Document Info

<table>
<thead>
<tr>
<th>Title</th>
<th>Quantum Programming for Classical Programmers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Number</td>
<td>5236851</td>
</tr>
<tr>
<td>SAND Number</td>
<td>2005-7966 P</td>
</tr>
<tr>
<td>Review Type</td>
<td>Electronic</td>
</tr>
<tr>
<td>Status</td>
<td>Approved</td>
</tr>
<tr>
<td>Sandia Contact</td>
<td>DEBENEDICTIS, ERIK P.</td>
</tr>
<tr>
<td>Submittal Type</td>
<td>Viewgraph/Presentation</td>
</tr>
<tr>
<td>Submit Date</td>
<td>12/19/2005</td>
</tr>
<tr>
<td>Comments</td>
<td>R&A to permit sharing of this document with specific non-Sandian project collaborators.</td>
</tr>
<tr>
<td>Peer Reviewed?</td>
<td>N</td>
</tr>
</tbody>
</table>

Author(s)

DEBENEDICTIS, ERIK P.

Event (Conference/Journal/Book) Info

<table>
<thead>
<tr>
<th>Name</th>
<th>No event</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>No City</td>
</tr>
<tr>
<td>State</td>
<td>NM</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>End Date</td>
<td>01/01/2006</td>
</tr>
</tbody>
</table>

Partnership Info

<table>
<thead>
<tr>
<th>Partnership Involved</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner Approval</td>
<td></td>
</tr>
<tr>
<td>Agreement Number</td>
<td></td>
</tr>
</tbody>
</table>

Patent Info

<table>
<thead>
<tr>
<th>Scientific or Technical in Content</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Advance</td>
<td>No</td>
</tr>
<tr>
<td>TA Form Filed</td>
<td>No</td>
</tr>
</tbody>
</table>

Classification and Sensitivity Info

<table>
<thead>
<tr>
<th>Title</th>
<th>Unclassified-Unlimited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Document</td>
<td>Unclassified-Unlimited</td>
</tr>
</tbody>
</table>

Routing Details

<table>
<thead>
<tr>
<th>Role</th>
<th>Routed To</th>
<th>Approved By</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>Approver</td>
<td>Approver</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Derivative Classifier Approver</td>
<td>HUDGENS, JAMES J.</td>
<td>HUDGENS, JAMES J.</td>
<td>12/20/2005</td>
</tr>
<tr>
<td>Classification Approver</td>
<td>WILLIAMS, RONALD L.</td>
<td>WILLIAMS, RONALD L.</td>
<td>12/21/2005</td>
</tr>
<tr>
<td>Manager Approver</td>
<td>PUNDIT, NEIL D.</td>
<td>PUNDIT, NEIL D.</td>
<td>12/21/2005</td>
</tr>
<tr>
<td>Administrator Approver</td>
<td>LUCERO, ARLENE M.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Created by WebCo Problems? Contact CCHD: by email or at 845-CCHD (2243).

For Review and Approval process questions please contact the Application Process Owner
Quantum Programming for Classical Programmers

Erik P. DeBenedictis
Overview

• Target Audience
 – Classical programmers who want to know what quantum computer programming is all about

• Limitations of this Approach
 – Only small quantum computers can be simulated

• The following limitations change the form of expression but do not limit expressive power
 – Uses only the computational basis
 – Only simulates Von Neumann measurements
Outline

- Representation of Qubits
- Non-Entangling Operations
- Entangling Operations
- Measurements
- Addition
Quantum Register

| Complex amplitudes | n bits | |quantum state>|
|-------------------|--------|-----------------|
| 1/2 | 0 0 0 0 0 0 0 0 0 |
| 1/2 $e^{i\pi/4}$ | 0 0 0 0 0 0 0 0 1 |
| 1/2 $e^{i\pi/2}$ | 0 0 0 0 0 0 1 0 0 |
| 1/2 $e^{i3\pi/4}$ | 0 0 0 0 0 1 1 1 0 |

$1 \leq k \leq 2^n$

The data are just examples
typedef double R; // R for real number
typedef long Bits; // Bits for bit vector

struct C {
 R re, im;
}; // complex number

struct Superposition {
 C Amplitude; // amplitude of superposition
 Bits State; // state
};

struct QubitRegister {
 int Qubits; // number of qubits
 int Num; // number of non-zero superpositions
 Superposition *Vec; // pointer to superpositions
 void Rotate(int, R); // universal set of operations
 void CNot(int, int); // CNot function
 int Measure(int); // Measure function
};
Notes on State Representation

- **Normalization**
 - In a quantum register, the sum of amplitudes squared needs to be 1
 - Quantum operations will preserve normalization up to numerical stability
 - This means code needs to periodically check normalization and take appropriate action

- **Zero Amplitude States**
 - All 2^n states can be imagined to exist, with those not explicitly allocated having zero amplitude

- **Global Phase**
 - Multiplying all amplitudes by the same complex phase factor does not change anything
Notes on State Representation

- **Number of Qubits**
 - Algorithms that fill the quantum superposition space will bog down a classical computer before exceeding 32 qubits
 - On the other hand, other algorithms can use >32 qubits
 - Therefore, provide the option of >32 qubits

- **Memory Allocation**
 - Some key algorithms start with a sparsely filled superposition space and end with a QFT largely filling the superposition space
 - Therefore, allocate states dynamically
Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
• Measurements
• Addition
Non-entangling Operations

<table>
<thead>
<tr>
<th>Complex amplitudes</th>
<th>n bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2})</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>(\frac{1}{2} e^{i\pi/4})</td>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>(\frac{1}{2} e^{i\pi/2})</td>
<td>0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>(\frac{1}{2} e^{i3\pi/4})</td>
<td>0 0 0 0 1 1 0 0</td>
</tr>
</tbody>
</table>

Non-entangling operations execute logic operations on the qubit values in the superposition states without changing the number of states or the amplitudes.

Non-entangling operations include Not, CNot, Toffoli
void QubitRegister::Not(int Qubitnum) {
 Bits flip = 1<<Qubitnum;
 for (int i = 0; i < Num; i++)
 Vec[i].State ^= flip;
}

// Note: Cnot can be simulated as Toffoli with inputs tied together,
// which will make Toffoli the most frequently used operation
// Author’s actual implementation of Toffoli is highly optimized
void QubitRegister::Toffoli(int C1, int C2, int Bit) {
 Bits c1 = 1<<C1;
 Bits c2 = 1<<C2;
 Bits flip = 1<<Bit;
 for (int i = 0; i < Num; i++)
 if ((Vec[i].State&c1) != 0 && (Vec[i].State&c2) != 0)
 Vec[i].State ^= flip;
}
Outline

- Representation of Qubits
- Non-Entangling Operations
- Entangling Operations
- Measurements
- Addition
Entangling Operations

Complex amplitudes	n bits		quantum state>	
$1/2$	0 0 0 0 0 0 0 0 0		quantum state>	
$1/2 \ e^{i\pi/4}$	0 0 0 0 0 0 0 1 0			
$1/2 \ e^{i\pi/2}$	0 0 0 0 0 0 1 0 0			
$1/2 \ e^{i3\pi/4}$	0 0 0 0 0 1 1 1 1			

$1 \leq k \leq 2^n$

Say you want to rotate this qubit
Entangling Operations

1 ≤ k ≤ 2^n

Complex amplitudes

<table>
<thead>
<tr>
<th>A_0</th>
<th>A_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B_0</th>
<th>B_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

n bits

<table>
<thead>
<tr>
<th>quantum state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>1 1</td>
</tr>
</tbody>
</table>

Create pairs of superposition states differing only in the designated qubit

①

Update amplitudes

\[
\begin{align*}
\begin{pmatrix}
A'_0 \\
A'_1 \\
B'_0 \\
B'_1
\end{pmatrix} &=
\begin{pmatrix}
W & X \\
Y & Z
\end{pmatrix}
\begin{pmatrix}
A_0 \\
A_1 \\
B_0 \\
B_1
\end{pmatrix}
\end{align*}
\]

Say you want to rotate this qubit
Entangling Operations

• Memory Allocation
 – Every superposition state must be paired with another state that differs only in the designated bit EVEN IF THAT STATE DOES NOT EXIST
 – If the state does not exist, it must be allocated, increasing memory usage

• Entangling operations include Hadamard, which is defined by

\[
\begin{pmatrix}
A'_0 \\
A'_1
\end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix} \begin{pmatrix}
A_0 \\
A_1
\end{pmatrix}
\]
Hadamard Example

Complex amplitudes

n bits

| quantum state>

k = 2

Say you want to do a Hadamard on this qubit
Entangling Operations

| Complex amplitudes | n bits | |quantum state>|
|---------------------|--------|------------------|
| \(A_0\) | 0 0 0 0 0 0 0 0 | \(B_0\) | 0 0 0 0 0 0 1 0 |
| \(A_1=0\) | 0 0 0 0 1 0 0 0 | \(B_1\) | 0 0 0 0 1 0 1 0 |

- **k = 4**

Create pairs of superposition states differing only in the designated qubit, allocating new ones from dynamic memory with zero amplitude

- **Update amplitudes**

\[
\begin{bmatrix}
A_0' \\
A_1'
\end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} A_0 \\
A_1
\end{bmatrix}
\]

\[
\begin{bmatrix}
B_0' \\
B_1'
\end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} B_0 \\
B_1
\end{bmatrix}
\]

Say you want to do a Hadamard on this qubit...
Exemplary Method

- Sort the superposition states such that states differing only by the designated bit become adjacent
- Sweep through superposition states
 - If necessary, allocate a state to create a pair
 - Rotate amplitudes per
 \[
 \begin{pmatrix}
 A'_0 \\
 A'_1
 \end{pmatrix}
 =
 \begin{pmatrix}
 W & X \\
 Y & Z
 \end{pmatrix}
 \begin{pmatrix}
 A_0 \\
 A_1
 \end{pmatrix}
 \]
- Sweep through superposition states deleting states with amplitudes < 1E-9
- List is left in no particular sorted order
Exemplary Code (1)

```c
#define LIMIT (3.125e-8/16)
void QubitRegister::Gate(int QubitNum, C A00, C A01, C A10, C A11) {
    QR->Sort2(QubitNum, 1);  // sort – sets FullRangeBits and GroupedBits
    int BothPresent = 0;  // identify existing pairs
    for (int i = 0; i < Num-1; i++)
        if ((Vec[i].State&FullRangeBits) == (Vec[i+1].State&FullRangeBits))
            BothPresent++;
    forcespace(Num*2 - BothPresent);  // allocate memory

    // walk through sorted list rotating pairs
    // to complete pairs, add a state at the end of the list
    int OldNum = Num;
    for (int i = 0; i < OldNum; i++) {
        Superposition *p0 = &Vec[i], *p1;
        if (i+1 < OldNum && (Vec[i].State&FullRangeBits) ==
            (Vec[i+1].State&FullRangeBits)) {
            p1 = &Vec[i+1];
            i++;
        }
        else {
            p1 = &Vec[Num++];
            p1->State = p0->State^GroupedBits;
        }
    }
}```
if ((p0->State&GroupedBits) != 0) {
    Superposition *p = p0;
    p0 = p1;
    p1 = p;
}

C t = p0->Amplitude;
p0->Amplitude = p0->Amplitude*A00 + p1->Amplitude*A01;
p1->Amplitude = t*A10 + p1->Amplitude*A11;

// delete superposition states with amplitude below threshold
for (int i = 0; i < Num; i++)
    while (i < Num && Vec[i].Amplitude.re*Vec[i].Amplitude.re +
    Vec[i].Amplitude.im*Vec[i].Amplitude.im < LIMI
        Vec[i] = Vec[--Num];
    }
Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
  • Measurements
• Addition
Measurement

• According to Quantum Information Theory, the only measurement necessary is the measurement of a single bit
• More complex measurements (POVMs) can be emulated by ancillae, gate operations, and then single bit measurements
• Multi-bit measurements are equivalent to measuring the bits one at a time and combining the classical results into an integer
Measurement Process

• Measurement Outcome
  – Note: Amplitude squared is probability of a state being detected by measurement
  – Pick a state at random but weighted by probability; outcome is value of designated bit in this state
  – This method needs adjustment for round off errors (later slide)

• Resulting State
  – Delete all states where the designated bit differs from the measurement outcome
  – Renormalize
Measurement Example

k = 4

<table>
<thead>
<tr>
<th>Complex amplitudes</th>
<th>n bits</th>
<th>quantum state &gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0</td>
<td>00 00 00 00 00 00</td>
</tr>
<tr>
<td>1/2 $e^{i\pi/4}$</td>
<td>0</td>
<td>00 00 00 00 00 01</td>
</tr>
<tr>
<td>1/2 $e^{i\pi/2}$</td>
<td>0</td>
<td>00 00 00 00 01 10</td>
</tr>
<tr>
<td>1/2 $e^{i3\pi/4}$</td>
<td>0</td>
<td>00 00 00 01 11 11</td>
</tr>
</tbody>
</table>

Measure this bit
**Measurement Example**

<table>
<thead>
<tr>
<th>Complex amplitudes</th>
<th>n bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$p = .25$</td>
<td>![Amplitude Table]</td>
</tr>
<tr>
<td>$1/2$</td>
<td>0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>$p = .25$</td>
<td>$1/2 e^{i\pi/4}$</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 1</td>
<td></td>
</tr>
<tr>
<td>$p = .25$</td>
<td>$1/2 e^{i\pi/2}$</td>
</tr>
<tr>
<td>0 0 0 0 0 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>$p = .25$</td>
<td>$1/2 e^{i3\pi/4}$</td>
</tr>
<tr>
<td>0 0 0 0 0 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

1. Compute probabilities as norm-squared of amplitudes $(re^2 + im^2)$
2. Pick a state based on probabilities
3. Measure this bit, this is the measurement outcome

\[ \begin{array}{cccccccccc}
    & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1/2 e^{i\pi/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1/2 e^{i\pi/2} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1/2 e^{i3\pi/4} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array} \]
Measurement Example

Complex amplitudes

|quantum state>

n bits

Measure this bit

p = .25

1/2

0

0

0

0

0

0

0

0

p = .25

1/2 $e^{i\pi/4}$

0

0

0

0

0

0

1

p = .25 $\rightarrow$ p = .5

$\frac{1}{\sqrt{2}} e^{i\pi/2}$

0

0

0

0

0

1

0

p = .25 $\rightarrow$ p = .5

$\frac{1}{\sqrt{2}} e^{i3\pi/4}$

0

0

0

0

0

0

1

1

$\leftrightarrow \quad$ delete states incompatible with measurement outcome

\[5\] renormalize $\uparrow$ probabilities

Measure this bit
Measurement Notes

- Round off errors and imperfect normalization can cause measurement problems
- Recommended method:
  - Sweep through all states calculating $p_0$ and $p_1$ (probability of measuring a 0 and 1)
  - Note $p_0 + p_1 \approx 1$
- Use a pseudo random number generator to pick the measurement outcome based on relative probabilities of $p_0$ and $p_1$
- Delete all states incompatible with the measurement outcome
- Renormalize
```cpp
int QubitRegister::MeasureBit(int bit) {
 Bits mask = 1 << bit;
 R prob0 = 0.0, prob1 = 0.0;
 for (int i = 0; i < Num; i++) { // probability of 0 vs. 1
 C *x = &Vec[i].Amplitude;
 R p = x->re*x->re + x->im*x->im;
 if ((Vec[i].State&mask) == 0) prob0 += p;
 else prob1 += p;
 }

 // decide result of measurement
 int rval = R(genrand_real2()*(prob0+prob1)) > prob0 ? 1 : 0;

 // delete states inconsistent with the measurement, normalize others
 R renormal = R(sqrt((prob0+prob1)/(rval == 0 ? prob0 : prob1)));
 for (int i = 0; i < Num; i++) {
 while (i < Num && ((Vec[i].State&mask) == 0) != (rval == 0))
 Vec[i] = Vec[--Num]; // delete incompatible state
 if (i < Num)
 Vec[i].Amplitude *= renormal; // renormalize
 }

 return rval;
}
```
Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
• Measurements
• Addition
Addition

- There are various quantum addition circuits
  - Some options are quantum+quantum and quantum+classical
  - ArXiv:quant-ph/0410184 is a ripple-carry adder
  - ArXiv:quant-ph/0008033 is a qft based adder with no ancilla but other issues

- Let’s try the ripple carry adder in ArXiv:quant-ph/0410184
• Majority Element

• Uncompute Majority Element

• Alternate (more parallelism)
**Adder Layout**

- Inputs `a` and `b`
- Outputs `a` (unchanged input) and `s` (sum)
- Also inputs `0 = c_0` and carry out `0`
Exemplary Addition Code

```c
#define M(X, Y, Z) { Y.CNot(Z); X.CNot(Z); Z.Toffoli(X, Y); }

// #define MI(X, Y, Z) { Z.Toffoli(X, Y); X.CNot(Z); Y.CNot(X); }
#define MI(X, Y, Z) { Y.Not(); Y.CNot(X); Z.Toffoli(X, Y); Y.Not(); \ X.CNot(Z); Y.CNot(Z); }

int bits = 6, tabsize = 8;
QuantumInt A(bits), C(1);
for (int row = 0; row < tabsize; row++)
 for (int col = 0; col < tabsize; col++) {
 QuantumInt B(bits);
 A = row;
 B = col;
 C = 0;
 M(C, B[0], A[0]);
 for (int i = 1; i < bits; i++) M(A[i-1], B[i], A[i]);
 for (int i = bits-1; i >= 1; i--) MI(A[i-1], B[i], A[i]);
 MI(C, B[0], A[0]);

 int Bx = int(B);
 printf("%d + %d = %d %s\n", row, col, Bx,
 (row+col)%((1<<bits) != Bx ? " ERR" : ""));
 }
```