Document Info

- **Title**: Reversible Logic for Supercomputing
- **Document Number**: 5231909
- **SAND Number**: 2005-2689 C
- **Review Type**: Electronic
- **Status**: Approved
- **Sandia Contact**: DEBENEDICTIS, ERIK P.
- **Submit Date**: 04/22/2005
- **Peer Reviewed?**: N

Event (Conference/Journal/Book) Info

- **Name**: Computing Frontiers 2005
- **City**: Ischia
- **State**: Country: Italy
- **Start Date**: 05/04/2005
- **End Date**: 05/06/2005

Partnership Info

- **Partnership Involved**: No
- **Partner Approval**: Agreement Number:

Patent Info

- **Scientific or Technical in Content**: Yes
- **Technical Advance**: No
- **TA Form Filed**: No

Classification and Sensitivity Info

- **Title**: Unclassified-Unlimited
- **Abstract**: Document: Unclassified-Unlimited
- **Additional Limited Release Info**: None.
- **DUSA**: None.

Routing Details

<table>
<thead>
<tr>
<th>Role</th>
<th>Routed To</th>
<th>Approved By</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivative Classifier Approver</td>
<td>SUMMERS, RANDALL M.</td>
<td>SUMMERS, RANDALL M.</td>
<td>04/22/2005</td>
</tr>
<tr>
<td>Role</td>
<td>Name</td>
<td>Second Name</td>
<td>Date</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Classification Approver</td>
<td>WILLIAMS, RONALD L.</td>
<td>WILLIAMS, RONALD L.</td>
<td>04/25/2005</td>
</tr>
<tr>
<td>Conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manager Approver</td>
<td>PUNDIT, NEIL D.</td>
<td>PUNDIT, NEIL D.</td>
<td>04/29/2005</td>
</tr>
<tr>
<td>Conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrator Approver</td>
<td>LUCERO, ARLENE M.</td>
<td>KRAMER, SAMUEL</td>
<td>06/05/2007</td>
</tr>
</tbody>
</table>

Created by WebCo Problems? Contact CCHD: by email or at 845-CCHD (2243).

For Review and Approval process questions please contact the **Application Process Owner**
Reversible Logic for Supercomputing

How to save the Earth with Reversible Computing

Erik P. DeBenedictis
Sandia National Laboratories

May 5, 2005
Applications and $100M Supercomputers

System Performance

- 1 Zettaflops
- 100 Exaflops
- 10 Exaflops
- 1 Exaflops
- 100 Petaflops
- 10 Petaflops
- 1 Petaflops
- 100 Teraflops

Applications

- Plasma Fusion Simulation [Jardin 03]
- Full Global Climate [Malone 03]
- Compute as fast as the engineer can think [NASA 99]
- MEMS Optimize

Technology

- Nanotech + Reversible Logic [P]
 - (green) best-case logic
 - (red) worst-case logic
- Architecture: IBM Cyclops, FPGA, PIM
- Red Storm/Cluster

No schedule provided by source

[SCALeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet at http://www.pnl.gov/scales/.

Objectives and Challenges

• Could reversible computing have a role in solving important problems?
 – Maybe, because power is a limiting factor for computers and reversible logic cuts power
• However, a complete computer system is more than “low power”
 – Processing, memory, communication in right balance for application
 – Speed must match user’s impatience
 – Must use a real device, not just an abstract reversible device
Outline

• An Exemplary Zettaflops Problem
• The Limits of Current Technology
• Arbitrary Architectures for the Current Problem
 – Searching the Architecture Space
 – Bending the Rules to Find Something
 – Exemplary Solution
• Conclusions
“Simulations of the response to natural forcings alone … do not explain the warming in the second half of the century”

“.model estimates that take into account both greenhouse gases and sulphate aerosols are consistent with observations over this period” - IPCC 2001
FLOPS Increases for Global Climate

<table>
<thead>
<tr>
<th>Issue</th>
<th>Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Zettaflops</td>
<td>Ensembles, scenarios</td>
</tr>
<tr>
<td></td>
<td>10×</td>
</tr>
<tr>
<td></td>
<td>Embarrassingly</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
</tr>
<tr>
<td>100 Exaflops</td>
<td>Run length</td>
</tr>
<tr>
<td></td>
<td>100×</td>
</tr>
<tr>
<td></td>
<td>Longer Running</td>
</tr>
<tr>
<td></td>
<td>Time</td>
</tr>
<tr>
<td>1 Exaflops</td>
<td>New parameterizations</td>
</tr>
<tr>
<td></td>
<td>100×</td>
</tr>
<tr>
<td></td>
<td>More Complex</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
</tr>
<tr>
<td>10 Petaflops</td>
<td>Model Completeness</td>
</tr>
<tr>
<td></td>
<td>100×</td>
</tr>
<tr>
<td></td>
<td>More Complex</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
</tr>
<tr>
<td>100 Teraflops</td>
<td>Spatial Resolution</td>
</tr>
<tr>
<td></td>
<td>$10^4 \times (10^3 \times 10^5 \times)$</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
</tr>
<tr>
<td>10 Gigaflops</td>
<td>Clusters Now In Use</td>
</tr>
<tr>
<td></td>
<td>(100 nodes, 5% efficient)</td>
</tr>
</tbody>
</table>

Outline

• An Exemplary Zettaflops Problem

• The Limits of Current Technology

• Arbitrary Architectures for the Current Problem
 – Searching the Architecture Space
 – Bending the Rules to Find Something
 – Exemplary Solution

• Conclusions
Scientific Supercomputer Limits

<table>
<thead>
<tr>
<th>Expert Opinion</th>
<th>Best-Case Logic</th>
<th>Microprocessor Architecture</th>
<th>Physical Factor</th>
<th>Source of Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 Exaflops</td>
<td>800 Petaflops</td>
<td>Reliability limit</td>
<td>Esteemed physicists</td>
</tr>
<tr>
<td></td>
<td>25 Exaflops</td>
<td>200 Petaflops</td>
<td>Derate 20,000 convert logic ops to floating point</td>
<td>Floating point engineering</td>
</tr>
<tr>
<td></td>
<td>4 Exaflops</td>
<td>32 Petaflops</td>
<td>Derate for manufacturing margin (4×)</td>
<td>Estimate</td>
</tr>
<tr>
<td></td>
<td>1 Exaflops</td>
<td>8 Petaflops</td>
<td>Uncertainty (6×)</td>
<td>Gap in chart</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 Teraflops</td>
<td>Improved devices (4×)</td>
<td>Estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 Teraflops</td>
<td>Projected ITRS improvement to 22 nm (100×)</td>
<td>ITRS committee of experts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower supply voltage (2×)</td>
<td>ITRS committee of experts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red Storm</td>
<td>contract</td>
</tr>
</tbody>
</table>

Assumption: Supercomputer is size & cost of Red Storm: US$100M budget; consumes 2 MW wall power; 750 KW to active components.

Derate 20,000 convert logic ops to floating point (64 bit precision).

Reliability limit 750KW/(80kB T)² (T=60°C junction temperature).
Outline

• An Exemplary Zettaflops Problem
• The Limits of Current Technology
• Arbitrary Architectures for the Current Problem
 – Searching the Architecture Space
 – Bending the Rules to Find Something
 – Exemplary Solution
• Conclusions
Supercomputer Expert System

Application/Algorithm run time model as in applications modeling

Logic & Memory Technology design rules and performance parameters for various technologies (CMOS, Quantum Dots, C Nano-tubes …)

Interconnect Speed, power, pin count, etc.

Physical Cooling, packaging, etc.

Expert System & Optimizer (looks for best 3D mesh of generalized MPI connected nodes, μP and other)

Time Trend Lithography as a function of years into the future

Results
1. Block diagram picture of optimal system (model)
2. Report of FLOPS count as a function of years into the future
Sample Analytical Runtime Model

- Simple case: finite difference equation
- Each node holds $n \times n \times n$ grid points

- Volume-area rule
 - Computing $\propto n^3$
 - Communications $\propto n^2$

$$T_{step} = 6 n^2 C_{bytes} T_{byte} + n^3 F_{grind/floprate}$$
Expert System for Future Supercomputers

- Applications Modeling
 - Runtime
 \[T_{\text{run}} = f_1(n, \text{design}) \]
- Technology Roadmap
 - Gate speed = \(f_2(\text{year}) \),
 - chip density = \(f_3(\text{year}) \),
 - cost = \($(n, \text{design}) \)
- Scaling Objective Function
 - I have \(C_1 \) & can wait \(T_{\text{run}} = C_2 \) seconds. What is the biggest \(n \) I can solve in year \(Y \)?

- Use “Expert System” To Calculate:
 \[\max n: C_1 < n, T_{\text{run}} < C_2 \]
 All designs

- Report:
 \[\text{Floating operations} \]
 \[T_{\text{run}}(n, \text{design}) \]
 and illustrate “design”
Outline

• An Exemplary Zettaflops Problem
• The Limits of Current Technology
• Arbitrary Architectures for the Current Problem
 – Searching the Architecture Space
 – Bending the Rules to Find Something
 – Exemplary Solution
• Conclusions
The Big Issue

• Initially, didn’t meet constraints

- More Parallelism
 - Scaled Climate Model
 - 2D → 3D mesh, one cell per processor
 - Parallelize cloud-resolving model and ensembles

- More Device Speed
 - One Barely Plausible Solution
 - Consider special purpose logic with fast logic and low-power memory
 - Consider only highest performance published nanotech device QDCA

- Initial reversible nanotech
<table>
<thead>
<tr>
<th>Technology</th>
<th>Speed (min-max)</th>
<th>Dimension (min-max)</th>
<th>Energy per gate-op</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS</td>
<td>30 ps-1 μs</td>
<td>8 nm-5 μm</td>
<td>4 aJ</td>
<td></td>
</tr>
<tr>
<td>RSFQ</td>
<td>1 ps-50 ps</td>
<td>300 nm-1 μm</td>
<td>2 aJ</td>
<td>Larger</td>
</tr>
<tr>
<td>Molecular</td>
<td>10 ns-1 ms</td>
<td>1 nm-5 nm</td>
<td>10 zJ</td>
<td>Slower</td>
</tr>
<tr>
<td>Plastic</td>
<td>100 μs-1 ms</td>
<td>100 μm-1 mm</td>
<td>4 aJ</td>
<td>Larger+Slower</td>
</tr>
<tr>
<td>Optical</td>
<td>100 as-1 ps</td>
<td>200 nm-2 μm</td>
<td>1 pJ</td>
<td>Larger+Hotter</td>
</tr>
<tr>
<td>NEMS</td>
<td>100 ns-1 ms</td>
<td>10-100 nm</td>
<td>1 zJ</td>
<td>Slower+Larger</td>
</tr>
<tr>
<td>Biological</td>
<td>100 fs-100 μs</td>
<td>6-50 μm</td>
<td>.3 yJ</td>
<td>Slower+Larger</td>
</tr>
<tr>
<td>Quantum</td>
<td>100 as-1 fs</td>
<td>10-100 nm</td>
<td>1 zJ</td>
<td>Larger</td>
</tr>
<tr>
<td>QDCA</td>
<td>100 fs-10ps</td>
<td>1-10 nm</td>
<td>1 yJ</td>
<td>Smaller, faster, cooler</td>
</tr>
</tbody>
</table>

Data from ITRS ERD Section, data from Notre Dame
Outline

• An Exemplary Zettaflops Problem
• The Limits of Current Technology
• Arbitrary Architectures for the Current Problem
 – Searching the Architecture Space
 – Bending the Rules to Find Something
 – Exemplary Solution
• Conclusions
An Exemplary Device: Quantum Dots

- Pairs of molecules create a memory cell or a logic gate

Ref. “Clocked Molecular Quantum-Dot Cellular Automata,” Craig S. Lent and Beth Isaksen
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 9, SEPTEMBER 2003
1 Zettaflops Scientific Supercomputer

• How could we increase “Red Storm” from 40 Teraflops to 1 Zettaflops?
• Answer
 – >2.5×10^7 power reduction per operation
 – Faster devices × more parallelism >2.5×10^7
 – Smaller devices to fit existing packaging

A number of post-transistor devices have been proposed.

The shape of the performance curves have been validated by a consensus of reputable physicists.

However, validity of any data point can be questioned.

Cross-checking appropriate; see →

QCA Microprocessor Status

• M. Niemier Ph. D. Thesis, University of Notre Dame
• 12 Bit μP
• CAD design tool principles
 – 10× circuit density of CMOS at same λ
• Applies to various devices
 – Metal dot 4.2 nm²
 – Molecular 1.1 nm²

Figure 4.6. A 2-bit QCA Simple 12 ALU with Registers
Reversible Microprocessor Status

• Status
 – Subject of Ph. D. thesis
 – Chip laid out (no floating point)
 – RISC instruction set
 – C-like language
 – Compiler
 – Demonstrated on a PDE
 – However: really weird and not general to program with +=, -=, etc. rather than =
CPU Design

• Leading Thoughts
 – Implement CPU logic using reversible logic
 • High efficiency for the component doing the most logic
 – Implement state and memory using conventional logic
 • Low efficiency, but not many operations
 – Permits programming much like today
Atmosphere Simulation at a Zettaflops

Supercomputer is 211K chips, each with 70.7K nodes of 5.77K cells of 240 bytes; solves 86T=44.1Kx44.1Kx44.1K cell problem. System dissipates 332KW from the faces of a cube 1.53m on a side, for a power density of 47.3KW/m². Power: 332KW active components; 1.33MW refrigeration; 3.32MW wall power; 6.65MW from power company. System has been inflated by 2.57 over minimum size to provide enough surface area to avoid overheating. Chips are at 99.22% full, comprised of 7.07G logic, 101M memory decoder, and 6.44T memory transistors. Gate cell edge is 34.4nm (logic), 34.4nm (decoder); memory cell edge is 4.5nm (memory). Compute power is 768 EFLOPS, completing an iteration in 224µs and a run in 9.88s.
Performance Curve

FLOPS rate on Atmosphere Simulation →

Year →

Custom QDCA Rev. Logic

Rev. Logic Microprocessor

Custom

Cluster
Outline

• An Exemplary Zettaflops Problem
• The Limits of Current Technology
• Arbitrary Architectures for the Current Problem
 – Searching the Architecture Space
 – Bending the Rules to Find Something
 – Exemplary Solution
• Conclusions
Conclusions

- There are important applications that are believed to exceed the limits of irreversible logic
 - At US$100M budget
 - E.g. solution to global warming
- Reversible logic & nanotech point in the right direction
 - Low power

- Device Requirements
 - Push speed of light limit
 - Substantially sub-$k_B T$
 - Molecular scales
- Software and Algorithms
 - Must be much more parallel than today
- With all this, just barely works
- Conclusions appear to apply generally
Backup
<table>
<thead>
<tr>
<th>Expert Opinion</th>
<th>Best-Case Logic</th>
<th>Microprocessor Architecture</th>
<th>Physical Factor</th>
<th>Source of Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Exaflops</td>
<td>125:1</td>
<td>800 Petaflops</td>
<td>Reliability limit</td>
<td>Esteemed physicists</td>
</tr>
<tr>
<td>25 Exaflops</td>
<td>Derate 20,000 convert logic ops to floating point</td>
<td>200 Petaflops</td>
<td>Est. physicists (T=60°C junction temperature)</td>
<td></td>
</tr>
<tr>
<td>4 Exaflops</td>
<td>Derate for manufacturing margin (4×)</td>
<td>32 Petaflops</td>
<td>Est. physicists</td>
<td></td>
</tr>
<tr>
<td>1 Exaflops</td>
<td>Uncertainty (6×)</td>
<td>8 Petaflops</td>
<td>Gap in chart</td>
<td></td>
</tr>
<tr>
<td>1 Exaflops</td>
<td>Improved devices (4×)</td>
<td>8 Petaflops</td>
<td>Est. physicists</td>
<td></td>
</tr>
<tr>
<td>8 Exaflops</td>
<td>Improved devices (4×)</td>
<td>80 Teraflops</td>
<td>Est. physicists</td>
<td></td>
</tr>
<tr>
<td>80 Teraflops</td>
<td>Projected ITRS improvement to 22 nm (100×)</td>
<td>40 Teraflops</td>
<td>ITRS committee of experts</td>
<td></td>
</tr>
<tr>
<td>40 Teraflops</td>
<td>Lower supply voltage (2×)</td>
<td>40 Teraflops</td>
<td>ITRS committee of experts</td>
<td></td>
</tr>
</tbody>
</table>

Assumption: Supercomputer is size & cost of Red Storm: US$100M budget; consumes 2 MW wall power; 750 KW to active components.
Metaphor: FM Radio on Trip to in USA

• You drive to a distant listening to FM radio

• Music clear for a while, but noise creeps in and then overtakes music

• Analogy: You live out the next dozen years buying PCs every couple years

• PCs keep getting faster
 – clock rate increases
 – fan gets bigger
 – won’t go on forever

• Why…see next slide

Driving away from FM transmitter \rightarrow less signal
Noise from electrons \rightarrow no change

Increasing numbers of gates \rightarrow less signal power
Noise from electrons \rightarrow no change