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Overview

• Target Audience
– Classical programmers 

who want to know what 
quantum computer 
programming is all 
about

• Limitations of this 
Approach
– Only small quantum 

computers can be 
simulated

• The following limitations 
change the form of 
expression but do not limit 
expressive power
– Uses only the 

computational basis
– Only simulates Von 

Neumann 
measurements



Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
• Measurements
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Quantum Register
typedef double R; // R for real number
typedef long Bits; // Bits for bit vector

struct C { // complex number
R re, im;

};

struct Superposition {
C Amplitude; // amplitude of superposition
Bits State; // state

};

struct QubitRegister {
int Qubits; // number of qubits
int Num; // number of non-zero superpositions
Superposition *Vec; // pointer to superpositions
void Rotate(int, R); // universal set of operations
void CNot(int, int);
int Measure(int);

};



Notes on State Representation

• Normalization
– In a quantum register, 

the sum of amplitudes 
squared needs to be 1

– Quantum operations 
will preserve 
normalization up to 
numerical stability

– This means code needs 
to periodically check 
normalization and take 
appropriate action

• Zero Amplitude States
– All 2n states can be 

imagined to exist, with 
those not explicitly 
allocated having zero 
amplitude

• Global Phase
– Multiplying all 

amplitudes by the same 
complex phase factor 
does not change 
anything



Notes on State Representation

• Number of Qubits
– Algorithms that fill the 

quantum superposition 
space will bog down a 
classical computer 
before exceeding 32 
qubits

– On the other hand, 
other algorithms can 
use >32 qubits

– Therefore, provide the 
option of >32 qubits

• Memory Allocation
– Some key algorithms 

start with a sparsely 
filled superposition 
space and end with a 
QFT largely filling the 
superposition space

– Therefore, allocate 
states dynamically
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Non-entangling Operations
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Non-entangling operations execute logic operations on the qubit values in the 
superposition states without changing the number of states or the amplitudes.

Non-entangling operations include Not, CNot, Toffoli



Quantum Not and CNot
void QubitRegister::Not(int Qubitnum) {

Bits flip = 1<<Qubitnum;
for (int i = 0; i < Num; i++)

Vec[i].State ^= flip;
};

// Note: Cnot can be simulated as Toffoli with inputs tied together,
// which will make Toffoli the most frequently used operation
// Author’s actual implementation of Toffoli is highly optimized
void QubitRegister::Toffoli(int C1, int C2, int Bit) {

Bits c1 = 1<<C1;
Bits c2 = 1<<C2;
Bits flip = 1<<Bit;
for (int i = 0; i < Num; i++)

if ((Vec[i].State&c1) != 0 && (Vec[i].State&c2) != 0)
Vec[i].State ^= flip;

}
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Entangling Operations
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Entangling Operations
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Entangling Operations

• Memory Allocation
– Every superposition 

state must be paired 
with another state that 
differs only in the 
designated bit EVEN IF 
THAT STATE DOES 
NOT EXIST

– If the state does not 
exist, it must be 
allocated, increasing 
memory usage

• Entangling operations 
include Hadamard, which 
is defined by

A’0
A’1

= 1/√2 A0
A1

1   1
1  -1



Hadamard Example
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Entangling Operations
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Exemplary Method

• Sort the superposition states such that states 
differing only by the designated bit become 
adjacent

• Sweep through superposition states
– If necessary, allocate a state to create a pair
– Rotate amplitudes per

• Sweep through superposition states deleting 
states with amplitudes < 1E-9

• List is left in no particular sorted order

A’0
A’1

= A0
A1

W  X
Y  Z



Exemplary Code (1)
#define LIMIT (3.125e-8/16)
void QubitRegister::Gate(int QubitNum, C A00, C A01, C A10, C A11) {

QR->Sort2(QubitNum, 1); // sort – sets FullRangeBits and GroupedBits
int BothPresent = 0; // identify existing pairs
for (int i = 0; i < Num-1; i++)

if ((Vec[i].State&FullRangeBits) == (Vec[i+1].State&FullRangeBi
BothPresent++;

forcespace(Num*2 - BothPresent); // allocate memory

// walk through sorted list rotating pairs
// to complete pairs, add a state at the end of the list
int OldNum = Num;
for (int i = 0; i < OldNum; i++) {

Superposition *p0 = &Vec[i], *p1;
if (i+1 < OldNum && (Vec[i].State&FullRangeBits) ==

(Vec[i+1].State&FullRangeBits)) {
p1 = &Vec[i+1];
i++;

}
else {

p1 = &Vec[Num++];
p1->State = p0->State^GroupedBits;

}



Exemplary Code (2)
if ((p0->State&GroupedBits) != 0) {

Superposition *p = p0;
p0 = p1;
p1 = p;

}

C t = p0->Amplitude;
p0->Amplitude = p0->Amplitude*A00 + p1->Amplitude*A01;
p1->Amplitude =             t*A10 + p1->Amplitude*A11;

}

// delete superposition states with amplitude below threshold 
for (int i = 0; i < Num; i++)

while (i < Num && Vec[i].Amplitude.re*Vec[i].Amplitude.re +
Vec[i].Amplitude.im*Vec[i].Amplitude.im < LIMI

Vec[i] = Vec[--Num];

}
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Measurement

• According to Quantum Information Theory, the 
only measurement necessary is the measurement 
of a single bit

• More complex measurements (POVMs) can be 
emulated by ancillae, gate operations, and then 
single bit measurements

• Multi-bit measurements are equivalent to 
measuring the bits one at a time and combining 
the classical results into an integer



Measurement Process

• Measurement Outcome
– Note: Amplitude 

squared is probability 
of a state being 
detected by 
measurement

– Pick a state at random 
but weighted by 
probability; outcome is 
value of designated bit 
in this state

– This method needs 
adjustment for round 
off errors (later slide)

• Resulting State
– Delete all states where 

the designated bit 
differs from the 
measurement outcome

– Renormalize



Measurement Example
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Measurement Example
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Measurement Example
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Measurement Notes

• Round off errors and 
imperfect normalization 
can cause measurement 
problems

• Recommended method:
– Sweep through all 

states calculating p0 
and p1 (probability of 
measuring a 0 and 1)

– Note p0 + p1 ≈

 

1

– Use a pseudo random 
number generator to 
pick the measurement 
outcome based on 
relative probabilities of 
p0 and p1

– Delete all states 
incompatible with the 
measurement outcome

– Renormalize



Exemplary Measurement Code
int QubitRegister::MeasureBit(int bit) {

Bits mask = 1 << bit;
R prob0 = 0.0, prob1 = 0.0;
for (int i = 0; i < Num; i++) { // probability of 0 vs. 1

C *x = &Vec[i].Amplitude;
R p = x->re*x->re + x->im*x->im;
if ((Vec[i].State&mask) == 0) prob0 += p;
else prob1 += p;

}

// decide result of measurement
int rval = R(genrand_real2()*(prob0+prob1)) > prob0 ? 1 : 0;

// delete states inconsistent with the measurement, normalize others
R renormal = R(sqrt((prob0+prob1)/(rval == 0 ? prob0 : prob1)));
for (int i = 0; i < Num; i++) {

while (i < Num && ((Vec[i].State&mask) == 0) != (rval == 0))
Vec[i] = Vec[--Num]; // delete incompatible state

if (i < Num)
Vec[i].Amplitude *= renormal; // renormalize

}

return rval;
}
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Addition

• There are various quantum 
addition circuits
– Some options are 

quantum+quantum and 
quantum+classical

– ArXiv:quant-ph/0410184 
is a ripple-carry adder

– ArXiv:quant-ph/0008033 
is a qft based adder 
with no ancilla but other 
issues

• Let’s try the ripple carry 
adder in ArXiv:quant- 
ph/0410184



Ref arXiv quant-ph/0410184

• Majority Element

• Uncompute Majority Element

• Alternate (more parallelism)

M

M-1

M-1



Ref arXiv:quant-ph/0410184

• Adder Layout
– Inputs a and b
– Outputs a (unchanged input) and s (sum)
– Also inputs 0 = c0 and carry out 0

M
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a3

0



Exemplary Addition Code
#define M(X, Y, Z) { Y.CNot(Z); X.CNot(Z); Z.Toffoli(X, Y); }
//#define MI(X, Y, Z) { Z.Toffoli(X, Y); X.CNot(Z); Y.CNot(X); }
#define MI(X, Y, Z) { Y.Not(); Y.CNot(X); Z.Toffoli(X, Y); Y.Not(); \

X.CNot(Z); Y.CNot(Z); }
int bits = 6, tabsize = 8;
QuantumInt A(bits), C(1);
for (int row = 0; row < tabsize; row++)

for (int col = 0; col < tabsize; col++) {
QuantumInt B(bits);
A = row;
B = col;
C = 0;
M(C, B[0], A[0]);
for (int i = 1; i < bits; i++) M(A[i-1], B[i], A[i]);
for (int i = bits-1; i >= 1; i--) MI(A[i-1], B[i], A[i]);
MI(C, B[0], A[0]);

int Bx = int(B);
printf("%d + %d = %d %s\n", row, col, Bx,

(row+col)%(1<<bits) != Bx ? " ERR" : "");
}
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