\text{year}) \),
 – chip density = \(f_3(\text{year}) \),
 – cost = \($(n, \text{design}) \), …
• Scaling Objective Function
 – I have \(C_1 \) & can wait \(T_{\text{run}} = C_2 \) seconds. What is the biggest \(n \) I can solve in year \(Y \)?

• Use “Expert System” To
 Calculate:
 \[\text{Max } n: C_1 > T_{\text{run}} > C_2 \]
 All designs

• Report:
 \[\text{Floating operations } T_{\text{run}}(n, \text{design}) \]
 and illustrate “design”
Outline

• The Computing of Physics: The Need for Zettaflops
• Limits of Moore’s Law
 Today’s Technologies
• An Expert System/Optimizer for Supercomputing
 • The Physics of Computing: Reaching to Zettaflops
• Roadmap and Future Directions
Candidate Technologies for Zettaflops

• CMOS per Moore’s Law
 – Cluster/μP solution exceeds limits by 10,000×
 • Trillion US$ cost
 • 10 × Hoover Dam for power supply
 – Custom logic solution exceeds limits by 100×
 • US$10 billion cost
 • 100 MW power
 – ∴ worth our while to consider alternatives

• Limiting search for Alternatives to CMOS
 – Digital (not Analog)
 – Plausible to lots of Floating point
 – Controllable by something recognizable as “programming”
 – Mature enough for above issues to be addressed in published papers
 – Rules out coherent quantum, neural nets, DNA computing, optical interference, …
Alternatives to CMOS for Zettaflops

• New Devices
 – Superconducting: RSFQ (a. k. a. nSQUID, parametric quantrons)
 – Quantum Dots/QCA
 – Rod Logic
 – Helical Logic
 – Single Electron Transistors
 – Carbon Nanotube Y Junctions
 – ...

• Logic and Architecture
 – “Reversible logic” will be unfamiliar to today’s engineers but has been shown to be sufficient
 – Arithmetic elements and microprocessors have been demonstrated
 – Leading architecture:
 • Reversible ALU/CPU
 • Irreversible memory
How could we increase “Red Storm” from 40 Teraflops to 1 Zettaflops?

Answer

- $>2.5 \times 10^7$ power reduction per operation
- Faster devices × more parallelism $>2.5 \times 10^7$
- Smaller devices to fit existing packaging

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent,
JOURNAL OF APPLIED PHYSICS 15 JULY 2003
An Exemplary Device: Quantum Dots

- Pairs of molecules create a memory cell or a logic gate

Ref. “Clocked Molecular Quantum-Dot Cellular Automata,” Craig S. Lent and Beth Isaksen
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 9, SEPTEMBER 2003
Not Specifically Advocating Quantum Dots

- A number of post-transistor devices have been proposed.
- The shape of the performance curves have been validated by a consensus of reputable physicists.
- However, validity of any data point can be questioned.
- Cross-checking appropriate; see →

Reversible Multiplier Status

- 8×8 Multiplier Designed, Fabricated, and Tested by IBM & University of Michigan
- Power savings was up to 4:1
QCA Microprocessor Status

- M. Niemier Ph. D. Thesis, University of Notre Dame
- 12 Bit µP
- CAD design tool principles
 - $10 \times$ circuit density of CMOS at same λ
- Applies to various devices
 - Metal dot 4.2 nm2
 - Molecular 1.1 nm2

Figure 4.6. A 2-bit QCA Simple 12 ALU with registers
Reversible Microprocessor Status

- Status
 - Subject of Ph. D. thesis
 - Chip laid out (no floating point)
 - RISC instruction set
 - C-like language
 - Compiler
 - Demonstrated on a PDE
 - However: really weird and not general to program with +=, -=, etc. rather than =

Reversible Computer Engineering and Architecture

Carlin Vieri
MIT Artificial Intelligence Laboratory

Tom Knight: Committee chairman
Gerald Sussman, Gill Pratt: readers

Pendulum Reversible Processor

- 200,000 Transistors
- 18 Instructions
- 3-phase SCRL
- 50 mm² in HP14
- 180 Pins
- 32 power supplies
- 2 Person years for schematics and layout
CPU Design

• Leading Thoughts
 – Implement CPU logic using reversible logic
 • High efficiency for the component doing the most logic
 – Implement state and memory using conventional logic
 • Low efficiency, but not many operations
 – Permits programming much like today

[Diagram showing CPU Logic, CPU State, Conventional Memory, Reversible Logic, Irreversible Logic]
Supercomputer is 211K chips, each with 70.7K nodes of 5.77K cells of 240 bytes; solves 86T=44.1Kx44.1Kx44.1K cell problem.
System dissipates 332KW from the faces of a cube 1.53m on a side, for a power density of 47.3KW/m². Power: 332KW active components; 1.33MW refrigeration; 3.32MW wall power; 6.65MW from power company.
System has been inflated by 2.57 over minimum size to provide enough surface area to avoid overheating.
Chips are at 99.22% full, comprised of 7.07G logic, 101M memory decoder, and 6.44T memory transistors. Gate cell edge is 34.4nm (logic) 34.4nm (decoder); memory cell edge is 4.5nm (memory).
Compute power is 768 EFLOPS, completing an iteration in 224µs and a run in 9.88s.
Outline

• The Computing of Physics: The Need for Zettaflops
• Limits of Moore’s Law
 Today’s Technologies
• An Expert System/Optimizer for Supercomputing
• The Physics of Computing: Reaching to Zettaflops
• Roadmap and Future Directions
Where to Go Next I: Workshop

• Don’t believe me? Believe the Experts

• Workshop Agenda October 12
 – Applications session – Climate expert Phil Jones
 – Advanced Architectures – PIM expert Peter Kogge
 – Limits of Current Architectures – Me
 – Panel I: Important Applications
 – New Logic – Reversible Logic Expert Michael Frank
 – New Devices – Quantum Dot Developer Craig Lent
 – Panel II: Do Opportunities Justify the Effort?
Where To Go Next II: Roadmap

Notes:
* Not necessarily one machine; different applications may require different machines
* Specifics are just my ideas
Will Supercomputers Grow Forever?

- Will supercomputer simulations scale up forever, or will there be a maximum?
 - Zettaflops simulates the Earth, and the Earth is the largest thing that we care about in detail
- Will progress in science always come through "simulating physics on a computer"?
 - Perhaps future problems could be formulated as a combination of symbolic reasoning (artificial intelligence) and floating point