
Review & Approval System - Search Detail https://cfwebprod.sandia.gov/cfdocs/RAA/templates/index.cfm

1 of 2 1/2/2008 9:54 PM

 

   New Search
Refine Search
Search Results

Clone Request
Edit Request
Cancel Request

 Search Detail

Submittal Details
Document Info
 Title :  Quantum Programming for Classical Programmers 
 Document Number : 5236851   SAND Number : 2005-7966 P    
 Review Type : Electronic  Status : Approved   
 Sandia Contact : DEBENEDICTIS,ERIK P.  Submittal Type : Viewgraph/Presentation    
 Requestor : DEBENEDICTIS,ERIK P.  Submit Date : 12/19/2005   

 Comments : R&A to permit sharing of this document with specific non-Sandian
project collaborators.

 Peer Reviewed? : N
Author(s)
 DEBENEDICTIS,ERIK P.       
Event (Conference/Journal/Book) Info
 Name :  No event   
 City : No City  State : NM  Country : USA   
 Start Date : 01/01/2006  End Date : 01/01/2006      
Partnership Info
 Partnership Involved : No      
 Partner Approval :   Agreement Number :    
Patent Info
 Scientific or Technical in Content : Yes      
 Technical Advance : No  TA Form Filed : No   
 SD Number :    
 Classification and Sensitivity Info

 Title : Unclassified-Unlimited  Abstract :   Document : Unclassified-Unlimited   

 Additional Limited Release Info : None.

 DUSA : None.
 

Routing Details
Role Routed To Approved By Approval Date 



Review & Approval System - Search Detail https://cfwebprod.sandia.gov/cfdocs/RAA/templates/index.cfm

2 of 2 1/2/2008 9:54 PM

Derivative Classifier Approver HUDGENS,JAMES J. HUDGENS,JAMES J. 12/20/2005 
Conditions:  

Classification Approver WILLIAMS,RONALD L. WILLIAMS,RONALD L. 12/21/2005 
Conditions:  

Manager Approver PUNDIT,NEIL D. PUNDIT,NEIL D. 12/21/2005 
Conditions:  

Administrator Approver LUCERO,ARLENE M.   
 

Created by WebCo    Problems? Contact CCHD: by email or at 845-CCHD (2243).

For Review and Approval process questions please contact the Application Process Owner
 



Quantum Programming for 
Classical Programmers

Erik P. DeBenedictis

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the 
United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND 2005-7966P



Overview

• Target Audience
– Classical programmers 

who want to know what 
quantum computer 
programming is all 
about

• Limitations of this 
Approach
– Only small quantum 

computers can be 
simulated

• The following limitations 
change the form of 
expression but do not limit 
expressive power
– Uses only the 

computational basis
– Only simulates Von 

Neumann 
measurements



Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
• Measurements
• Addition



Quantum Register

000000001/2

n bits
|quantum state>

Complex 
amplitudes

100000001/2 eiπ/4

010000001/2 eiπ/2

110000001/2 ei3π/4

1≤

 

k ≤

 

2n

Q
ub

it 
0 

Q
ub

it 
1 

Q
ub

it 
2 

Q
ub

it 
n-

1 

The data are just 
examples



Quantum Register
typedef double R; // R for real number
typedef long Bits; // Bits for bit vector

struct C { // complex number
R re, im;

};

struct Superposition {
C Amplitude; // amplitude of superposition
Bits State; // state

};

struct QubitRegister {
int Qubits; // number of qubits
int Num; // number of non-zero superpositions
Superposition *Vec; // pointer to superpositions
void Rotate(int, R); // universal set of operations
void CNot(int, int);
int Measure(int);

};



Notes on State Representation

• Normalization
– In a quantum register, 

the sum of amplitudes 
squared needs to be 1

– Quantum operations 
will preserve 
normalization up to 
numerical stability

– This means code needs 
to periodically check 
normalization and take 
appropriate action

• Zero Amplitude States
– All 2n states can be 

imagined to exist, with 
those not explicitly 
allocated having zero 
amplitude

• Global Phase
– Multiplying all 

amplitudes by the same 
complex phase factor 
does not change 
anything



Notes on State Representation

• Number of Qubits
– Algorithms that fill the 

quantum superposition 
space will bog down a 
classical computer 
before exceeding 32 
qubits

– On the other hand, 
other algorithms can 
use >32 qubits

– Therefore, provide the 
option of >32 qubits

• Memory Allocation
– Some key algorithms 

start with a sparsely 
filled superposition 
space and end with a 
QFT largely filling the 
superposition space

– Therefore, allocate 
states dynamically



Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
• Measurements
• Addition



Non-entangling Operations

000000001/2

n bits
|quantum state>

Complex 
amplitudes

100000001/2 eiπ/4

010000001/2 eiπ/2

110000001/2 ei3π/4

1≤

 

k ≤

 

2n

Non-entangling operations execute logic operations on the qubit values in the 
superposition states without changing the number of states or the amplitudes.

Non-entangling operations include Not, CNot, Toffoli



Quantum Not and CNot
void QubitRegister::Not(int Qubitnum) {

Bits flip = 1<<Qubitnum;
for (int i = 0; i < Num; i++)

Vec[i].State ^= flip;
};

// Note: Cnot can be simulated as Toffoli with inputs tied together,
// which will make Toffoli the most frequently used operation
// Author’s actual implementation of Toffoli is highly optimized
void QubitRegister::Toffoli(int C1, int C2, int Bit) {

Bits c1 = 1<<C1;
Bits c2 = 1<<C2;
Bits flip = 1<<Bit;
for (int i = 0; i < Num; i++)

if ((Vec[i].State&c1) != 0 && (Vec[i].State&c2) != 0)
Vec[i].State ^= flip;

}



Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
• Measurements
• Addition



Entangling Operations

000000001/2

n bits
|quantum state>

Complex 
amplitudes

100000001/2 eiπ/4

010000001/2 eiπ/2

110000001/2 ei3π/4

1≤

 

k ≤

 

2n

Say you want to
rotate this qubit



Entangling Operations

00000000A0

n bits
|quantum state>

Complex 
amplitudes

01000000A1

10000000B0

11000000B1

1≤

 

k ≤

 

2n

Say you want to
rotate this qubit

Create pairs 
of superposition 
states differing 

only in the 
designated qubit

Update amplitudes

A’0
A’1

= A0
A1

W  X
Y  Z

B’0
B’1

= B0
B1

W  X
Y  Z …



Entangling Operations

• Memory Allocation
– Every superposition 

state must be paired 
with another state that 
differs only in the 
designated bit EVEN IF 
THAT STATE DOES 
NOT EXIST

– If the state does not 
exist, it must be 
allocated, increasing 
memory usage

• Entangling operations 
include Hadamard, which 
is defined by

A’0
A’1

= 1/√2 A0
A1

1   1
1  -1



Hadamard Example

00000000A0

n bits
|quantum state>

Complex 
amplitudes

01010000B1

k = 2

Say you want to do a 
Hadamard on this qubit



Entangling Operations

00000000A0

n bits
|quantum state>

Complex 
amplitudes

00010000A1 =0

01000000B0 =0

01010000B1

k = 4

Create pairs 
of superposition 
states differing 

only in the 
designated qubit,

allocating new 
ones from 

dynamic memory 
with zero 
amplitude

Update amplitudes

Say you want to do a 
Hadamard on this qubit

A’0
A’1

= 1/√2 A0
A1

1   1
1  -1

B’0
B’1

= 1/√2 B0
B1

1   1
1  -1 …



Exemplary Method

• Sort the superposition states such that states 
differing only by the designated bit become 
adjacent

• Sweep through superposition states
– If necessary, allocate a state to create a pair
– Rotate amplitudes per

• Sweep through superposition states deleting 
states with amplitudes < 1E-9

• List is left in no particular sorted order

A’0
A’1

= A0
A1

W  X
Y  Z



Exemplary Code (1)
#define LIMIT (3.125e-8/16)
void QubitRegister::Gate(int QubitNum, C A00, C A01, C A10, C A11) {

QR->Sort2(QubitNum, 1); // sort – sets FullRangeBits and GroupedBits
int BothPresent = 0; // identify existing pairs
for (int i = 0; i < Num-1; i++)

if ((Vec[i].State&FullRangeBits) == (Vec[i+1].State&FullRangeBi
BothPresent++;

forcespace(Num*2 - BothPresent); // allocate memory

// walk through sorted list rotating pairs
// to complete pairs, add a state at the end of the list
int OldNum = Num;
for (int i = 0; i < OldNum; i++) {

Superposition *p0 = &Vec[i], *p1;
if (i+1 < OldNum && (Vec[i].State&FullRangeBits) ==

(Vec[i+1].State&FullRangeBits)) {
p1 = &Vec[i+1];
i++;

}
else {

p1 = &Vec[Num++];
p1->State = p0->State^GroupedBits;

}



Exemplary Code (2)
if ((p0->State&GroupedBits) != 0) {

Superposition *p = p0;
p0 = p1;
p1 = p;

}

C t = p0->Amplitude;
p0->Amplitude = p0->Amplitude*A00 + p1->Amplitude*A01;
p1->Amplitude =             t*A10 + p1->Amplitude*A11;

}

// delete superposition states with amplitude below threshold 
for (int i = 0; i < Num; i++)

while (i < Num && Vec[i].Amplitude.re*Vec[i].Amplitude.re +
Vec[i].Amplitude.im*Vec[i].Amplitude.im < LIMI

Vec[i] = Vec[--Num];

}



Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
• Measurements
• Addition



Measurement

• According to Quantum Information Theory, the 
only measurement necessary is the measurement 
of a single bit

• More complex measurements (POVMs) can be 
emulated by ancillae, gate operations, and then 
single bit measurements

• Multi-bit measurements are equivalent to 
measuring the bits one at a time and combining 
the classical results into an integer



Measurement Process

• Measurement Outcome
– Note: Amplitude 

squared is probability 
of a state being 
detected by 
measurement

– Pick a state at random 
but weighted by 
probability; outcome is 
value of designated bit 
in this state

– This method needs 
adjustment for round 
off errors (later slide)

• Resulting State
– Delete all states where 

the designated bit 
differs from the 
measurement outcome

– Renormalize



Measurement Example

000000001/2

n bits
|quantum state>

Complex 
amplitudes

100000001/2 eiπ/4

010000001/2 eiπ/2

110000001/2 ei3π/4

k = 4

Measure this bit



Measurement Example

000000001/2

n bits
|quantum state>

Complex 
amplitudes

100000001/2 eiπ/4

010000001/2 eiπ/2

110000001/2 ei3π/4

Measure this bit

p = .25

p = .25

p = .25

p = .25

compute 
probabilities as 

norm-squared of 
amplitudes
(re2 + im2)

pick a state
based on
probabilities

This is the
measurement

outcome



Measurement Example

000000001/2

n bits
|quantum state>

Complex 
amplitudes

100000001/2 eiπ/4

010000001/√2 eiπ/2

110000001/√2 ei3π/4

Measure this bit

p = .25

p = .25 p = .5

p = .25

p = .25 p = .5

renormalize 
probabilities

delete
states
incompatible with
measurement
outcome



Measurement Notes

• Round off errors and 
imperfect normalization 
can cause measurement 
problems

• Recommended method:
– Sweep through all 

states calculating p0 
and p1 (probability of 
measuring a 0 and 1)

– Note p0 + p1 ≈

 

1

– Use a pseudo random 
number generator to 
pick the measurement 
outcome based on 
relative probabilities of 
p0 and p1

– Delete all states 
incompatible with the 
measurement outcome

– Renormalize



Exemplary Measurement Code
int QubitRegister::MeasureBit(int bit) {

Bits mask = 1 << bit;
R prob0 = 0.0, prob1 = 0.0;
for (int i = 0; i < Num; i++) { // probability of 0 vs. 1

C *x = &Vec[i].Amplitude;
R p = x->re*x->re + x->im*x->im;
if ((Vec[i].State&mask) == 0) prob0 += p;
else prob1 += p;

}

// decide result of measurement
int rval = R(genrand_real2()*(prob0+prob1)) > prob0 ? 1 : 0;

// delete states inconsistent with the measurement, normalize others
R renormal = R(sqrt((prob0+prob1)/(rval == 0 ? prob0 : prob1)));
for (int i = 0; i < Num; i++) {

while (i < Num && ((Vec[i].State&mask) == 0) != (rval == 0))
Vec[i] = Vec[--Num]; // delete incompatible state

if (i < Num)
Vec[i].Amplitude *= renormal; // renormalize

}

return rval;
}



Outline

• Representation of Qubits
• Non-Entangling Operations
• Entangling Operations
• Measurements
• Addition



Addition

• There are various quantum 
addition circuits
– Some options are 

quantum+quantum and 
quantum+classical

– ArXiv:quant-ph/0410184 
is a ripple-carry adder

– ArXiv:quant-ph/0008033 
is a qft based adder 
with no ancilla but other 
issues

• Let’s try the ripple carry 
adder in ArXiv:quant- 
ph/0410184



Ref arXiv quant-ph/0410184

• Majority Element

• Uncompute Majority Element

• Alternate (more parallelism)

M

M-1

M-1



Ref arXiv:quant-ph/0410184

• Adder Layout
– Inputs a and b
– Outputs a (unchanged input) and s (sum)
– Also inputs 0 = c0 and carry out 0

M

M

M

M

M-1

M-1

M-1

M-1

b0
a0
b1
a1
b2
a2
b3
a3

0 = c0 s0
a0
s1
a1
s2
a2
s3
a3

0



Exemplary Addition Code
#define M(X, Y, Z) { Y.CNot(Z); X.CNot(Z); Z.Toffoli(X, Y); }
//#define MI(X, Y, Z) { Z.Toffoli(X, Y); X.CNot(Z); Y.CNot(X); }
#define MI(X, Y, Z) { Y.Not(); Y.CNot(X); Z.Toffoli(X, Y); Y.Not(); \

X.CNot(Z); Y.CNot(Z); }
int bits = 6, tabsize = 8;
QuantumInt A(bits), C(1);
for (int row = 0; row < tabsize; row++)

for (int col = 0; col < tabsize; col++) {
QuantumInt B(bits);
A = row;
B = col;
C = 0;
M(C, B[0], A[0]);
for (int i = 1; i < bits; i++) M(A[i-1], B[i], A[i]);
for (int i = bits-1; i >= 1; i--) MI(A[i-1], B[i], A[i]);
MI(C, B[0], A[0]);

int Bx = int(B);
printf("%d + %d = %d %s\n", row, col, Bx,

(row+col)%(1<<bits) != Bx ? " ERR" : "");
}


	Review & Approval System - Search Detail.pdf
	SAND2005-7966P-QSim
	Quantum Programming for�Classical Programmers
	Overview
	Outline
	Quantum Register
	Quantum Register
	Notes on State Representation
	Notes on State Representation
	Outline
	Non-entangling Operations
	Quantum Not and CNot
	Outline
	Entangling Operations
	Entangling Operations
	Entangling Operations
	Hadamard Example
	Entangling Operations
	Exemplary Method
	Exemplary Code (1)
	Exemplary Code (2)
	Outline
	Measurement
	Measurement Process
	Measurement Example
	Measurement Example
	Measurement Example
	Measurement Notes
	Exemplary Measurement Code
	Outline
	Addition
	Ref arXiv quant-ph/0410184
	Ref arXiv:quant-ph/0410184
	Exemplary Addition Code


