Search Detail

Document Info

Title: Quantum Dot Cellular Automata (QDCA) Strategic Partnership: Extending Moore's Law -- Part 2, Computer Science Issues

Document Number: 5245421 SAND Number: 2006-5382 P

Review Type: Electronic Status: Approved

Sandia Contact: DEBENEDICTIS,ERIK P. Submittal Type: Viewgraph/Presentation

Requestor: DEBENEDICTIS,ERIK P. Submit Date: 08/18/2006

Comments: Jointly prepared presentation documenting a LDRD strategic partnership.

Peer Reviewed?: N

Author(s)
craig lent DEBENEDICTIS,ERIK P. greg snider
Jerry Floro marco ottavi Mike Niemier
MURPHY,SARAH Peter Kogge PRAGER,AARON A.
Robert Hull

Event (Conference/Journal/Book) Info
Name: QDCA Seminar
City: Albuquerque State: NM Country: USA
Start Date: 08/01/2006 End Date: 08/01/2006

Partnership Info
Partnership Involved: No
Partner Approval: Agreement Number:

Patent Info
Scientific or Technical in Content: Yes Technical Advance: No TA Form Filed: No

Classification and Sensitivity Info
Title: Unclassified-Unlimited Abstract: Document: Unclassified-Unlimited

Routing Details

Role
Derivative Classifier Approver
Conditions:

Routed To
AIDUN,JOHN B. AIDUN,JOHN B.

Approved By
AIDUN,JOHN B. AIDUN,JOHN B.

Approval Date
08/22/2006 08/22/2006

Classification Approver
Conditions:

Routed To
WILLIAMS,RONALD L. WILLIAMS,RONALD L.

Approved By
WILLIAMS,RONALD L. WILLIAMS,RONALD L.

Approval Date
08/28/2006 08/28/2006

Manager Approver
Conditions: The Title should spell out " -- Part 2, Computer Science Issues"

Routed To
PUNDIT,NEIL D. PUNDIT,NEIL D.

Approved By
PUNDIT,NEIL D. PUNDIT,NEIL D.

Approval Date
08/30/2006 08/30/2006

Sandia Contact
Agreement: Sandia Contact has agreed to incorporate above listed conditions prior to release.

Routed To
DEBENEDICTIS,ERIK P. DEBENEDICTIS,ERIK P.

Approved By
DEBENEDICTIS,ERIK P. DEBENEDICTIS,ERIK P.

Approval Date
08/30/2006 08/30/2006

Administrator Approver

Routed To
LUCERO,ARLENE M.

Approved By
LUCERO,ARLENE M.
Quantum Dot Cellular Automata (QDCA)
Strategic Partnership: Extending Moore's Law: Part 2, Computer Sciences Issues

Erik DeBenedictis¹ (PI), Jerry Floro¹,³, Robert Hull³, Peter Kogge², Craig Lent², Sarah Murphy¹,², Mike Niemier², Marco Ottavi¹, Aaron Prager¹,², Greg Snider²
(¹Sandia, ²Notre Dame, ³U. Virginia)

SAND2006-5382P
Approved for Unclassified Unlimited Release
Moore’s Law for Logic Switching Power

A 100 $k_B T$ “thermal device limit” closely related to $k_B T \ln(2)$ “Landauer Limit” creates a floor of Joules/logic operation that will halt evolutionary progress. This is an immediate concern evidenced by growing μP heat.

Energy per operation = \frac{1}{Performance @ 100Watts}

Lower is Better

100 $k_B T$ Power Limit (to be discussed)

Today 2020 End of Roadmap 2030+
Emerging Research Devices (notes 2005)

- Table shows drop in replacements for CMOS transistors that defeat limit in previous slide
- Color code: OK, marginal, unacceptable
- CNFET on table only for political reasons
Obeying Moore’s Law and Beating CMOS

Energy per operation = \frac{1}{Performance @ 100Watts}

100 k_B T Power Limit (to be discussed)

Today 2020 End of Roadmap 2030+

Many proposed devices are subject to the same limits as CMOS

This project addresses approaches that can decisively beat CMOS at the end of the roadmap: Principal concepts: Reversible Logic and Quantum Computing
Tie Between Information and Device Physics

• We use Boolean logic today, based on AND-OR-NOT
• AND and OR gates “destroy” information, which creates heat irrespective of physical implementation (to be described later)
• This limit can be circumvented by a different form of logic that does not “destroy” information
• However, this will also require different devices…
Quantum-dot cellular automata

Represent binary information by charge configuration of cell.

QCA cell
- Dots localize charge
- Two mobile charges
- Tunneling between dots
- Clock signal varies relative energies of “active” and “null” dots

Clock need not separately contact each cell.
Quantum-dot cellular automata

Neighboring cells tend to align in the same state.

“1”

“null”
Quantum-dot cellular automata

Neighboring cells tend to align in the same state.
Quantum-dot cellular automata

Neighboring cells tend to align in the same state.

This is the COPY operation.
Majority Gate

“0”

“1”

“null”

“1”
Majority Gate

```
1
```

```
0
```

```
1
```

```
1
```

```
1
```

```
1
```

```
1
```

```
1
```

```
1
```

```
1
```

```
1
```
Majority Gate

Three input majority gate can function as programmable 2-input AND/OR gate.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
QCA single-bit full adder

Hierarchical layout and design are possible.

Simple-12 microprocessor (Kogge & Niemier)
Computational wave: adder back-end
Characteristic energy

We would like “kink energy” $E_k > k_B T$.
Molecular Wire

\[E_k = 0.8 \text{ eV} \]

ONIOM/STO-3G (Gaussian 03)
Power Gain in QCA Cells

- Power gain is crucial for practical devices because some energy is always lost between stages.

- Lost energy must be replaced.
 - Conventional devices – current from power supply
 - QCA devices – from the clock

- Unity power gain means replacing exactly as much energy as is lost to environment.

Power gain > 3 has been measured in metal-dot QCA.
Landauer Clocking
Energy dissipation in Landauer-clocked circuit

\[\text{Dissipated Energy} / k_B = k_B T \ln(2) \]

A \oplus B

11 10

shift register “OR” gate
Test circuit: OR gate

Landauer clocking with echo of inputs to outputs
Energy dissipation in the OR gate

Energy dissipation greatly reduced with inputs echoed to outputs

\[\frac{\text{Dissipated energy}}{E_k} \]

\[k_B T \ln(2) \]
Bennett clocking of QCA

Output is used to erase intermediate results.
Test circuit: OR gate

Bennett clocked OR gate
Bennett clocking of QCA

For QCA no change in layout is required.
Bennett-style computation may be practical in QCA

Direct time-dependent calculations show: Logically reversible circuit can dissipate much less than $k_B T \ln(2)$.

\[\text{Dissipated Energy}/E_k \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \]

\[\begin{array}{c} L \quad B \\ \\ L \quad L \quad L \quad B \quad B \end{array} \]

\[k_B T \ln(2) \]

\[11 \quad 10 \quad 11 \quad 10 \quad 11 \quad 10 \]
QCA implementations

- Semiconductor-dot QCA
 - SiGe quantum fortresses
 - Silicon P-doping
 - GaAs
 - Silicon dot SET’s
- Magnetic QCA
- Metal-dot QCA
- Molecular QCA
- CMOS analogue
Quantum Fortress Growth

$h \text{ nm } Ge_{0.3}Si_{0.7}/Si(100), 550^\circ C, 0.09 \text{ nm/s}$
Quantum Fortress QCA

FIB are used to deposit Pt contacts to ease the alignment requirements of the E-beam lithography.
Architecture Summary

1. Irreversible
2. Fully Reversible: Landauer Clocking
 - Reversible Components
3. Fully Reversible: Bennett Clocking
 - Possibly Irreversible Components
4. Fully Reversible: Collapsed Bennett
 - General purpose floorplan
 - Size of computation limited only by stack size
5. Partially Reversible: Pipelined Bennett
 - Advantages of reversible combined with higher throughput
Architecture Summary

1. Irreversible

2. Fully Reversible: Landauer Clocking
 • Reversible Components

3. Fully Reversible: Bennett Clocking
 • Possibly Irreversible Components

4. Fully Reversible: Collapsed Bennett
 • General purpose floorplan
 • Size of computation limited only by stack size

5. Partially Reversible: Pipelined Bennett
 • Advantages of reversible combined with higher throughput
QDCA Reversible Toffoli
Bennett’s Algorithm (1982)

- Original input saved throughout computation
- Intermediate state decomputed when possible
- Intermediate stage can be decomputed only if previous stage is computed
- Final state consists of original input and final output
- For 8 segments, at most 4 checkpoints need to be stored at any given time
Collapsed Bennett Layout: Regions of QCA Circuit
Collapsed Bennett Layout: Disable Regions

Logic Disable

Shift Disable
Collapsed Bennett Layout
Collapsed Bennett Layout

Compute

Uncompute

Shift Right

Shift Left

Logic Enabled
Shifter Disabled

Logic Disabled
Shifter Enabled

S.E. Murphy
Bennett Pipelined: Architecture (Top view)

n clock phases:
\[\phi_n = \text{phased signals for Bennett clocking} \]
\[V_{\text{min}} : \text{cell released} \]
\[V_{\text{max}} : \text{cell locked} \]

M stages:
Bennett zones + Registers
Data pipelining

- **Computation:** A → B → C
- **Decomputation:** C ← B ← A

M Stages
- Initial latency: $M \times (T/2)$
- Throughput: $1/T$
Case study: XOR Tree

M stages parity checker

Partition in stages:
Lower limit: stage size = 2 QCA cell
Middle solution: stage size = 1 XOR GATE
Upper Limit: stage size = M XOR gates
• Landauer scheme shows higher throughput and the gap between the performances increases with the increase of c (c=14 only one Bennett stage). (note: c=1 not same as Landauer due to the size of the basic stage)
The improvement in terms of power consumption becomes better with the increase of c (note: the power dissipated also with a pure Bennett scheme $c=14$ does not become zero as the inputs to the whole circuit are still deleted every T).
• “Given a second of time and a Joule of energy, what is the amount of operations (output bits) obtained?”
• The result shows an intersection of the two curves:
 – c<3 Landauer clocking has better performances
 – c>3 Bennett clocking behaves better
Silicon P-dot QCA cell

Demonstration of a silicon-based quantum cellular automata cell

Centre for Quantum Computer Technology, School of Electrical Engineering and School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia
C. Yang and D. N. Jamieson
Centre for Quantum Computer Technology, School of Physics, University of Melbourne, Victoria 3010, Australia

(Received 8 March 2006; accepted 18 May 2006; published online 5 July 2006)

We report on the demonstration of a silicon-based quantum cellular automata (QCA) unit cell incorporating two pairs of metallically doped (n^+) phosphorus-implanted nanoscale dots, separated from source and drain reservoirs by nominally undoped tunnel barriers. Metallic cell control gates, together with Al–AlO$_x$ single electron transistors for noninvasive cell-state readout, are located on the device surface and capacitatively coupled to the buried QCA cell. Operation at subkelvin temperatures was demonstrated by switching of a single electron between output dots, induced by a driven single-electron transfer in the input dots. The stability limits of the QCA cell operation were also determined. © 2006 American Institute of Physics. [DOI: 10.1063/1.2219128]

• Dots defined by implanted phosphorus
• Single-donor creation foreseen
• Direct measurement of cell switching

FIG. 1. (Color online) (a) Simplified circuit equivalent of the QCA cell, (b) SEM image of phosphorus-implanted n^+ regions (dark in image), and (c) SEM image of completed device. The buried n^+ dots and leads are marked using dashed lines.
QDCA Logic Directly Attached to QC

Advantages:
- Integration on one substrate
- Low power dissipation reduces load on cooling system

Base diagram from Physical Review B 74, 045311 2006,
Two-dimensional architectures for donor-based quantum computing
Self-Contained Classical+Quantum Logic

Steane 5-bit QEC Measure-Classical Syndrome-Correct with no external connection except clock

Base diagram from Physical Review B 74, 045311 2006, Two-dimensional architectures for donor-based quantum computing
Large QC and QCA Arrays
Advantages

• QCA logic “lives” in the single electron world, thus avoiding the need to amplify single electron signals to CMOS levels.

• QCA logic would be used to execute the classical part of QEC recovery mechanisms, which is most (e.g. 99%) of the activity in a projected QC.

• Each QCA “island” would consume less resources than SET, amplifier, bonding pad, and cable to controller through cryostat it replaces.

• QCA would allow the classical circuitry to be implemented on-chip without over-heating the dilution refrigerator.
System + Application Architectures

Grounded in device physics & simulation

Incorporate clock driven dataflow

Device architecture maps well to many system architectures…

Reconfigurable

AND Plane

OR Plane

BC

AB

AC

AB + BC + AC

Systolic

Good for FIR, FT, Matrix multiply, graph algorithms, etc.

General Purpose
Simulations

New devices
New circuits
New architectures ↔ New simulators
Simulation levels

1) Quantum chemistry
 Ab initio, all-electron, and approx.
2) Density matrix (coherence vector)
 Quantum, dynamic, thermal effects, dissipation
3) Time-independent Schrod. Eq.
4) Semiclassical thermodynamic
5) Logic level
6) Architecture level
QCA design tools

QCADesigner

Konrad Walus
U. British Columbia

QCADesigner screenshot showing a simple 4-bit processor layout.
QCA design tools

QCATS
QCA
Thermodynamic Simulator
Semiclassical

Under development
M-AQUINAS
Molecular version of A QUantum Interconnected Network Array Simulator

- GUI allows point-and-click and drag-and-drop editing of QCA circuits.
- Schrödinger solver coupled to local clocking field.

Authors: Enrique Blair
Amy DeCelles
Simulation hierarchies

Architectural-level

+ Logic-level…

+ device-level…

Application-level performance metrics
Conclusions

• Power is a problem for logic today, and it is related to an approach to thermodynamic limits on computing
• However, these limits are due in part to historical choices that can be circumvented
 – Requires new basis for logic
 – Requires new devices, notably devices that handle information and heat differently

• Also: A tie in to coherent quantum computing
Partnership Opportunity

• This is a project under NINE and SBET
 – We are advocating research in
 • Computing beyond the limits of CMOS
 • Physics of information processing
 – The overall project’s deliverables to Sandia are to bootstrap multiple projects in
 • Physical science
 • Information science
 • Simulation
 – We’ve tried to outline opportunity and expose Sandia to willing partners
Applications and $100M Supercomputers

System Performance

Applications

Technology

No schedule provided by source

Quantum Computing Requires Rescaled Graph (see later slide)

④

③ Nanotech + Reversible Logic

μP

(best-case logic (green)

↑

μP

(red) →

② Architecture: IBM Cyclops, FPGA, PIM

↑

① Red Storm/Cluster

↓

100× ↑1000× [SCaLeS 03]

[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a h t t p : / / w w w . p n l . g o v / s c a l e s / .

Experiments Under Discussion

- Continuation of Quantum Fortress work 1100
- Molecular QCA 1800
- Quantum Computing Tie-In
 - Architecture
 - Quantum Dot Measurements
 - Quantum Dot Manufacturing classical/quantum
- Computer Architecture beyond limits of Moore’s Law
- Simulation of information+Physics