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Nomenclature 
 
Assessment 
method  

Our method of attaching an expression multiplied by kT to a neuron, 
neural network, or neural network algorithm; the evaluating the 
expression yields the energy of executing a function in units of kT. 

Artificial 
Neural 
Network 
(ANN)  

An interconnection of neurons that computes. The phrase does not refer 
to the hardware that runs it. 

ANN 
implementation 
approach  

The abstract hardware design for a machine that evaluates an ANN. 
Does not refer to a specific implementation, but a parameterized design 
that can scale or be implemented with a varying number of neurons, 
layers, etc. 

ANN computer  A specific computer constructed with the ANN implementation 
approach. 

ANN 
technology 
stack  

The stack of technology based on physical devices, including artificial 
but physical neural networks, and neural network algorithms. 

Resistive 
crossbar neural 
network  

An artificial neural network comprised of a crossbar of wires with 
resistors or memristors at the intersection points. 

Artificial 
spiking neural 
network  

An artificial neural network where signaling is via spikes. 

Software-based 
neural network  

An ANN neural network structure evaluated on a conventional 
computer using a software layer to emulate the ANN. Example: Deep 
Learning. 

Neural network 
algorithm  

Phrase coined by the authors to be an algorithm comprised of multiple 
steps, each step comprising use of a neural network. Usage is similar to 
the phrase “slide-rule algorithm,” which would be an algorithm 
executed by a person with a slide rule. 
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Beyond Moore’s Law Computer Architecture 

Background 
The Beyond Moore’s Law Computer architecture project is addressing portions of a 
crucially important hierarchy of ideas driving the computer industry. The computer 
industry is large but otherwise similar to industries that have an evolving sequence of 
products over time. The key product levels in computing will be summarized below, as 
Sandia’s role at these product levels becomes part of this project: 
 
1. Sandia uses many products in computers and computing. These include activities in 
1400 and 8900 on software and algorithms for supercomputers made from externally 
purchased computers. Center 1700 builds CMOS parts in the MESA fab that are of the 
same technology class as the base components of supercomputers, but Sandia only makes 
specialty parts that are not used for production computers. In addition, centers 1100 and 
8900 do research into materials that can be used for enhancements to CMOS. 
 
The computer industry engages in other activities to make commodity computers, which 
includes computer architecture and engineering and the production of infrastructure 
software like compilers and operating systems. Sandia is not very active in these areas. 
 
2. However, computers are supported by an industry in continuous motion. It is essential 
that each generation of computer run software written in the past and on other types of 
computers. This means there is an important continuity or scalability property in 
computer designs, which is another level of abstraction on top of computer architecture. 
Where Sandia produces software, the software is almost universally released as a series 
of versions that form a product family. 
 
3. At a higher level, somebody designs the product families. The design of a product 
family includes rules for the progression of common technology and interfaces from one 
member of the family to another. The progression sequence has an identity that is 
independent of the specific products by the length and predictability of the product family 
sequence and the dollar volume (or other impact measure) of the products that result from 
it. 
 
At the broadest level, John von Neumann and Gordon Moore are credited with the 
architecture and technology that define the overall concept of modern computers. In 
simple terms, Gordon Moore described a product concept for a family of integrated 
circuits that improve year over year. Von Neumann described a computer design at the 
block diagram level, where the blocks could be filled in by integrated circuits that grew 
more powerful from one generations to the next. Depending on broadly the computer 
industry is defined, it can be sized at $4-7 trillion per year. 
 
Sandia has had a real but limited role in the computer industry. Sandia invented the 
cleanroom, an instance of which is used for to manufacture every semiconductor product. 
Sandia also had a critical role in the parallel processing branch of the modern computer 

epdeben
Cross-Out

epdeben
Cross-Out



 OFFICIAL USE ONLY 

 OFFICIAL USE ONLY 10/96 

industry, accounting for the top few percent of the computer industry. The current thrust 
in “massively parallel supercomputers” originated at Caltech with a computer now called 
the “Cosmic Cube” and which center 1400 adopted in the early 1980s. Sandia has been 
one of the most influential entities in acquiring large massively parallel supercomputers 
and developing key algorithms and applications for them. 
 
Sandians have participated in the management of the computer industry through 
employees participation over the years in the International Technology Roadmap for 
Semiconductors (ITRS). Current participants include Erik DeBenedictis PI of this project 
and Matt Marinella a participant in this project). 

Current crisis in computers 
The product family concept behind computers has lasted longer than expected but the 
concept itself is revealing limitations that threaten end the product family. 
 
An example of this problem that Sandia helped fix in the 1980s was a limitation in speed 
set essentially by the speed of light. It became evident in the 1980s that the appetite for 
fast computers exceeded the speed possible with the von Neumann architecture due to 
limitations on clock rate and processor-memory latency. Sandia was instrumental in 
retrofitting the von Neumann architecture for greater speed by creating what is now 
called the parallel von Neumann architecture. It is nearly ubiquitous today that processors 
have multiple cores and multi-core processors are connected into clusters or 
supercomputers. 
 
However, it has been evident since about 2003 that the underlying physics of transistors 
will prevent the continued growth in computer performance that society has come to 
expect. The current problem is that the energy required for computation cannot be 
lowered much further. The computer industry relies on new and innovative applications 
that are inevitably more complex than previous ones. If power consumption cannot be 
reduced, the new and inevitably more complex applications will use too much energy for 
users to afford, including the NNSA and other U.S. government agencies with national 
security missions. 
 
There is a broad recognition that the world needs another major fixup or replacement for 
the computing concept of von Neumann and Moore. This offers opportunities at a range 
of sizes. An example at small scale might be more power efficient algorithms that can 
support new applications with the same computer hardware. An example at large scale 
would be new computing concept based on new physical devices (that augment or 
replace transistors) that make a new scalable computer architecture viable. 

Sandia Beyond Moore activities and this LDRD 
Sandia is expressing institutional interest in addressing the computing crisis through the 
Beyond Moore Computing Research Challenge, but this activity has not specified the 
response in terms of whether it addresses only specific products, specific product families, 
or designs new product families. A result of this LDRD has been to perform research at 
the highest level. Since the hierarchy makes it natural for high level activities to include 
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lower level ones, this LDRD builds a research product out a wide swath of prior and 
current research projects across Sandia. 
 
The top-level objective is to devise a computing concept that could succeed von 
Neumann and Moore’s and substantiate it to the extent possible in 18 months. To create 
such a concept requires addressing the issues in Table 1. 
 
Table 1: Properties of a computing concept 
There must be a physical design for a computer that could persist across multiple 
generations. To have any chance of succeeding in today’s environment, the generations 
must become progressively more power efficient. 
There must be a method of programming the physical structure. A program written for 
one generation must work on successive generations. 
While not essential, it would be a big bonus of the software written for today’s von 
Neumann architecture would run at least moderately well. 

Project organization 
This LDRD project tapped existing activities and developed new ones. Various existing 
Sandia researchers in devices and materials participated to contribute their technology 
and expertise. This LDRD then started (what we believe is a) new activity at Sandia of 
using the device and materials research as building blocks to create the computing 
concepts with the properties in Table 1. 
 
This new activity comprises devising and evaluating the computing concepts. Team 
members created or advanced 2-4 such candidates for the future of computing, including 
Processor-In-Memory-and-Storage (PIMS), and a 3D SuperConducting Electronics 
project (3D-SCE). This LDRD also created a neural network theory that was adopted by 
the HAANA Grand Challenge, although that project includes other activities unrelated to 
this LDRD. Each of these is a computation research activity in its own right, but also 
provides a framework and gives relevance to materials and device research. 
 
The result is depicted graphically in Figure 1, showing the new activities in the colored 
area with arrows leading to existing activities in black and gray. The HAANA activity 
sees itself as a successor project to his LDRD, as opposed to part of it. The reader will see 
that this LDRD created a “superstructure” on top of existing research. 
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Figure 1: New (color) and existing (white/gray) activities 

“Beyond Moore’s Law” Computing Concepts 
We have defined Optimal Adiabatic Scaling as a potential replacement for the von 
Neumann architecture with one that is more compatible with the physical devices we can 
now manufacture. The von Neumann architecture separated a computer system in to 
processor, memory, and storage (disk drive). Even with the advent of parallel processing, 
data movement between these components needed to be a high speed. High-speed 
operation is less energy efficient than low speed computation for any of the technologies 
available to us. In Optimal Adiabatic Scaling, the number of devices in the processor 
increases rapidly enough from one generation of the product family to another that 
external memory and storage are not necessary. This eliminates the need to move data so 
quickly and allows more power-efficient operation. 
 
In this project, Optimal Adiabatic Scaling has been applied to superconducting 
electronics through 3D-SCE and conventional room-temperature electronics. The 
Processor-In-Memory-and-Storage (PIMS) project devises an architecture that makes 
generous use of one of a class of non-volatile memory devices (Flash and the new options 
of memristors and Phase Change Memory (PCM)) as the internal memory and storage 
replacement. Appendix I includes a description of Optimal Adiabatic Scaling with the 
PIMS architecture, including performance upside calculations for the overall family. The 
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3D-SCE project is less mature, but comprises a new project start with activities in both 
3D construction of superconducting processors and compatible memory devices. 
 
The second high-level activity is a method of computing “ultimate limits” for 
neuromorphic computers, with the report in Appendix II. In the world outside of Sandia, 
there have been many ideas for using neural computing (sometimes called neuromorphic 
computing) as a successor to CMOS and the von Neumann architecture. These include 
Deep Learning, which is essentially programming simulations of neural networks on von 
Neumann computers or Graphics Processing Units (GPUs). Other approaches include 
using resistive arrays. Many of these other projects have been justified for reasons 
entirely different than computer throughput – such as research into the functioning of the 
human brain. Where these projects have claimed to support more effective computing, 
they have not necessarily had a way to predict potential effectiveness. The effort 
described in Appendix II can identify whether a neural implementation approach could be 
viable as a competitor against CMOS. 
 
This effort may serve as a “divining rod” of sorts for many projects at Sandia and 
elsewhere. We give here a very brief description of the approach, by example. It is widely 
known that objects and information cannot move faster than the speed of light. If 
somebody has an idea for a machine and we can assess that it requires a component that 
moves faster than the speed of light, we could say the idea will not work without even 
constructing a test device. An “ultimate limits” analysis for neuromorphic computing 
uses somewhat more subtle principles, but along the same lines. There are minimum 
limits to the amount of heat that must be produced in computing due to thermodynamics. 
If the minimum heat of a proposed neuromorphic approach exceeds that of a computer 
readily available today emulating the same function in software, we will not need to 
construct a prototype to discover that the approach will not beat CMOS for energy 
efficiency. 
 
The “ultimate limits” approach for neuromorphic computing has been applied to CMOS, 
PIMS, and some other approaches, showing PIMS to be a viable idea. 
 
HAANA is the biggest successor project to this one, seeking to develop a hybrid 
computer that is especially efficient at neural network-class computations. The hybrid 
computer will comprise a standard von Neumann computer plus a neural network 
accelerator. The accelerator has yet to be defined, but it is likely to be based on work of 
this project. 
 
This LDRD project has created an “alliance” with other projects. Physical science, 
materials, and devices projects have made their research available as building block for 
new architectures and computing concepts. The  leading Sandia researchers in memristors, 
carbon nanotubes, lithium-based devices, spin-based logic, and SCE (superconducting) 
technology have participated in the meeting and device assessment discussions. This 
contributed to a new start SCE project and a paper on spin-based logic. 
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In conclusion, this project has pulled together many ideas from across Sandia into a 
computing concept and could possibly offer a power efficiency improvement for 
computing on the order of 80,000× (including both device-level improvements from 
physics and improvements due to computer architecture). This would be equivalent to 
about 16 generations of Moore’s Law. 

Project status 
Projects will be listed below, along with publications. 
 
Due to the short timeframe of this project, two likely publications are not yet ready for 
submission by the due date of this report. The manuscripts are in appendices I and II. The 
ideas in these manuscripts are due to be used in projects funded starting October 1, 2014. 
The intention is to publish the manuscripts once the ideas have been reviewed and vetted. 
 
A review of spin wave logic is also included as Appendix III. 

Subprojects in materials and device research 
Materials and device research has been ongoing at Sandia for decades. Early efforts under 
this LDRD to extend a recently published comparison across a diverse set of emerging 
device technologies leveraged the deep expertise in device physics within Sandia. Device 
physics subject matter experts contributed to the review and comparison of emerging 
technologies and extended their own device physics research.  The latter resulted in 
several additional publications on device technology development: 
 

• François Léonard: Carbon nanotubes, papers cited 
• Matt Marinella: Memristors, papers cited 
• Nancy Missert: Superconductors, project started 
• Peter Sharma: Magnetic Logic, document in Appendix III 
• Alec Talin: Lithium-based devices, papers cited 

Subprojects in computation research activities 
The following ideas emerged during the time span of this LDRD, all of which represent 
computer science concepts that provide a justification for specific technologies 
 

• Erik DeBenedictis: Optimal Adiabatic Scaling and Processor-In-Memory-and-
Storage (PIMS). Fully due to this LDRD. Document in Appendix I. 

• Erik DeBenedictis and Brad Aimone: Artificial neural networks as Beyond 
CMOS devices. Fully due to this LDRD. Document in Appendix II. 

• Jeanne Cook: Processor-In-Memory-and-Storage (PIMS). Fully due to this LDRD. 
This idea has become a FY15 LDRD project. 

 
The following activities emerged during the time span of this LDRD and with the 
connection specified 
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• Conrad James: Hardware Acceleration of Adaptive Neural Algorithms (HAANA), 
funded Grand Challenge project. The Artificial Neural Network power analysis 
and use of Deep Learning as a target applications area carried through to HAANA, 
although HAANA includes other activities not due to this LDRD. 

• Nancy Missert: Three-dimensional SuperConducting Electronics (3D-SCE) (an 
implementation of Optimal Adiabatic Scaling, above), funded FY15 LDRD 
project. Nancy also developed an approach to superconductor memory unrelated 
to this LDRD. 
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Appendix I: A Computing Paradigm Beyond Moore’s 
Law and Beyond the von Neumann Architecture 
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A Computing Paradigm Beyond Moore’s Law and 
Beyond the von Neumann Architecture 

Erik P. DeBenedictis, August 16, 2014 

Abstract 
Moore’s Law has driven the semiconductor industry for decades, principally through 
progressively more powerful microprocessors. The semiconductor scaling that has driven 
Moore’s Law is reaching physical limits and creating a crisis of sorts. We will show 
another set of principles that we call Optimal Adiabatic Scaling that has a similar effect 
to Moore’s Law, but which applies when manufacturing costs decline even if devices do 
not change at all. 
 
We will use the effect above in conjunction with a new computer architecture, achieving 
a synergy that further boosts energy efficiency. Optimal Adiabatic Scaling will require a 
large number of devices. We propose to use this characteristic to advantage through a 
Processor-In-Memory-and-Storage (PIMS) architecture that stores persistent data in the 
same structure that does the computing. This will resolve certain issues limiting computer 
performance today, like the “memory wall.” 
 
We build a systems software and algorithms approach around the physical rules in the 
paragraphs above. The combined effect preserves the idea of a computer with data files. 
However, the new approach distributes and reformats data to support algorithms that are 
more efficient in two ways. First, the algorithms may be more efficient in the 
conventional sense of having fewer steps. Second, the algorithms may run with higher 
power efficiency per operation by being a better match for Optimal Adiabatic Scaling. 
 
A very rough analysis of performance suggests 80,000× improvement in energy costs for 
popular computing kernels could be possible over time, about half from electronics and 
half from architecture and algorithms. 

Introduction 
The concept of computing experienced an inflection point during WW II [Nordhaus 07]. 
Prior to WW II, computers comprised humans operating tools such as pencil and paper, 
abacus, etc. This meant compute power was limited by the speed and capacity of the 
human operator. Humans started to make programmable computers that could operate 
beyond the limits of a human operator during WW II. The von Neumann architecture was 
preeminent in these designs [von Neumann 45] as it allowed the growth of application 
complexity based on software, which was very scalable. The economic activity from the 
applications drove technology development of the underlying electronics and enabled 
exponentially more capable computers over time in a trend that continues through present. 
 
In 1965 Gordon Moore wrote a paper [Moore 65] subjectively describing what later 
became Dennard Scaling [Dennard 74]. Moore projected exponential growth of various 
integrated circuit properties for 1965-1975 (but it continued well beyond 1975). The 
microprocessor was invented in 1970 (so it cannot be seen as inspiration for Moore’s 
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Law) and has over time supported the exponential path of the semiconductor industry. 
Moore’s Law has now merged with the overall growth of computing and is nearly 
synonymous in today’s lingo, but it is important to note that they are different. 
 
There is a growing realization that the Dennard scaling that defined the most general 
form of Moore’s Law has ended already. However, it is possible that the computer 
industry could switch to something other than CMOS and the von Neumann architecture 
and continue the larger technology trend that started in WW II. 
 
Energy efficiency is currently seen as the limiting attribute of computer technology. Most 
applications can be made sufficiently fast by running computers in parallel, so speed is 
not a problem. The number of devices on a chip continues to grow into the third 
dimension at reasonable cost [Fujisaki 13], so hardware complexity is not a problem. 
However, energy per calculation is beginning to flat line. Eventually, this will cause new 
applications that are inevitably more complex to consume too much energy to be 
affordable to the user. This will stymie the business model that funds the industry and 
create a crisis. 
 
Industry and government are responding in different ways. Industry [ITRS YY] is 
shifting attention from information processing throughput to mobile devices such as 
smartphones and the Internet of Things. This would shift industry to a new business 
model that may be profitable but would mark an end to the growth in computer capability. 
Some segments of government focus on other goals. Supercomputers rose through 
Gigaflops, Teraflops, Petaflops. Some government agencies (principally DOE) are 
funding sizeable technology advances to make supercomputers up to a few Exaflops at 
reasonable cost. There is related interest in similarly sized data centers that contain a 
scalable number of servers rather than a single scalable supercomputer. This would 
continue the computer performance growth trend. 
 
Other government agencies are pressing for neural networks or artificial intelligence, 
which are quite different. 
 
Adiabatic and reversible computing represent technology options that offer the possibility 
of computing at “arbitrarily low energy levels.” The options involve passing signals from 
one logic stage to another with loss of only a small fraction of the signal energy each time. 
This is in contrast to current (CMOS) logic, where all signal energy is turned into heat 
and regenerated from the power supply between each logic stage. Adiabatic computing is 
readily seen as cutting energy consumption 10-100× [Karakiewicz 12], although the 
number of devices per gate is greater than CMOS. For the purposes of this discussion, 
reversible computing builds upon adiabatic computing. After significant gains in power 
efficiency have been realized through adiabatic computing, reversible computing could 
offer even more gains. Neither adiabatic nor reversible computing has received much 
attention. 
 
Memory and data storage have evolved in accordance with Moore’s Law as well, with 
progress destined to slow for similar reasons. The forefront of memory and storage is the 
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shift from moving media (disks and tapes) to technologies that use chips physically 
similar to those in processors but with novel devices such as Flash, Resistive RAM 
(ReRAM, e. g. memristors), Phase Change Memory (PCM), and Spin Torque Memory 
(STM). These technologies are being packaged in 3D, which allows continued growth in 
device complexity. Memories tend to dissipate less heat, which has been critical to 
practical exploitation of 3D without overheating. 

Energy efficiency of logic families 
The energy efficiency of most logic families varies by operating speed, as illustrated in 
Figure 2. While the curves illustrated in Figure 2 required extensive simulation or 
measurement to produce in detail, key high-level features are readily visible can be 
described in words. Most logic families have a minimum energy per operation that occurs 
at a low speed. This corresponds to the curves having zero slope on the left; all curves 
would go through zero slope if the graph were big enough. All logic families have a top 
speed. The slope of the energy per operation curve rises faster and faster as the top speed 
is approached, eventually reaching a singularity where it essentially shoots straight up. 
Obviously, the curves will go through a slope of 1 in between these extremes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Energy/op vs. speed tradeoff for various logic families. 
 
Regions of the curves at or close to slope 1 are following something called the “adiabatic 
principle,” although the tie to the adiabatic principle in physics has not been formally 
documented. The physical principal of a linear rise in energy for a computer appears to 
have first been described in Ref. [Bennett 73], p. 531 and more generally described in Ref. 
[Feynman 96] pp. 167-172. The use of the term “adiabatic” comes from adiabatic 
capacitor charging, apparently appears first in Ref. [Koller 92] in the context of practical 
circuits. 
 

From D. Frank, IBM: “it 
is OK to use this figure.  
But please do not put it in 
the public domain, since 
most of the data points on 
it represent unpublished 
work.”  From David D. Frank,

                                                                                                                     with permission (1/17/2016) 
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Optimal clock rate 
We will devise a scaling rule by first discovering an economic principal from an exercise 
to optimize the clock rate and then applying the economic principle to scaling. The 
principle gives us a shortcut to picking the clock rate or frequency that yields optimal 
economic return over the lifetime of a computer. In today’s environment, it makes sense 
to consider both the purchase price of a computer and cost of energy in operating a 
computer over its lifetime. These concerns lead to an optimization exercise. We would 
like to find the minimum cost per computer operation. This would be 
 
min ($purchase + $energy)/Opslifetime. 
 
Let us say the chips cost $purchase = A to purchase. 
 
For various reasons that the reader will certainly appreciate by the end of this analysis, 
the viable economic zone will be in a part of the curve in Figure 2 that is close to slope 1 
– maybe slope ½ or 2 but not slope 20.  Where the curves in Figure 2 have slope 1, the 
energy per operation will be proportional to f and the number of operations per second 
will be f as well, so the energy consumed over any fixed time period will be proportional 
to f 2. If we choose that time period to be the lifetime of the computer, there will be a 
constant factor B such that $energy = Bf 2; this will capture the frequency dependence of the 
energy cost even though we will never need to find the value of B. 
 
The total number of ops over the machine’s lifetime will be proportional to f, so we can 
say Opslifetime = Cf, where C is a constant factor. 
 
We have now transformed the problem into finding f that minimizes (A + Bf 2)/(Cf).  To 
find the optimal value of f, we would set the derivative with respect to f to zero. 
 
d/df (A + Bf 2)/(Cf) = 0. 
 
By simple calculus, this has the solution f = √(A/B). 
 
A simple economic principle emerges when we substitute the optimal value of f into the 
expressions: 
 
$purchase = A, as before and 
 
$energy = Bf 2 = B (√(A/B))2 = A, which is the same value as in the line above. 
 
So the economic principle is that wise users should pick their clock rate such that they 
spend the same amount of money buying the chips as they spend powering them! 
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Optimal Adiabatic Scaling 
The optimal clock rate principle leads to a semiconductor scaling rule. Say that we have a 
computer that is operating at the optimal clock rate. The chip maker offers us upgraded 
chips with 4× as many of the same devices for the same cost per chip – in other words, a 
4× reduction in cost per device. What do we do? If we simply stick the new chip in the 
socket intended for the previous generation, the system will consume 4× as much power 
and move away from the optimal balance of purchase price and energy cost. 
 
The solution is to turn the clock down by a factor of √4× = 2×. With the clock turned 
down, power consumption will be reduced by 22× = 4× from the higher level. In fact, the 
per-chip power consumption will be exactly the same as the previous generation. The 
system will be returned to the optimal clock rate that minimizes the cost per operation. 
 
By turning down the clock rate, system throughput will be lower than it might have been, 
but there would be 4× as many devices running at ½× the speed. This will still yield a 2× 
increase in throughput. This is like Moore’s Law, but not as strong. 
 
A scaling rule results if the specific factor of 4 used in the discussion is replaced by 
continuous variable β and squares and square roots are applied consistently. The factor α 
in typical semiconductor scaling refers to line width so the number of devices grows with 
α2. To reduce confusion, we will say β = α2 and clarify that β represents device count. 
Table 2 comprises the table of scaling rules from [Theis 10] with Optimal Adiabatic 
Scaling on the right. Ignore the references to layers (which will be discussed later).  
 
Table 2: Scaling rules from [Theis 10], with Optimal Adiabatic Scaling on right 
 Constant V 
 

Const 
field Max f Const f Const f, Ntran Multi core 

Optimal 
Adiabatic Scaling 

Lgate 1/α 1/α 1/α 1/α 1/α 1* 
W, Lwire 1/α 1/α 1/α 1 1/α β = α2† 
V 1/α 1 1 1 1 1 
C 1/α 1/α 1/α 1 1/α 1 
Ustor = ½CV 2 1/α3 1/α 1/α 1 1/α 1/√β = 1/α‡ 
f α α 1 1 1 1/√β = 1/α 
Ntran/core α2 α2 α2 1 1 1 
Ncore/A 1 1 1 1 α β = α2 
Pckt 1/α2 1 1/α 1 1/α 1/√β = 1/α 
P/A 1 α2 α 1 1 1§ 
f Ntran Ncore α3 α3 α2 1 α √β = α 
* Term redefined to be line width scaling; 1 means no line width scaling 
† Term redefined to be the increase in number of layers; previously was 1 for no scaling  

‡ Term redefined to be heat produced per step. Adiabatic technologies do not reduce signal 
energy, but “recycle” signal energy so the amount turned into heat scales down 
§ Term clarified to be power per unit area including all devices stacked in 3D 
 

epdeben
Cross-Out

epdeben
Cross-Out



 OFFICIAL USE ONLY 

 OFFICIAL USE ONLY 24/96 

3D manufacture and distant future vision 
Optimal Adiabatic Scaling fits nicely with current trends in semiconductor manufacturing, 
although it seems likely that the intergenerational interval will increase. There is a current 
reality that line width scaling will come to an end in a few more generations. Along with 
this realization, there is a lot of attention being given to exploitation of the third 
dimension. An extrapolation of current trends could possibly lead to chips reaching some 
“final” line width (say 7 nm) and associated parameters for a device at that size. Scaling 
would then proceed exclusively into the third dimension by having progressively more 
functional layers. 
 
The number of layers could grow in accordance with a Moore’s Law-type phenomenon. 
However, it seems unlikely that historical growth rates will be maintained. Moore’s Law 
has doubled device count about every 18 months due to a 1/√2 reduction in line width. 
While we lack rigorous data on the following statement, matching this rate with layering 
would require a doubling of the number of layers each 18 months. This seems unlikely, 
but maybe half the rate is feasible. 
 
If we apply Optimal Adiabatic Scaling to 3D scaling, we could create a type of end-game 
vision as illustrated in Table 3. As this document is written, the largest DRAM chips are 
8 GBits, about 1010 transistors, or nominally a square array of 105×105 devices. If we 
make the straightforward extension to 3D, we end up with 1015 devices of 100 nm3. This 
would correspond to α = √105 ≈ 300 in Table 2. 
 
Table 3: Vision of 3D scaling 
Timeframe Today Changes End-Game Vision 
Integration scale 1010 logic 

transistors 
α = √105 ≈ 300; 
β = 105 

1015 logic transistors 

Clock speed 3 GHz 1/α ≈ 1/300× 
(slower) 

10 MHz 

Performance Chip is 2D 
comprised of 100 
nm2 gates. 
 
 
 
 

α ≈ 300× reduction 
in joules/op 
OR 
α ≈ 300× increase 
in energy efficiency 

Chip is 3D 
comprised of 100 
nm3 gates. 
 
 
 
 

Power per cm2 1 1 1 

 
The remainder of the physical system may stay the same. In Optimal Adiabatic Scaling, 
the power emerging from the bottom face (say the heat sink is connected to the bottom 
face) stays the same. This would support the idea that the manufacturer offers a drop-in 
replacement with 4× as many components. 
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Progression over time 
The discussion above has covered a series of ideas whose interactions are summarized in 
Figure 2. We warn the reader that there are too few dimensions on the printed page to 
illustrate both Optimal Adiabatic Scaling and device scaling, so the diagrams will not be 
accurate beyond the ideas explained in this document. Figure 2 is a partially calibrated 
plot of the economic viability (Ops/$) as a function of clock rate and time. The plot 
assumes Moore’s Law will continue to produce devices at lower cost, but device 
performance will not change at all. 
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Figure 3: Adiabatic system performance. 
 
The purchase price of computers dominated energy costs prior to about the year 2000, so 
the best strategy was a rapid rise in clock rate. This occurred most conspicuously during 
the 1990s, as illustrated by the long rising segment of the orange arrow in the front-center 

Adiabatic Scaling Rule 

Reversible 
computing 

Period of rapidly
rising clock rate 
(through ~2003) 

Dual core 
Single core 

Quad core 

Plot based on equations developed in this document. The device must be 
adiabatic-capable, but with unchanging performance. However, manufacturing 
cost halves each 3 years. 
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of the plot. The rapid rise in clock rate went over the optimal speed around the year 2000. 
This led to dual-core processors being introduced in about 2003, which initially had a 
lower clock rate (2-2.5 GHz as opposed to 4 GHz in the single-core processors they 
replaced) and were closer to optimal. The number of cores has trended upwards at nearly 
constant clock rate since. The graph in Figure 2 shows a declining clock rate (which is 
not correct) because the semiconductor industry continued to improve devices in this era 
(which is not captured in the graph). 
 
Figure 3 shows the path to the future as well. The green arrow at the “top of the ridge” for 
Optimal Adiabatic Scaling proceeds upwards in power efficiency and economic return. It 
proceeds downwards in clock rate at the square root of the scaling rate, just as projected 
in Table 2. 
 
The projected trend can be viewed as a measured blend of the original Moore’s Law 
(orange) and adiabatic or reversible computing (magenta). 
 
Moore’s Law (in orange) has been pushing up clock rate too fast to be economically 
optimal. Since 2003, Moore’s Law has pushed processors over the crest of the crest of the 
hill (clock rate too high) and industry has responded by the architecture change of adding 
more cores. 
 
Reversible computing (in magenta) takes power efficiency beyond the point of 
diminishing returns to a point where it is economically harmful. Reversibility is required 
to achieve an energy per gate operation below “on the order of kT.” This condition would 
occur (if the proper designs are used) at some specific and low operating frequency, a 
frequency unrelated to the manufacturing cost of the chips. The magenta arrow on Figure 
2 therefore follows the plotted surface at constant frequency (a frequency picked by the 
authors for artistic convenience). The reversible computer would have a very low clock 
rate and thus require a very large increase in the overall size of the computer to achieve a 
given throughput. Reversible computing thus appears to the far left of the graph in a 
region of rising but currently poor economic viability. The arrow for reversible 
computing will eventually intersect the arrow for optimal adiabatic computing. 

Synergy of computer architecture and Optimal Adiabatic Scaling 
The 3D computer vision illustrated in Table 3 could either be a cube of logic (as a 
microprocessor is a square of logic) or both storage and logic together (like a complete 
computer system today – or a brain). We will discuss both possibilities. 
 
Figure 4 represents different scenarios of data that are stored and processed. Assume data 
are stored in the 3D computer in Table 3 by being evenly distributed across all or some 
subset of the physical structure of the computer. The Optimal Adiabatic Scaling derived 
previously and summarized in Table 2 will be correct for an entire computer, and it will 
also be correct if data is located on a constant fraction of the computer, like 50%, 1%, etc. 
However, it will not be correct if data is present on a progressively smaller subset of the 
entire computer as the problem scales, such as only √N, log N, or a fixed number of 
devices. 
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Figure 4: Scaling scenarios 
 
Figure 4A and Figure 4B illustrate data subsets that scale with different powers of a 
fundamental data element size. 
 
Figure 4A illustrates data (in magenta) that is uniformly distributed across the entire 
device structure of N components during processing, which implies the data scales with 
N1 (i. e. exponent 1). This is the common situation today where data is stored on disk 
drives. The cost of the disk drives is not considered along with the cost of the processor 
(and memory) chips, but input/output to the disk drive and associated data parsing and 
formatting contribute an overhead to the overall running time of the program. With 
Optimal Adiabatic Scaling, this scenario achieves the √N boost in energy efficiency of 
the processing step. 
 
Figure 4B illustrates a second scenario that has behavior different from a von Neumann 
computer. Say that the purpose of a computer system is to process maps. We shift from 
the current approach of storing maps on disk drives to storage in the same 3D structure as 
the processor (imagine a Hybrid Memory Cube but with Flash storage chips instead of 
DRAM [HMC 14]). In this scenario, a given map could be stored as a planar slice 
through the 3D structure of the system – with other maps on different slices. If the data is 
present in the processor before and after the processing, input and output to the disk drive 
can be eliminated. While this does not improve processing speed as defined for von 
Neumann computers, it introduces a new computer concept where certain functions 
previously attributed to overhead are eliminated altogether. 
 

Read input 
Parse 
Process with √N 
    efficiency boost 
Format 
Write output 

A. von Neumann 
model with 
input/output: 

B. Processor-In- 
Memory-and- 
Storage: 

C. Persistent object 
store of data in form 
for optimal access: 
 

Read input 
Parse 
Process with √N 
    efficiency boost 
Format 
Write output 

Read input 
Parse 
Process with √N 
    efficiency boost 
Format 
Write output 
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Including both the standard von Neumann scenario and the new scenario, the exemplary 
map processing could proceed in two ways: 
 

1. The map processing example could proceed in accordance with Figure 4A by 
treating the system as an overlay of a storage system and a processor. The data in 
the planar slice could be redistributed to the entire processor before processing 
and back to the slice afterwards through the equivalent of input and output 
operations. This scenario would only benefit from the √N boost in energy 
efficiency of the processing step. 

 
2. However, map processing could proceed by using only the 2D slice of the 3D 

computer system that actually holds the map, as illustrated in Figure 4B. To 
define this scenario precisely, the 2D slice holding the map illustrated in Figure 
4B must have a “thickness” (a concept that will be explained below). The devices 
in this slice would include both storage devices and processing devices. If the 
thickness were constant, the volume of the 2D slice would grow with N2/3. Let us 
analyze this more precisely, but first generalize from a system using N2/3 out of N 
devices to hold data to a system using Nδ out of N devices to hold data. Figure 4A 
and Figure 4B now illustrate δ=1 and δ=2/3 respectively. 

 
Let us repeat the scenario of a chip maker offering an upgrade to a new generation of 
chip with 4× as many devices at the same cost, but where activity is on only Ν δ of the 
devices. In this case, the number of active devices grows by a factor of 4δ. This would 
cause the chip to move off the optimal cost per operation unless the clock rate was 
lowered. By multiplying the clock rate by 4−δ/2, power per unit device would drop by 4δ, 
precisely balancing the increase in number of active devices. This would result in a 
higher speed clock but less of an energy efficiency boost than in the previous explanation. 
Specifically, clock speed and energy consumption per operation would decline by the 
smaller amount 4δ/2 rather than 4½. 
 
Figure 4C expands the vision from Figure 4B to a form that we will later give an 
architectural realization. Let us assume the computer system is used to store several data 
sets, with two such data sets illustrated in magenta and green in Figure 4C. Each data set 
will be stored in devices distributed in a user- or operating system-definable subset of the 
overall system. Let us say the regions have volume Ν δ, irrespective of their shape. 
 
Figure 4C suggests a further innovation related to the representation of data in a storage 
medium. Data has been stored in “interchange formats” historically. In the past, data has 
been stored in storage media that have several attributes that strongly suggest using 
machine-independent data representations. For example, a disk drive or removable media 
could be taken to a computer with a different architecture, suggesting encoding formats 
should be independent of byte order and numerical representation. Data files are also 
loaded and stored to different memory addresses each time they are accessed by the same 
computer, arguing against putting pointers or integer offsets into data files. However, the 
structure in Figure 4C would make it impossible to separate stored data from the 
computing structure without cooperation of the computing structure. This change in 
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architecture suggests an object store approach that stores data in an opaque internal 
format and provides access by functions that reformat the data as needed. The scenario in 
Figure 4B already redistributes data spatially to minimize data movement during 
computing. The innovation in Figure 4C is to manipulate the format of stored data to 
maximize compute efficiency. 
 
There is precedent for this method of data storage in the way we humans store data in our 
brains. When humans input a pdf file into their brains by reading it, they do not store the 
bits of the pdf file in their brains, but rather parse and process the document’s ideas and 
store the ideas in a form optimized for making use of the ideas. Humans have some 
limited ability to reconstruct a document from memory, but the ability to do so is not 
considered as important as understanding its contents. 
 
The programmer now has a choice of how to use the data, with implications to 
performance. 
 

1. The programmer could choose to treat the illustrated 3D regions as storage and 
redistribute before processing as shown in Figure 4A. This would add overhead 
for input and output just like a von Neumann computer, but would achieve a √N 
power efficiency improvement in the processing stage. 

 
2. The programmer could leave the data in the original distributions as illustrated in 

Figure 4B (perhaps exploiting spatial locality between multiple data sets, as 
illustrated). This would eliminate the input and output steps and get Ν δ/2 power 
efficiency improvement. Since δ ≤ 1, Ν δ/2 will usually be less than then N½ 
available in the first scenario. 

 
3. The programmer could define an internal storage format that makes the data more 

amenable to the computations that will be performed on it. While this would 
require planning ahead, it could further eliminate the parsing and reformatting of 
data. For example, unstructured text files could be stored in an indexed form for 
fast searching. Like input and output, data parsing and reformatting are currently 
attributable to overhead and now counted as computing costs. 

Processor-In-Memory-and-Storage (PIMS) implementation 
Processor-In-Memory-and-Storage (PIMS) is the proposed architectural implementation 
and illustrated in Figure 5. Data would be stored in the 3D structure labeled “storage 
array layers.” These layers could be Flash, ReRAM (memristors), Phase Change Memory 
(PCM), or some other option. The layers could also be DRAM as in [HMC 14], although 
such as system would not have persistent storage once the power was turned off. Each 
data set would be stored in a physical region like one of the structures in Figure 4C. 
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Figure 5: Processor-In-Memory-and-Storage (PIMS) implementation. 
 
Data would be processed by an array of ALUs in an architecture like a stripped-down 
version of the GPU architecture widely used today. Data processing is likely to be 
programmed using languages descended from GPU languages like CUDA. It is well 
known that GPU architectures implement very high degrees of parallelism, which is a key 
requirement for adiabatic scaling. GPUs can have modest clock rates for a given degree 
of performance, which further boosts energy efficiency so they are viable on laptops 
without excessive power consumption. Data stored in formats like Figure 4C would be 
treated like 3D graphical objects (e. g. monsters in video games) or screen windows in a 
current GPU graphics card. The small μP and the GPU-like logic (ALUs) under control 
of a dual-architecture programming language (like CUDA) would manipulate the objects 
in the storage array layers (used like GPU memory). 
 
The memory and ALUs comprising the GPU-like logic should scale adiabatically. The 
memory and ALUs will turn out to have similar levels of energy consumption (details on 
this appear later in the document). If either the memory or logic does not scale in 
accordance with Table 2, an imbalance will develop and it will not be possible to 
maintain the scaling rule. 
 
In the context of Table 3, the vision would be a rapidly growing number of adiabatic 
ALUs operating at progressively lower clock rates, yielding more throughput and higher 
energy efficiency according to Table 2. However, we anticipate some architectural 

Proposed implementation of a single layer. In general, a full system would be a 
scalable array of the stacked structure replicated in 3D. The interface to a “main 
processor” on the left is optional. The small microprocessor (μP) illustrated in 
blue and the green structure described as array of GPU-like logic would form a 
viable computing system where control resides on the small microprocessor 
with energy-efficient computing performed on the GPU-like logic. 

Bus to processor 
Small μP Row 

logic 

Column logic 

Storage array 
layers 

Vertical interconnect 
A main processor on a 
separate chip is a 
possibility, as well as 
an embedded 
implementation 

Array of GPU-like 
logic (see text) 
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differences with current GPUs. GPUs devote many of their gates and resulting energy 
budget to functions specific to graphics, such as texture maps. Since the design space for 
Figure 5 is not specific to graphics, it is unlikely that functions designed for one purpose 
could be effectively repurposed. Due to these high-level considerations, we believe the 
proper design will be less complex than a typical GPU. The following example will 
illustrate this point. 

Example of sparse matrices for neurons and meshes 
Sparse matrices illustrate many of the features described in this document and are key to 
both neural computing and supercomputer algorithms. Supercomputer algorithms include 
the Finite Element Method (FEM) and graph algorithms. The most compute-intensive 
activity in any of these is a sparse or dense vector-matrix multiplication. In an Artificial 
Neural Network (ANN), it is the multiplication of a vector representing neural axon 
output signals times a sparse matrix representing synapse weights. In current Deep 
Learning implementations of ANNs, the underlying arithmetic can be 8 or 16 bit integers 
or single precision floating point. However, multiplication by both a matrix and its 
transpose are required. Finite element methods on supercomputers create an irregular 
mesh around a structure to be simulated, such as a turbine blade. A compute-intensive 
step for simulating with meshes is the multiplication of a vector representing, say, force, 
at each point on the by a sparse matrix representing interconnections between mesh 
points. FEM simulations also require operation on both a matrix and its transpose but 
tend to use double precision floating point arithmetic. Graphs are often represented by 
matrices with nonzero elements for graph edges that exist and zeros where there are no 
edges. Graph algorithms can be represented by sparse matrices like ANNs or FEMs, but 
where the arithmetic may be non-existent (i. e. the sparsity pattern is the only data). 
 
We will show how PIMS is an excellent structure for both the arithmetic and 
management of the memory layout. Due to the meshes being irregular, the computational 
effort is sometimes dominated by the non-arithmetic operations that manage the layout of 
numbers in memory as opposed to the actual arithmetic. The exposition of the 
computational structure will proceed in two stages: The first stage will be a dense matrix 
representation where both the matrix and its transpose can be accessed equally well. The 
second stage will extend the representation to sparse matrices. 
 
The representation being discussed will be different from current GPU practice. In order 
to achieve the power efficiency necessary to support the conclusions of this document, 
the memory access pattern must be constrained. In the discussion below, the access 
pattern for the storage array is full rows, one at a time, from the top to bottom. This is 
compatible with demonstrated adiabatic memory technologies [Karakiewicz 12]. 

Directional transpose matrix representation 
A key part of the strategy is to represent a matrix in a way that can be effectively 
transposed by reversing the processing direction from leftward to rightward. Figure 6 
shows the matrix elements stored in a memory, but the matrix rows are rotated 45° 
clockwise from the memory rows and from the normal way matrices are illustrated. The 
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storage array rows are read from top to bottom in subsequent steps, each step delivering 
all the matrix elements in the memory row to the rose-colored ALUs at the bottom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Matrix organization that transposes by processing direction 
 
The processing algorithm will involve multidimensional movements similar to a square 
dance or a contra dance, where gents move one way across the ALUs and ladies move the 
other. In this description, the memory drops matrix elements onto positions on the dance 
floor corresponding to ALUs. 
 
Let us describe a warm-up exercise for the required the motions of a vector-matrix 
multiply with an algorithm that merely sums the elements in all the rows of the matrix. 
Gents will be assigned accumulating sums, initially zero. Imagine you are a gent standing 
on the central ALU in Figure 6. In step 1, the matrix element w00 falls from the memory 
and is added to your accumulating sum (which is zero, so you compute s = w00 as 
illustrated). In the next step, w01 falls from the memory to the ALU to your right. So you 
move to the right and add w01 to your accumulating sum (computing s += w01 as 
illustrated). If the gents move one ALU to the right between each step, adding the values 
that fall from the memory will perform row-wise summation. To sum columns, the gents 
to go the left instead. 

w00 

w01 w10 

w20 w02 

 

w11 

 

w12 w21 

w13 w22 w31 

s = 
w00 

s += 
w01 

s +=
w02 

w00 
×a0 

w10 
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×a0 

Step 1 

Step 2 

Step 3 

Step 1 2 3 

Step 3 2 1 

+× +× +× +× +× 

Storage array (row access): 

ALUs: 

Registers: 

Same registers, matrix effectively transposed: 

Normal reading direction 

45° rotated reading 
direction 

Note: It is implicit that 
the red and green 
registers span the entire 
lower dimension of the 
storage array and can 
be loaded and unloaded 
to external data sources 
and sinks as needed 
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The ladies perform the second activity that will be needed for vector-matrix 
multiplication. Each lady will represent a vector element. A little thought reveals that the 
ladies should move in the opposite direction of the gents for vector-matrix multiplication. 
If addition is performed across a row, then each vector element will be multiplied by 
every matrix element in a column – and vice versa. Imagine you are a lady standing on 
the central ALU in Figure 6. In step 1, the matrix element w00 falls from the memory and 
you multiply it by your vector element. You thus compute w00×a0. In the next step w10 
falls from the ceiling to the ALU on your left. So you move to the left and compute 
w10×a0. If the ladies move one ALU to the left during each step, multiplying the value 
they represent by the values falling from the memory will perform all the multiplies 
required for vector-matrix multiplication. To effectively transpose the matrix, the ladies 
to go the right instead. 
 
The full vector-matrix multiply algorithm requires the ladies and gents move in opposite 
directions at the same time. In each step, a matrix element falls from the memory. The 
lady catches it and multiplies it by the vector element she represents. She hands the 
product to the gent, who adds it to his accumulating sum. The lady and gent then move in 
opposite directions for the next step. 

Sparse matrices 
The proposed enhancement to accommodate sparse matrices would make the human 
dance much less fun, but can be readily described in dance terms. In the enhancement, 
each matrix element would have two additional pieces of information that specify the 
sparsity pattern. The matrix elements in Figure 6 are enhanced with green and red 
pointers, as shown in Figure 7. Each pointer describes the location of the next element in 
the same row and same column. For example, a 2-bit codeword for the column could 
specify the next row element is (a) to the left, (b) left and down, (c) two to the left, (d) 
two to the left and down. (A second 2-bit codeword would be required for the row, for a 
total of 4 bits in this example.) In the terminology of the dance, the lady and gent will 
each treat one pointer or codeword as an appointment to show up at the specified time 
and place to perform their next math operation with a partner. 
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Figure 7: PIMS organization as extended for sparse matrix operations 
 
A holding area will be required. As illustrated in Figure 7, the architecture is augmented 
with holding cells t0, t1, etc. If a lady or gent does not have a math operation in some step, 
they must wait in the ALU area. While the ladies and gents are fictions, the ALU will 
require storage locations to hold their vector elements or accumulating sums. 
 
The method was described concisely and without consideration to resource conflicts. In 
actual practice, it would be necessary for the motion pattern corresponding to a sparse 
matrix to avoid multiple ladies or gents trying to get between the same pair of ALUs and 
causing overload of ALU-ALU connections. Furthermore, a system would be constructed 
with some specific number of cells in the holding area. A sparsity pattern could fail if it 
required more holding cells than had been constructed. To avoid failure, an algorithm 
could reallocate the positions of the matrix elements in the memory. This might include 
adding extra columns to the memory to make more holding cells available, a solution that 
would reduce efficiency (which is an inevitable tradeoff). 

ALU complexity 
The authors anticipate a GPU-like logic for the array of ALUs. To support this point, we 
will identify the required data flows for the ALUs in this example and let the reader 
decide if “GPU-like” is an acceptable description. A potential design for an ALU for 
sparse matrix processing is illustrated in Figure 8. The illustration uses 8- and 16-bit 
integers as are sufficient for some ANNs in Deep Learning, but the block diagram would 
be the same if the data types were change to single- or double-precision floating point. 
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Figure 8: ALU data flows for sparse matrix calculations 
 
While the overall array of ALUs would be Single Instruction Multiple Data (SIMD), each 
ALU would shift one of its intermediate products left or right so the intermediate 
products match up with the sparse matrix elements at the right place and time. Thus, each 
control unit would look at the code words encoding the sparsity structure and decide 
which intermediate products to send left, right, and into the temporary registers t. The 
structure shown has the basic elements of a stream processing unit in a GPU, but the 
illustration is only a single application. Anticipated designs would likely have several 
times the complexity in order to achieve the necessary degree of generality. 

Power consumption 
Let us make an argument that the design shown in Figure 5 and Figure 8 could be power 
efficient in the short term and progressively more power efficient in the future. Let us 
identify technologies that have been demonstrated, albeit not in combination. This will 
yield an optimistic but not impossible result and with some guidance for each sub 
technology. Let us do this for an ANN system of human brain proportions of 1011 
neurons, 1015 synapses, and a 20 Hz update (i. e. brain wave cycle) rate. Let us initially 
assume the system is a collection of chips like Figure 5; whether these chips are 
themselves stacked will be considered later. 
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A rough sketch of such a system is shown in Figure 8. Let us assume an equivalent 
storage density to a state-of-the-art Flash memory chip containing 64 GBytes or 512 
Gbits (e. g. Micron MT29F512G08CUCAB [MT29F512G]). Since a synapse is 
represented by 12 bits, this implies 64×230×8/12 = 4.6×1010 synapses per chip, or 1015 / 
4.5×1010  = 21,800 chips will be required to implement 1015 synapses. If a memory or 
storage bank is 1000 × 1000 bits, each PIMS chip could contain 55,000 × 10 one-megabit 
banks, representing 4.58×106 × 10,000 synapses. The structure just described would have 
the correct ratio of 10,000 synapses to each neuron. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: One of 21,800 chips in a brain-sized structure 
 
The assessment approach will be to separately evaluate memory and logic options, 
followed by a cross-product table for systems. In more detail: While the memory and 
logic will be tightly integrated, their power efficiency can be evaluated separately. A 
system in our analysis will be specified by three parameters: 
 

1. EmemoryBIT, the energy for the memory to access each bit in the whole-row-at-a-
time mode 

2. N, the number of bits in a synapse, including 4 bits for pointers 
3. ElogicALUP, the energy to process a synapse (for all the bits in the synapse) 

 
The energy to evaluate a synapse will be 
 
Esynapse = N EmemoryBIT + ElogicALUOP 
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We will analyze two memory options and four logic options. These will create eight 
combinations. We will also analyze a commercial GPU, which yields a single result with 
no breakdown by logic and memory. 

Memory Access Energy 
We will need to estimate energy access energy, which we will do for both conventional 
DRAM and an extrapolation of an adiabatic research device [Karakiewicz 12]. 
 
The most energy-efficient method of accessing large amounts of memory in a production 
chip occurs during DRAM refresh. A DRAM such as the 4 GBit Micron MT41K256M16 
(we will consider the 1066 MHz version) [DDR3L] refreshes its entire contents in 8192 
refresh cycles, or 232/213 = 219 = 512K bits each refresh cycle. 
 
Equation (22) on page 15 of Ref. [TN-41-01] is: 
 
Pds(REF) = (IDD5 - IDD3N) × VDD 
 
In this equation Pds(REF) is the power of the subcomponent REF, where REF stands for 
“refresh.” For more details, see Ref. [TN-41-01]. 
 
From the datasheet for the part above [DDR3L], IDD5B = 205 mA, IDD3N = 68 mA, and 
VDD = 1.35v (table 19, p. 41). This yields 185 mw power during refresh. The time for 
each refresh cycle is 139 clocks (table 8, p. 30) at a clock rate of 1066 MHz, or 130 ns. 
 
The refresh energy per bit is therefore 
 
EDRAMBIT = 185 mw×130 ns/219 joules/bit = 46 fJ/bit 
 
The second option is a unique adiabatic DRAM described in Ref. [Karakiewicz 12]. The 
paper reports that when adiabatic charge recycling is turned on, energy efficiency 
improves by 85×, which implies about 98.8% of the energy driving rows and columns is 
recovered. Unfortunately, this 256-row device is used in logic mode where on average 
128 rows are accessed in parallel, with the number of “1” bits added in analog. We will 
now make a wild assumption. Most of the power in this research memory is in the row 
drive, as opposed to the logic. So we will assume/speculate that we could achieve the 
same power efficiency driving 128 memory banks one row at a time. In this case, the 
adiabatic memory approach would yield extremely good results. 
 
The research chip in Ref. [Karakiewicz 12] achieves 1.1×1012 ops/second/milliwatt. If the 
ops can be separated across banks and the device operated purely as a memory, energy 
per bit will be 
 
ETMACSBIT = .001 / 1.1×1012 = .91 fJ/bit 
 
The nVidia GTX 750 Ti is a state-of-the-art consumer GPU today. Memory bandwidth is 
limited to 86.4 GBytes/sec. The system consumes 60W, yielding 86.8 pJ/bit. If a synapse 
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is 12 bits, the energy requirement will be 1.04 nJ/synapse to load the synapse value from 
memory to the processor. This subsystem is memory bandwidth limited in this 
application, so we will assume the computing energy is zero. 

Compute Energy 
The publication [Nikonov 13] contains energy projections for Beyond CMOS devices, 
including 32 bit adders. We will consider two devices: the “HomJTFET,” which is the 
device with lowest energy and “CMOS HP,” which is the common device in 
microprocessors. The energies per operation are: 
 
ETFET-32Add = .15 fJ/add (figure 47, p. 65), 
EHP-32Add = 2.5 fJ/add (figure 47, p. 65), 
 
for a 32-bit adder. Dividing by 32, this is 
 
ETFET-FA = .15 fJ/32 = 4.7 aJ 
EHP-FA = 2.5 fJ/32 = 78 aJ 
 
Each synapse evaluation includes an 8 × 8  multiply, a 16-bit add, and what we will 
estimate as a tripling of energy for control and bit transfer. Let us assume an N-bit 
multiplier consumes 1.2N2 times the energy of a full adder. The 20% addon is due to the 
need for gated full adders. This would lead to 
 
ETFET-mul = (64 + 20%) ETFET-FA = 77 ETFET-FA = .36 fJ 
EHP-mul = (64 + 20%) EHP-FA = 77 ETFET-FA = 6 fJ 
 
However, we will also include an estimate for 21-bit multipliers to be closer to single 
precision floating point 
 
ETFET-mul-21 = (212 + 20%) ETFET-FA = 529 ETFET-FA = 2.4 fJ 
EHP-mul-21 = (212 + 20%) EHP-FA = 629 ETFET-FA = 41 fJ 
 
Let us assume the adder is 16 bits 
 
ETFET-add = 16 ETFET-FA = 75 aJ 
EHP-add = 16 EHP-FA = 1.25 fJ 
 
This will lead to energies per synapse evaluation in an ALU 
 
ETFET-ALUOP = 3 (ETFET-mul + ETFET-add)  = 1.3 fJ 
EHP-ALUOP = 3 (EHP-mul + ETFET-add)  = 22 fJ 
ETFET-ALUOP-21 = 3 (ETFET-mul-21 + ETFET-add)  = 7.7 fJ 
EHP-ALUOP-21 = 3 (EHP-mul-21 + ETFET-add)  = 128 fJ 
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System Energy 
If extended to 1011 neurons and 1015 synapses updating at 20 full cycles per second, we 
construct Table 4 showing overall system energy in orange for the pertinent combinations 
of memory and logic options. Four of the rows list a logic energy in blue and two of the 
columns list an memory energy in red. Each row-column intersection four constituent 
energies (see legend) and the system energy in kilowatts. The right column for GPUs 
represents a memory-bound situation and is modeled by zero additional energy for 
computation. 
 
Table 4: Combinations of technologies 

  Mem-
ory 

DRAM TMACS nVidia GTX 750 Ti 

   46 fj/bit 9.1 fj/bit 87 pj/bit 
Logic fj/ 

synapse 
bits 
needed 

   

TFET 1.3 12 12×46=552 (fj memory)
1.3 (fj logic) 
553 (fj mem+logic) 
11 KW (kilowatts) 

12×9.1=11 (fj memory) 
1.3 (fj logic) 
12 (fj mem+logic) 
240 W 

12×86=1 (nj memory) 
 
 
21 MW (megawatts) 

HP 21.8 12 12×46=552 (fj memory) 
21.8 (fj logic) 
574 (fj mem+logic) 
11 KW 

12×9.1=11 (fj memory) 
21.8 (fj logic) 
33 (fj mem+logic) 
650 W 

12×86=1 (nj memory) 
 
 
21 MW 

TFET 
21 

7.7 21 21×46=1149 (fj memory) 
7.7 (fj logic) 
1158 (fj mem+logic) 
23 KW 

21×9.1=23 (fj memory) 
7.7 (fj logic) 
30 (fj mem+logic) 
610 W 

21×86=2 (nj memory) 
 
 
43 MW 

HP 21 128 21 21×46=1149 (fj memory) 
128 (fj logic) 
1278 (fj mem+logic) 
26 KW 

21×9.1=23 (fj memory) 
128 (fj logic) 
150 (fj mem+logic) 
3 KW 

21×86=2 (2nj memory) 
 
 
43 MW 

Legend: 
Line 1: femto joules to access memory for one synapse 
Line 2: femto joules logic energy to act on a synapse 
Line 3: Total energy (line 1 + line 2) 
Line 4: System energy at specifiedscale (watts, kilowatts, megawatts) 

 
A conspicuous result of the Table 4 is that all the PIMS approaches beat a contemporary 
GPU by 2000× or more. 
 
A second result is that DRAM energy dominates logic, when DRAM is used. The energy 
to access a synapse with DRAM is much higher than the energy to process the synapse. 
Specifically, for the four scenarios, the memory access energy is 9-425 times larger than 
the logic energy. This means the logic is “essentially free” in this scenario. If this 
situation were likely to persist, the wise architect would add complexity to the logic. 
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If our wild assumption that the adiabatic DRAM is feasible, the TMACS row achieves a 
substantial further improvement. 
 
However, the extremely low access energy demonstrated in Ref. [Karakiewicz 12] raises 
the possibility that the logic in Figure 8 is actually overbuilt. GPU and PIMS are subject 
to different design constraints. GPUs have always had an external memory with an access 
energy limited by the DDR or DDR-class bus between chips. It would be silly for a GPU 
architect to reduce GPU energy below that of the memory feeding it. It would be more 
sensible for the GPU architect to add additional GPU features even if the features were 
marginally useful. This is presumably the reason for texture maps, double precision, etc. 
While the thought process in the sentences above applies to PIMS, the memory access 
energy is much less and as a result the amount of logic that will balance the memory 
access energy will be much less. The logic illustrated in Figure 8 might benefit from 
adiabatic implementation (see next section) which has not been considered in the power 
calculation. 
 
With the adiabatic memory (as wild a speculation as it is), the system is more power 
efficient that a modern GPU by around a factor of 80,000. 

Adiabatic circuit families 
Adiabatic circuitry has not been popular to date, but the reasons for this appear to be 
addressed for Optimal Adiabatic Scaling and PIMS. Adiabatic circuitry is believed to 
have higher device count and more wiring complexity than equivalent CMOS circuits. 
While the author admits this is true for CMOS implementations of adiabatic circuits, the 
PIMS design space “floods” the processor structure with enormous numbers of devices 
for the purpose of storage. This will tend to reduce the impact of a modestly larger 
number of devices per equivalent circuit. 
 
Furthermore, the idea that adiabatic circuits have larger device count is to some extent an 
artifact of optimizing devices to serve the needs of CMOS. The devices are mis-
optimized for the current application, suggesting we should discuss the possibilities of 
devices that are actually optimized for PIMS. 
 
Figure 10A and B shows AND circuits with both the adiabatic logic family 2LAL and 
CMOS, showing how the device count overhead advantage reverses between CMOS and 
2LAL depending on subtle properties of the underlying device 
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Figure 10: Adiabatic and CMOS circuits. 
 
If the 2LAL circuit is implemented with CMOS transistors as in Figure 10A, 4 transistors 
would appear to be required for an AND gate, but actually the number is 8. The reader’s 
attention is called to the implementation of the primitive 2LAL circuit element (which is 
actually a CMOS pass gate). The circuit element requires both true and complementary 
control signals (C and -C in the diagram). To consistently create both true and 
complement signals in a circuit would require augmenting each circuit with the 
complementary circuit. Both the true and complement circuits will be of equal size, so the 
effective transistor count doubles.  
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AB 

VDD 

A. 2LAL AND: B. CMOS NAND (AND): 

C 
A B GND 

A 

B 

-AB 
AB 

where 

A B

-C 

C 
= 

Complementary PET 

From D. Frank Register, et. al., from 1302.0244 

C. Two beyond CMOS devices that implement 2LAL primitive pass gate with one 
device and a single-ended control 

Bi-Layer pseudospin (BisFET) scheme 

Note: Both true 
and 
complementary 
control signals 
here 

If the 2LAL adiabatic circuit is implemented with CMOS transistors, it has 
8 pFETS and nFETS per AND gate compared to 4 or 6 for CMOS. 
However, there are Beyond-CMOS devices that could implement the 2LAL 
AND gate with two devices only. 

epdeben
Cross-Out

epdeben
Cross-Out



 OFFICIAL USE ONLY 

 OFFICIAL USE ONLY 42/96 

In contrast, the CMOS circuit in Figure 10B has 6 transistors for an AND gate or 4 
transistors for a nearly equally functional NAND gate. 
 
However, Figure 10C shows two “Beyond CMOS” devices that would appear convey 
substantial benefit to the 2LAL circuit only. The benefit accrues from subtle properties 
about the devices’ behaviors: 
 

• The control signal on these 4-terminal devices is isolated from the source-drain 
connection in both voltage and current. This would permit the equivalent of a 
CMOS pass gate with a single device as opposed to two devices. This would cut 
the number of devices for 2LAL by 2×. 

 
• These devices can be controlled by the voltage difference between a signal and 

ground, a signal and the supply voltage, or a signal and the clock. This avoids the 
need for an entire second circuit to generate the complementary logic signals. 
This would cut the number of devices for 2LAL by an additional 2×. 

Conclusions 
We have devised an approach to increasing computer performance beyond the limits of 
Moore’s Law and the microprocessor. We specifically use energy efficiency as the 
computer performance metric. 
 
The first step was to provide greater clarity to an adiabatic scaling rule. It is ubiquitously 
known that clock rates in production microprocessors rose so fast is the 1990s that the 
resulting power dissipation exceeded customer tolerance. Multi-core processors with 
slower clocks are now more effective in the marketplace. It has also been claimed that 
adiabatic and reversible computing could have extremely high energy efficiency, but 
these technologies never received a lot of attention. This document shows the connection 
between the emergence of multi-core processors and the non-viability of reversible 
computing: Reversible computing is an idea in the right direction, but the community 
needs to go in that direction at the right pace. 
 
We identify a clock rate that optimizes economic return for a computer. Since the 
emergence of multi-core processors around 2003, the Moore’s Law has driven clock rates 
above the optimum point. The remedy is to mix just the proper amount of adiabatic “slow 
down” – an amount that changes over time. 
 
If manufacturing costs continue to decline (as predicted), the optimal mix of Moore’s 
Law and adiabatic computing will show rising power efficiency over time. We call the 
effect Optimal Adiabatic Scaling, and it is like Moore’s Law but less powerful. Optimal 
Adiabatic Scaling would have a doubling period that is twice as long as Moore’s Law 
under the most optimistic assumptions about 3D scaling. 
 
However, Optimal Adiabatic Scaling has another property that can yield big benefit. 
Optimal Adiabatic Scaling predicts an O(N) increase in device count will raise both 
throughput and power efficiency by O(√N). If followed naturally, this will lead to an 
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excess of devices. This excess of devices can resolve a long-standing division (of sorts) 
in computing. For a long time, computers have been divided into a processor and a 
memory or storage subsystem. A sizeable amount of time, energy, and resource is 
devoted to transferring data between these units. Storage technology has become more 
like processor technology in recent years, changing from rotating disks to Solid State 
Disk (SSD) chips using almost the same technology as the processor. Optimal Adiabatic 
Scaling is thus remarkably compatible with the idea of a new architecture that merges 
processors and storage, using the excess devices resulting from adiabatic scaling to 
become the storage medium. 
 
As mentioned, the brain and neural systems work this way. 
 
We then discussed high-level computer system organization that could exploit Optimal 
Adiabatic Scaling in a system that merged storage with processing. This eventually led to 
the idea that stored data could be distributed within the structure of a computer to provide 
sufficient data near compute elements to enable the power efficiency boost and also 
eliminate steps like input, parsing, formatting output after computation, and output. The 
collective performance boost comes from a combination of more energy-efficient logic in 
conjunction with algorithms that circumvent the need for certain algorithmic steps 
altogether. These steps are essentially the I/O and data manipulation. 
 
We finally presented a practical architecture for realizing the gains described above. The 
release of 3D (or maybe 2½D) chips that combine logic and memory is imminent [HMC 
14] [HP The Machine]. If the logic in these stacks could be switched to something like a 
GPU, the resulting system would support the proper system structure and demonstrate the 
concepts in this document. The architecture was illustrated in a form that might apply to 
an ANN like Deep Learning or sparse matrices on supercomputers. The efficiency was 
very high using estimates of technology now on roadmaps, enabled by the tight 
integration of processing and memory. Furthermore, the architecture proposed had the 
correct parallelism and scaling to embody Optimal Adibatic Scaling over time. 
 
We performed an energy efficiency analysis of the PIMS approach in comparison with a 
current production GPU. With projections based on production DRAM, PIMS 
outperformed the GPU by about 2000×. If a really far-out adiabatic memory concept 
could be moved to production, the boost rises to about 80,000×. At 80,000×, the 
historical rate of improvement due to Moore’s Law could be maintained for another 16 
generations or so. The energy efficiency analysis illustrated why a hugely stripped down 
GPU architecture using adiabatic low-level technology would make sense. 
 
As future work, the authors suggest building a system like Figure 5, programming it to 
operate on data like shown in Figure 4. If successful, the system should scale like Table 2 
and eventually produce a device like the 3D structure in Table 3. 
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Appendix II: Artificial Neural Networks as Beyond CMOS 
Systems 
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Artificial Neural Networks as Beyond CMOS Systems 
Erik P. DeBenedictis and James B Aimone, August 18, 2014 

Abstract 
We present a method to assess artificial neural network (ANN) implementation 
approaches as candidates for a Beyond CMOS technology. Neural networks are 
indisputably highly capable information processors with remarkably low power 
consumption. However, real biological neural networks are unsuitable as a Beyond 
CMOS technology because they grow organically as opposed to being manufactured. We 
investigate the possibility that an ANN technology stack could be devised using 
biologically inspired methods but which would otherwise be manufacturable. 
 
We present a method to estimate top-to-bottom energy efficiency of technology stacks for 
brain-inspired computing. This is based on a method of assessing the minimum energy 
consumption of the underlying computational primitive (a neuron) as a function of kT 
(the base value of thermodynamic energy). We then apply computational complexity 
theory to data representations, architectures, and algorithms built from the artificial 
neurons. 
 
The result is believed to be a novel method of assessing minimum energy in an 
information processing structure that combines ideas from Landauer’s minimum gate 
energy, channel capacity in communication theory, and complexity theory. The method 
was purpose-built for assessing ANN implementation approaches as candidate Beyond 
CMOS technologies, and permits cross-comparison between ANN and CMOS 
technology stacks. 
 
Two conclusions are apparent from applying the new method to proposed artificial neural 
concepts: (1) The common resistive crossbar neural network scales significantly less well 
than a digital emulation of itself. Resistive crossbar scaling could possibly be improved 
by adding sparse coding of data (biology is known to do this), but sparse coding is not 
dealt with in the literature in any detail. (2) There is a possibility that artificial neurons 
based on spiking could scale very well, but there is no evidence of a compatible artificial 
synapse. 

Introduction 
Neuro-inspired computing has been receiving attention from both neuroscientists to 
accelerate simulations of neural circuits and the computer industry as a Beyond CMOS 
technology option. The brain’s potential benefits as an inspiration for computation are 
widely cited. Biological neural systems are capable of performing highly complex 
functions that are difficult using conventional algorithmic approaches. Furthermore, the 
brain performs these functions quickly and at low power.  
 
Despite this increasing attention, there remains considerable uncertainty about which 
features of neural circuits would be necessary in an effective Beyond CMOS technology. 
Biological neural systems have a number of computational properties that are distinct 
from computer systems, such as integrating inputs in the analog domain, communicating 
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using spikes which are effectively digital in amplitude but analog in time, distributing 
information over many nodes operating in parallel, and leveraging sparse coding of 
representations that often progress through hierarchical layers producing progressively 
more complex features. Computer scientists have achieved some neural-like functionality 
in software through recent developments in techniques such as Deep Learning; however 
Deep Learning and previous artificial neural network (ANN) algorithms are generally 
only based on the equivalent of level-based neurons and not spiking [Hinton 2006]. Other 
research has focused on producing hardware instantiations of neurons, often by 
replicating the complex dynamics of spike generation or synaptic transmission in silicon 
[Indiveri 2011]. 
 
If neural-based architectures are to become a key contributor to Beyond CMOS 
technology the community would be seeking a manufacturable technology based on those 
properties and structures from neuroscience that contribute to the needed function and 
power efficiency. However, there is no consensus as to whether it would be best to 
extend development of resistive crossbar neural networks to more power-efficient devices 
and sparse coding [Nikonov 2013] [Taha 2013] or to restart with more neurobiologically 
realistic spiking approaches [Dayan 01], or to select an intermediate strategy [Merolla 
2014] [Eliasmith 2012]. The differences between these approaches can be substantial, 
both in terms of potential algorithm functionality and hardware efficiency, and to date we 
are unaware of any systematic analysis weighing the advantages of these different 
approaches. It is not assured that the conventional approaches of computing technology 
development will be successful in this domain without an objective means to evaluate the 
advantages of emphasizing different aspects of neural fidelity. 
 
In this study, we describe an approach that we believe will provide an initial framework 
for rigorously developing neural computation hardware. First, we quantify the costs 
associated with representing neural algorithms on analog architectures, such as resistive 
crossbar arrays. Second, we tie back to digital logic by considering potential strategies for 
expressing neural computation in a digital framework. Finally, we show how the 
framework described here enables these different implementation strategies (analog, 
digital, and spiking) to be quantified for specific algorithms, thus facilitating a direct 
comparison for the purpose of neural computing engineering. While we consider only a 
selection of proposed neural systems, we believe that this approach is generalizable to a 
number of potential neural computing systems. 

Reasoning about the limits of technology 
There has been an information revolution underway since WW II, driven by a 
progression of electronic technologies at the base, the von Neumann architecture, and 
software for implementing applications. Integrated circuits have been the electronic 
driver, but the current generation of this technology (CMOS) shows the approach is 
reaching its physical limits. There is a search for an alternative approach that could 
maintain the year-to-year rise in performance essential to the information revolution. This 
search includes the ANN implementations [ITRS 20XX] [DARPA Synapse] as the 
central component of a stack of technologies (devices, artificial neurons, and learning 
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algorithms) below and above it. It is thus important to know how an ANN technology 
stack would perform in comparison to CMOS. 
 
However, CMOS is such a formidable competitor that upstarts will need a new 
comparison approach to get meaningful results. With an investment of around a trillion 
dollars, industry has improved CMOS incrementally to the point where it is approaching 
the limits of the underlying physics in several dimensions. While ANN implementations 
have many interesting attributes, today’s systems work only at small scale and have not 
been optimized for power efficiency or much of anything else. This results in CMOS 
winning in comparisons without the ANN implementation even having a chance. This is 
not helpful since we are specifically looking for a successor to CMOS. We need a 
comparison method that is not biased in favor of the more mature technology. 
 
It is sometimes possible to find the ultimate physical limits of a technology theoretically. 
Comparing the limits CMOS with the limits of ANNs would neutralize CMOS’s maturity 
advantage. Essentially, a physics-level energy analysis is applied to two approaches 
assuming all the components are being implemented by the best components possible 
without violating the laws of physics. Where this method applies, it leads to minimum 
energies typically in units of kT (which is about 4 zetpojoules at room temperature, or 
4×10-21 Joules). Since we know CMOS will approach its physical limits (since it already 
is close), investment in an ANN implementation will only be justified if the limits of the 
specific ANN approach are higher. 
 
We use a unique process in this document for identifying the limits of ANN technology, 
although the process is derived from several methods that have accomplished similar 
functions in other fields. Table 1 summarizes the contributing approaches along with our 
proposed approach. 
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Table 5: Comparison of technology limit approaches 
 Incoming 

presumption 
Freedom Result of 

method 
Prohibition 

Landauer’s gate 
energy 

Computer and 
algorithm are 
implemented as 
a specific 
network of gates 

Pick any 
circuit for a 
gate, with 
infinitely 
advanced 
components 
available 

Minimum 
overall 
energy 
(signal + 
system) 

May not 
redesign gate-
level 
implementation 
(e. g. may not 
invent 
reversible 
computing) 

Communications 
limits 

System 
comprised of 
transmitter, 
channel, and 
receiver. 

Pick any 
design for 
transmitter 
and receiver, 
with infinitely 
advanced 
components 
available. 

Minimum 
energy of 
signal (does 
not count 
transmitter or 
receiver 
energy) 

May not use 
energy freely-
available in the 
receiver to 
increase signal 
energy 

Complexity theory Application 
decomposable to 
operations on 
computer words 
(e. g. 32-bit 
integers) 

Pick any 
sequence of 
operations 

“Big O” 
performance 
of algorithm 
in limit as 
size  
infinity 

May not 
redesign the 
computer for 
better 
performance 
(self-enforcing 
prohibition: it 
won’t improve 
the result) 

Proposed method 
for analyzing 
artificial neural 
networks. Also 
applies to CMOS 
realizations, 
thereby allowing 
comparison with 
CMOS 

A nanostructure 
that holds 
synapse values 
(usually) 

Design control 
electronics, 
electrical 
protocol, and 
algorithm 

Minimum 
overall 
energy for 
algorithm at 
scale (signal 
+ system) 

May not 
change the 
nanostructure 
or anything 
specified in the 
artificial neural 
network 
concept 

Landauer’s principle and minimum gate energy 
Landauer [Landauer 1961] proposed that the minimum energy for a gate operation was 
“on the order of kT,” where k is Boltzmann’s constant of 1.38×10-23 j/K and T is the 
absolute temperature in degrees Kelvin. Landauer assumed a computer was defined as a 
specific network of gates. Landauer’s contribution was to identify the lowest possible 
energy for any implementation of a gate, given that the implementer was free to use any 
technology consistent with the laws of physics. In Landauer’s case, energy included both 



  

 53/96 

the signal energy in the 0’s and 1’s and the energy to power the gate. While the 
implementer had considerable freedom, he or she was not eligible to alter the gate-level 
specification of the computer or to improve upon algorithms. 
 
Landauer’s principal has been useful in technology planning. With expenditure of around 
a trillion dollars, CMOS had moved considerably closer to the minimum energy predicted 
by Landauer. It is now accepted that even another trillion dollars will not continue the 
reduction below “on the order of kT” per gate operation and that we must proceed by 
going outside Landauer’s assumptions if we want to go anywhere at all. 

Communications limits 
Shannon [Shannon1949] and Johnson-Nyquist [Johnson 1928] [Nyquist 1928] developed 
theory for the amount of information that may be transmitted over a communications 
channel as a function of the signal energy in units of kT. The communications limit gives 
the implementer freedom to choose any implementation of the transmitter and receiver 
consistent with the laws of physics. Unlike Landauer’s principle, the energy assessment 
applies only to the signal energy in the channel and does not include energy to power the 
transmitter or receiver. While the implementer has considerable freedom, he or she may 
not use energy freely available in the receiver to bolster the input signal. 
 
The communications limits apply to neural systems as follows. Biological neural signals 
are a waveform, at least in part. Landauer’s principles apply to discrete units of 
information, whereas communications limits apply to signals that convey information 
over time. Communications limits thus apply to biological inspired manmade systems 
that retain the waveforms of their biological inspiration – as well as a comparison 
baseline for manmade systems that emulate waveforms digitally. 

Computational complexity theory and algorithms 
Many people contributed to the development of computational complexity theory for 
algorithms, which identify which algorithms run faster than others at large scale. The 
presumption behind complexity theory is that the user is most concerned about the 
running time of algorithms as the data size becomes very large, called scalability. The 
implementer is free to choose any sequence of operations, but changes in computer 
architecture, instruction set, or processing speed will have no effect on the outcome 
because constant factors are removed from the result (due to “Big-O” notation). 
 
Complexity theory will be needed to understand scaling of current ANN implementations 
from the level of current experiments to the expected scale of real systems. Experimental 
data on ANN computers has been at the level of tens of thousands of synapses (active 
elements). The largest software implementations have been much larger at around a 
billion variables [Le 2013]. However, the human brain is often cited as a scaling target. 
The human brain has around 1015 synapses, or a million times larger than anything 
demonstrated so far. 
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Proposed method 
We propose a method in the style of those listed above, but specific to the effectiveness 
of an ANN technology stack as a Beyond CMOS candidate. 
 
Our method accepts and analyzes ANN implementation approaches as an input. Usually, 
these approaches are a nanotechnology structure that holds the synapse state, including, 
for example, memristor arrays [Taha 2013], Charge Injection Device (CID) arrays 
[Karakiewicz 2012], and CMOS implementations where synapse state is stored in DRAM 
[Merolla 2014]. There are exceptions, such as neuristor concepts, which are based on a 
replacement for the neuron body (soma) as opposed to synapse. Just as Landauer’s 
principal would not apply if one rearchitected the gate-level implementation of a 
computer, our method presupposes that we will not redesign the ANN implementation 
approach to give a better result. 
 
However, we will presume that future engineers will use infinitely advanced components. 
For example: If the ANN implementation approach has a resistor or capacitor in some 
spot, we will assume the component can be the best that could ever possibly be 
constructed. This means the resistor will generate precisely the amount of thermal noise 
predicted by engineering principles, but not zero noise.  This approach allows us to find 
minimum energy limits for implementation approaches as functions of kT. This kT 
energy measure allows us to accommodate the intermixing of physical and algorithmic 
behavior. Use of such a measure is unusual but not unique [Peng 2008].  
 
We will also view ANNs as building blocks for larger systems, with a neural network 
algorithm being the principal with which the building blocks are assembled. The majority 
of today’s complexity theory (i. e. software algorithms for computers) is based on 
counting the number of operations on a computer word (e. g. 32 bit integer). While ANNs 
can have different primitives, these primitives are close enough to computer operations 
that complexity theory can be adapted. Specifically, here we focus on the common ANN 
function of the sparse vector-matrix multiply on signals, which are essentially bandwidth-
limited variable-precision fixed point sequences. 
 
There will be an important difference in the nature of complexity expressions, as 
illustrated in Table 6. The energy efficiency of computers today uses expressions from 
physics and engineering to compute the energy of gates, such as in Ref. [Nikonov 2013]. 
The energy of a gate operation would be C kT or C joules, for some constant C. The 
remainder of the energy efficiency computation is essentially based on counting gate 
operations, so the energy of a computation would be of the form f(N) C kT. 
 
Table 6: Comparison of analog and digital systems 

Level Digital computer Neuron 
Algorithm f(N) C kT falgorithm(N) fneuron(N) kT  

F(N) kT 
Primitive building  block C kT (gate) f(N) kT (neuron) 
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In contrast, a neuron is an analog structure of variable size, specifically N synapses. The 
energy consumption of a neuron will be of the form fneuron(N) kT, where f is not a constant. 
When multiple neurons are grouped into algorithms, the overall energy will be falgorithm(N) 
fneuron(N) kT, which involves two functions of N and is ambiguous in general. Therefore, 
we will group both functions together to say the energy is F(N) kT. This latter expression 
becomes the computational complexity of the neural algorithm using a kT energy metric 
[Peng 2008]. 

Utility of the method 
The assessment method could provide useful information for determining whether one 
ANN implementation approach has more or less promise than another approach or a 
conventional digital implementation. The information would be in the form of an energy 
estimate, either as numbers or algebraic expressions, and could be realized in the 
following forms, among others: 
 

• The method might reveal minimum energy for some computation as a function of 
problem size N to be  
 
Eminimum = (1.52×1012 N2 + 3.33×1020 N) kT (note numbers are examples) 
 
Each of these would be specific to the ANN implementation approach but 
implementation-independent with respect to devices, and thus allow comparison 
of the approaches on the basis of ultimate limits to energy. 
 

• A second use would be to understand algorithmic complexity, which is the order 
of the energy consumption using Big-O notation, such as 
 
O(Eminimum) = N2 L2 kT (note N2 L2 is an example expression) 
 
Each Big-O expression would be specific to the ANN implementation approach 
but implementation-independent with respect to devices. These expressions will 
allow comparisons of scalability of energy efficiency. It is common to teach 
students in college computer science classes things like “quicksort is N log N but 
bubble sort is N2.” In the future, students might be taught that “a level-based 
neuron is N2 L2 kT.” 
 

• A third use of the procedure is to produce practical energy efficiency results. In 
many cases, the expressions for energy efficiency of practical systems has the 
same algebraic structure as the expressions for ultimate limits [Llewellyn 1931] 
[IRE 1957], but there are differences in constant factors. The power efficiency of 
technologies is road mapped. This could lead to a variant of the above expression 
like  
 
Epractical = (1.52×1012 N2 + 3.33×1020 N) R(2014) kT (note numbers are examples) 
 
where R stands for “roadmap.” R(2014) kT is the energy dissipation of the gate or 
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neuron (in this context) in the year 2014. With the help of a roadmap, an engineer 
could use the expression above to compute the practical energy efficiency at some 
other year and for a different value of N. 

Analysis of a level-based ANN 
To illustrate our analysis approach, we explore the theoretical performance of an ANN 
technology stack based on the resistive crossbar implementation and algorithms built on 
it. We then compare the resistive crossbar implementation with digital and spiking 
implementations (but we do not reanalyze the entire technology stack for these other 
implementations). 
 
The resistive crossbar neural network shown in Figure 11 is present in the literature with 
many variants, but with the resistance consistently representing ANN synapse values. As 
shown in Figure 11A, the electrical structure comprises an array of row and column wires 
with programmable resistors (e. g. memristors) at the cross points and an amplifier. As 
shown in Figure 11B, the array wires are analogous to the axons (rows) and dendrites 
(columns) of a living neural system, with the programmable resistors being analogous to 
synapses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Memristor array as a perceptron network 
 
The objective of the structure in Figure 11A is to perform a vector-matrix multiply, 
which is equivalent to each column performing a dot product. A dot product comprises a 
series of multiplies and adds, and is a fundamental computation to most ANN algorithms 
and is a close approximation of synaptic integration in biological systems. The strategy is 
to use Ohm’s law applied to the memristor to multiply and Kirchhoff’s current law on the 
column conductor to add. 
 
Voltages vi driving each row of the memristor array are uniformly distributed in the range 
[-V, V] and comprise vector v, as illustrated in Figure 12. (The notation “vi ~ U(a, b)” 
means vi is a random variable uniformly distributed between a and b.) The other vector g 
is defined by the resistance state of memristors in a column and comprises conductances 
(1/resistance) gi uniformly distributed in the range [0, gmax]. 

B. Natural neural network 
deformed to show equivalence: 

Dendrite 

Axon 

A. Artificial neural network: 

Amplifier Array 
interconnect 

voltage 

voltage 
(or current) 

Memristor Synapse 
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Figure 12: Definition of the dot function as β/g times the dot product of v and g 
 
The vectors have N elements and may be sparse, as illustrated in Figure 12. Exactly pvN 
elements of v and pgN elements of g are nonzero, with pvpgN pairs of corresponding 
elements both being nonzero (meaning the multiplication step in the dot product will 
yield a nonzero result in exactly pvpgN cases). While pv and pg may serve as probabilities 
in practice, in this analysis we interpret them as exact ratios. 
 
We define a dot function that addresses two issues with the dot product. 
 

1. The straightforward definition of a dot product yields awkward physical units, so 
we define dot with different units. The dot product of a voltage vector and a 
conductance vector would yield a current vector, which would have the wrong 
units to be used again by the same function. To address this issue, the dot function 
divides the mathematical dot product by the scalar gmax. 

 
2. Biological neural networks often modulate gain, which will turn out to have an 

effect on energy consumption. The dot function will also multiply the result by β. 
A reader uninterested in gain may assume β ≡ 1. 

 
Some algorithms require changing the sparsity pattern. An element of v can be moved 
into the sparse region easily by grounding a row conductor. Moving an element of g into 
the sparse region will require adding and using a select device. This asymmetry will be 
discussed later in more detail. 
 
The circuit in Figure 13 can perform a dot product a described above, albeit with some 
caveats. The resistive combining network on the left forms the weighted average of the 
input voltages as opposed to the dot product. However, the weighted average appearing 
on node Vnode is mathematically equivalent to the dot product of v and g divided by the 
sum of the elements of g. We will now assume (with discussion in the next paragraph) 
that the average memristor conductance is ½ gmax, which would make the sum of the 

v0 ~ U(-V, V) 

vy ~U(-V, V) 

Nv = 
pvN gx ~ U(0, gmax) 

gz ~U(0, gmax) 

Ng = 
pgN 

0 

0 
0 

pvpgN 

…
 

…
 

dot(v, g, β) = β/gmax v ⋅ g 

Note: Vectors v 
and g will be 
permutations of 
the illustrated 
formats 
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weights ½ gmax pgN. If the amplifier’s gain is set to α = ½ β pgN, voltage Vdot will match 
the definition of the dot function above.  
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Circuit 
 
The assumption that the average memristor conductance is ½ gmax requires comment. The 
authors have encountered the circuit in Figure 13 the literature [Taha 2013] and it appears 
reasonable in the context of a neural network. While this assumption would require 
normalization of the g vector, the circuit would thereafter perform dot products as needed. 
 
There will be a discussion below about the interaction between the Johnson-Nyquist 
noise and system speed or clock rate. At this point, let us assume the circuitry in Figure 
13 is bandlimited to frequency f. The noise power according to the Johnson-Nyquist noise 
theorem will be 4kT f at the input to the amplifier. For the specific situation in Figure 13, 
this would be 
 
Pnoise = 4 kT f = Vnoise

2 ½ Npggmax 
 
which yields 
 
Vnoise =  
 
 
In accordance with previous discussion, the noise will be amplified before appearing on 
the output 
 
Vnoiseout = Vnoise α = Vnoise  ½ β Npg  
 
The number of resolution levels L will be the output range 2V divided by the noise 
voltage Vnoiseout. 
 
L =                 =  
 
 
Which by squaring yields 
 

8 kT 
Npg 

f 
gmax 

½ 

2V 
Vnoiseout 

Npg 
8 kT 

gmax 
f 

½ 
4V 

βNpg 

v0 

v1 

vN-1 
… 

g0 

g1 

gN-1 

Vnode 

∑i vigi 
∑i gi Vnode = 

Vdot 

gain 
α = ½ β pgN 

Vdot = β/gmax ∑i vigi  

Assume 
∑i gi = ½ gmax pgN 

Column of 
memristors 

Row 
drivers 

Column 
conductor 
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L2 = 
 
 
And then by rearrangement to a form that has units of energy and will be useful later 
 
            = 
 
 
The power consumption of the circuit is addressed now. Only the energy turned into heat 
in a resistor is irrecoverable in this situation, so we will analyze the average power 
dissipated by all the resistors. We will express the power as a base value plus small-scale 
correction. 
 
Vnode moves asymptotically to zero as N increases, with the base value for power 
assuming Vnode = 0. If Vnode is grounded, there will be pvpgN uniformly distributed 
voltages [-V, V] across resistors with average conductance gmax/2. This yields the base 
power of 1/6 V 2 gmax per resistor and total power 
 
Pneuron

(B) = 1/6 V 2 gmax pvpgN 
 
We will designate the base power with the superscript (B) and use it in subsequent 
discussion of higher level functions. However, we have numerically computed the small-
scale correction. Given that the v’s and g’s in Figure 12 have well-defined distributions, 
the average heat produced by the resistors in Figure 13 can be computed as 
 
Pneuron = Psimulate(pvpgN, (pv-pvpg)N) V 2gmax  pvpgN, 
 
where Psimulate(M, Z) is the result of a numerical computation. The authors wrote a 
computer program that rolls uniformly distributed random numbers in the range [-1, 1] 
for v’s and [0, 1] for g’s and computes the power dissipation as a function of the number 
of uniformly-distributed drive voltages M = pvpgN and additional zero voltages due to 
sparseness Z = (pg-pvpg)N and given V = gmax = 1. A graph of this function is illustrated in 
Figure 14. 
 
 
 
 
 
 
 
 
 
 
Figure 14: Computation of average power (Psimulate) 
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All curves in Figure 14 are asymptotic to 1/6, with the interesting behavior on the left. 
The lowest curve labeled Z0 is the power when all the applied voltages are uniformly 
distributed in the range [-V, V] and there are no additional grounded signals applied due 
to sparsity. This curve shows less average power due to Vnode shifting away from zero 
towards the applied voltages and reducing power. The other curves labeled ZNN include 
the addition of NN grounded signals applied due to sparse values in the voltage vector. 
Tying Vnode to additional grounds would be expected to reduce fluctuation in Vnode and 
cause the curve to approach the asymptotic value more quickly – which is what is 
observed. 
 
We must now establish a connection between operating speed and the Johnson-Nyquist 
noise. We had previously assumed the circuitry would be limited to frequencies below f, 
but f has so far been just an algebraic symbol. We are now free to engineer a specific 
value for f using algebraic manipulations. To identify the limiting case, the Nyquist 
sampling theorem states that the maximum rate at which voltages could be applied to the 
rows and dot products obtained from the columns would be 2f. This would imply the 
limiting case of a clock period of 1/(2f). In this limiting case, the energy to evaluate a 
neuron would be the power Pneuron multiplied by the clock period. 
 
The equation below is a rearrangement of terms from the equation for power above, 
divided 2f.  
 
Eneuron

(B) =                   =                                  
 
Substitute 
 
Eneuron

(B) =                                              =                                  
 
The equation above is notable because of the absence of V and gmax. The equation is thus 
an implementation-independent representation of the minimum energy Eneuron

(B) as a 
function of the nature of the problem being solved and the thermodynamic quantity kT. 
 
There is redefinition of terms that may yield insight. Expressing Eneuron

(B) in terms of Nv = 
pvN and Ng = pgN the nonzero signals in the vectors, 
 
Eneuron

(B) =  
 
In conventional computer terminology, the system will perform pvpgN multiply 
operations. The energy per operation will be Eneuron

(B) divided by pvpgN. 
 
Energy/op = 1/24 β 2 L2 Ng kT 
 
Which tells us the energy per equivalent multiply operation is proportional to the number 
of nonzero elements in a column of the weight matrix. In subjective terms, this means the 
cost of a multiply depends on how many similarly computed products might be added up 
afterwards. 
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Further note the implication to software-based ANNs, such as Deep Learning. As 
mentioned above, Deep Learning typically does not assume any sort of sparse coding or 
gain β. This would imply β = pv = pg = 1 and the energy per neural evaluation would be 
 
Eneuron

(B) =  1/24  L2 N2 kT 
 
The above expressions are for a dot product. If we multiply by M, which is the number of 
output neurons, we get the energy of an N × M vector-matrix multiply, as may occur in 
software-based methods such as Deep Learning. 
 
Evmm

(B) =  1/24 β L2 N2 M kT, 
 
where Evmm is the energy of a vector-matrix multiply. 

A neural-network algorithm to improve energy efficiency 
The previous section analyzed the minimum energy of an analog vector-matrix multiply 
system. We will now use the analog array as a building block to construct algorithms. In 
this first step, we will show that the analog vector-matrix multiply circuit is part of a 
more general class of hybrid vector-matrix multiply systems that embody both analog and 
digital principles. We will discover that the energy efficiency of the analog array just 
analyzed can be improved by executing it in sections – in fact the greatest energy 
efficiency is obtained when it is transformed into a digital emulation of itself. 
 
We will analyze a hybrid vector-matrix multiply system for a dense N-element vector and 
a dense N × M matrix, using L-level arithmetic. We previously found a minimum energy 
of order Evmm =  O(N2 L2 M) kT. We will analyze an algorithm that subdivides the matrix 
into horizontal slices and processes the slices sequentially. While the matrix starts out 
being dense, we will view the act of subdividing the matrix into j slices as creating a 
series of j matrices where each matrix is the original matrix with all but the jth slice set to 
zero by control of the sparsity pattern. This will result in pg = 1/j for the new matrices. 

This algorithm will require j sequential additions in L-level arithmetic. The addition 
could be done in either analog or digital given the hybrid assumption in this analysis. To 
establish an energy bound on this function, we know that analog-digital converters 
consume O(L) kT [Murmann 2004] and digital addition is O(log L) kT. We thus assume 
O(Eadd) ≤ O(L) kT. 
 
The energy efficiency of the subdivided vector-matrix multiply is described with help of 
Table 7, followed by a discussion of engineering consequences. For large L, subdivision 
by j will reduce energy consumption by a factor of j, since Eadd will be dominated by L2. 
For j=N, the algorithm reduces the exponent of N from 2 to 1 for the overall vector-
matrix multiply. However, fully extending this process to j=N essentially transforms the 
memristor array into a memory feeding an external processor. 
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Table 7: Improving energy efficiency of vector-matrix multiply. 
 Emvm pg Clock 

cycles
Clock 
period 

P = 
Power 

Analog array O(N2 L2 M) kT 1 1 Tclock ∝ 1 
j steps × 1/j th 
size 

j O(N2 L2 pg
2 M) kT + jMEadd 

= O(1/j × N2 L2 M) kT + jMEadd 

 ≤ O((N2 L + j2)/j ML) kT 

1/j j Tclock /j ∝ 1/j 

j = N full 
extension 

O(N L2 M) kT + NMEadd  1/N N Tclock /N ∝ 1/N 

 
It is notable that the subdivision into sequential steps need not make the algorithm slower. 
There is a time-power tradeoff available to the engineer, but the authors suggest that the 
algorithm could be performed in j clock periods where the time of each clock period is 
reduced from Tclock to Tclock/j. This would maintain the same total computation time and 
throughput at lower power. 
 
For small L, the situation is different but with interesting consequences. Evmm in the 
middle row of the table can be factored as O((N2 L + j2)/j ML) kT. This expression has an 
extremum at O(N2 L) = O( j2),  or O(j/N) = O(√L). This implies there is some j that 
optimizes energy efficiency, which could possibly be 1 < j < N and reveal a hybrid 
architecture to be most efficient. However, identifying the optimal value of j would 
require technology details beyond the scope of this document. 
 
Implementing the energy efficiency improvement suggested by Table 7 will require some 
engineering changes. The changes will be summarized, but a full description is beyond 
the scope of this document. 
 
It will be necessary to put a “select device” [ITRS 2012] in series with the memristors. 
While a select device will be an additional R&D activity, select devices may become 
available through the natural flow of events. 
 
The behavior indicated by Table 7 could be implemented by an array of memristors if 
rows of memristors could be connected and disconnected as part of the algorithm. This is 
not the same as just “not using a row” by setting the drive voltage to zero. As stated 
previously, the divider network in Figure 13 computes the dot product of v and g divided 
by the sum of the elements of g. While setting a drive voltage to zero will remove terms 
from the dot product, the memristor now connected to ground will continue to contribute 
to the sum of the elements in g, reducing the amplitude of the output signal. In contrast, a 
select device will electrically disconnect a memristor so it does not contribute additional 
loading on the column conductor. 
 
Current roadmaps indicate that manufacturing processes for memristors will be 
developed initially for storage applications like memory sticks and Solid State Disks 
(SSDs), after which the manufacturing capability could be repurposed for neuromorphic 
systems. Some form of select device is believed to be necessary to scale memristor 
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memories to commercially viable size. Therefore it would be a reasonable to expect some 
form of select device to be available to the engineer of a neuromorphic system. 
 
The middle row in Table 7 discloses an architectural generalization of the analog network 
described previously in this document and a digital implementation of the same function. 
By varying parameter j from 1…N, this architecture incrementally changes itself from 
analog to digital, covering intermediate stages where it does analog processing of 
submatrices that are summed digitally. 

Extending the hierarchy of neural-network algorithms 
The development of computing was enabled by the ability to write programs in a 
hierarchy of loops, subroutines, and so forth. Biological studies of brains indicate a multi-
level structure with feedback, global timing (e.g., neural oscillations or brain waves), and 
sleep/wake cycles. This observed behavior of living neural systems is more complex than 
any of the systems discussed so far in this paper, but we will now create more complex 
neural network algorithms and estimate the energy efficiency. 
 
In many cases, a single-level neural network (i. e. what we have discussed in this 
document) is followed by a “winner take all” (WTA) function. WTA has been suggested 
as both the function of specific neural regions, such as the dentate gyrus in episodic 
memory algorithms [de Almeida 2009], thalamocortical modules in confabulation 
algorithms [Solari 2008], as well as representing the core decision boundary of neural 
machine learning techniques such as adaptive resonance theory (ART) and radial basis 
function (RBF) algorithms. The idea here is that the full vector-matrix multiply is not 
necessary for neural function, but rather finding the output with the largest value (or 
simply one of the largest values) is often sufficient. Given that the full vector matrix 
multiplication is not necessary for the intended computation, we can consider a more 
efficient algorithm that finds only the desired result. 
 
This section will continue to use the memristor array in Figure 11A, but will presuppose 
more sophisticated drive electronics with the following new features: 

1. L will be controllable. The drive electronics will be able to change clock periods, 
voltage drive, and perhaps amplifier bandwidth such that the L can be selected as 
needed for an algorithm (within an allowable range). 

2. The drive electronics will be duplicated with row and column function swapped. 
Mathematically, this will change an operation on a matrix to an operation on the 
transpose of the matrix. 

 
The strategy we describe here provides a WTA function, but leverages varying precision 
to achieve this target in a uniquely energy-efficient manner.  The algorithm consists of 
running the vector-matrix multiply algorithm multiple times, initially starting with all the 
rows and columns but low precision. As the algorithm proceeds, rows and columns will 
be turned off. This would reduce N and M and potentially cut power. However, we will 
raise L as the algorithm proceeds to keep power constant. The algorithm would complete 
when the system is operating at the maximum precision on as many rows and columns as 
are feasible given power constraints. 
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Figure 15 illustrates the method. Figure 15A shows a rectangular weight matrix feeding a 
WTA network. This would require energy N2 L2 M kT, which we seek to reduce. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Neural network algorithm. 
 
Figure 15B shows the improved algorithm. Vector-matrix multiply is performed 
originating both from the left and bottom edges of a memristor-type array and flowing in 
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the direction of the elbow-shaped arrow. The sparsity of each operation is indicated by 
the yellow and dark-yellow regions. The dark-yellow regions are correctly scaled to show 
the size of the active region of the sparse matrix, but are shown as contiguous for 
illustration convenience. Figure 15B1 shows all N rows and M columns being activated at 
once but with just two levels. The energy expression shows consumption of N2 22 M kT, 
which is must less energy than required for Figure 15A. In each of the subsequent steps, 
half of the rows or columns will be turned off. The 90° arrow reverses direction to show 
the reversal of the direction of vector-matrix multiply. 
 
The idea is that each step reveals the half of the rows or columns that are most strongly 
coupled to the driving side. These become the most likely candidates to be the ultimate 
winner. So, the algorithm turns off the most likely losers and proceeds to test the winners 
again with higher precision. 
 
If we assume N = M, the power will be the same at each step. 
 
The number of levels increases in the sequence 2, √2, 2, √2, … This means the number of 
iterations required to reach L levels is about log1.68 L. 
 
This means the algorithm has reduced energy of O(N2 L2 M) kT to O(log1.68L N2 M) kT, a 
reduction by a factor of O(L2/log1.68L). 
 
This approach illustrates a neural network algorithm generally inspired by the WTA 
algorithms often used in neural computation [de Almeida 2009] (de Almeida, Idiart, and 
Lisman 2009), but this is not a specific WTA algorithm. Importantly, it is unlikely that 
this algorithm, or similar variants, would be guaranteed to always provide the best 
answer; instead, as with real neural systems, it is simply assured to provide a good 
answer. Nonetheless, this approach allows us to use the kT complexity to compare the 
energy efficiency of the algorithm to the more straightforward approach of simply 
performing a vector-matrix multiply and finding the largest result and make design 
decisions balancing accuracy and energy consumption accordingly. 

Digital computer implementations 
This section will discuss energy consumption of a digital implementation comparable to 
Figure 11, which will lead to an understanding of a hybrid analog-digital architecture that 
can be changed from analog to digital in a series of steps. The digital implementation in 
this section would be essentially the result of taking the analog neural network in Figure 
11 and evaluating groups of rows in parallel and then multiple groups sequentially. The 
digital implementation would be the result of the maximum number of groups, which 
would be one row at a time. This implementation becomes the last row of Table 7. 
Furthermore, the digital implementation must be sufficient to execute algorithms such as 
in Figure 15, which require running the analog circuit backwards. 
 
The complicated part of this section will be to assess both computational energy and 
memory access energy. 
 



  

 66/96 

Figure 16 shows C-language software for the dot product of two N-element vectors of 
ints, ints in C being data words of an implementation-dependent number of bits treated as 
an integer. Let us assume that the ints are B = log2 L bit of precision and that we can 
ignore integer rounding issues.  
 
 
 
 
Figure 16: Software dot product 
 
Each B-bit arithmetic unit will require B2 gated one-bit full adders, each comprising about 
a half-dozen gates (there are different adder designs). This leads to a complexity of N B2 
= N log2

2 L gate operations for the multiply. 
 
Each synapse in a digital implementation would require the energy from a B×B array of 
gated full adders multiplied by, say, 3× for overhead. This would allow computation of 
the energy Edigital of the digital implementation 
 
Edigital = 3 log2

2(L) Efulladd, ( 1 ) 
 
where Efulladd is the energy of a full adder. Example energies of full adders are given in 
Table 8. 
 
Table 8: Full adder energy. Top two entries from [Nikonov 2013] 
 Energy/32-bit Adder Fig 47 Efulladd units of kT 
CMOS HP 3 fJ 22,000 kT 
HomJTFET .15 fJ 1100 kT 
Thermal limit 100 kT/gate  9 gates × 100 kT = 900 kT 
Landauer limit  3 kT 
 
The description just given does not address energy associated with accessing memory, so 
one of the authors (DeBenedictis) has a separate paper [DeBenedictis 2014] dealing with 
a vector-matrix multiply structure that is compatible with the adiabatic memory disclosed 
in Ref. [Karakiewicz 2012]. This other work will be summarized here with the reader 
referred to Ref. [DeBenedictis 2014] for more detail. 
 
The approach used in Ref. [DeBenedictis 2014] and illustrated in Figure 17 allows a 
matrix to be accessed either by row or by column and for that access to use highly energy 
efficient methods of driving voltages to the rows 

int v[N], w[N], sum = 0; 
for (int i = 0; i < N; i++) 
    sum += v[i] * w[i]; 
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Figure 17: Matrix organization that transposes by processing direction 
 
A key part of the strategy is to represent a matrix in a way that can be effectively 
transposed by reversing the processing direction from leftward to rightward. Figure 17 
shows the matrix elements stored in the storage array rotated 45° clockwise from the 
normal way matrices are illustrated. The green colored portions of the diagram show the 
processing of a row: The storage array rows are read from top to bottom in subsequent 
steps. The rose-colored ALUs process data from the selected row and a data register 
below it. The w00 matrix element goes to the center ALU in step 1, which also processes 
the register data (labeled a0, 0). The state in each processing unit is shifted right after 
each second step, with the vector element shifted left. 
 
The approach in Figure 17 is then enhanced by associating with each matrix element wij 
two codewords of perhaps 2 bits each (4 bits total) that indicate the relative location of 
the next element in the same row and column. 
 
The consequence of this approach is that the memory can be accessed by accessing full 
rows one at a time from top to bottom. In addition to this access pattern being the same as 
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the one needed for Table 7, the access pattern is compatible with the charge-recycling 
logic in Ref. [Karakiewicz 2012]. The benefit of the charge recycling is projected to be 
an 85× reduction in energy to (an aggressively projected ETMACSBIT = .91 fJ/bit access). 
 
The overall energy for vector matrix multiply is therefore projected to be ETMACSBIT × 
(synapse bits + 4) + EFULLADD × B2. (check this over) 

Dot product using signal representation as spikes 
 
It is widely recognized in the literature that the representation of information by spikes 
can be very efficient for certain computational functions [Berger 2010], but the kT energy 
complexity will require discussion. While there has been considerable research in 
hardware solutions for spike generation [Indiveri 2011] [Pickett 2013], we feel 
engineered solutions for spiking logic are incomplete. We will therefore create a 
simplified spike representation for this energy analysis. 
 
We propose the self-consistent number representation illustrated in Figure 18. In this 
simplified representation, numbers are represented by a stream of spikes that are 
randomly distributed with the Poisson distribution. A continuous variable 0 ≤ v ≤ 1 would 
be represented by a spike stream with an average of v L2 spikes in a reference time 
interval Tref. Variable vj is therefore represented by a stream of spikes at rate vj L2/Tref. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18: Summing with spikes 
 
Figure 18 illustrates how addition in the number system can be accomplished simply by 
aggregating spike streams. If streams with rates v0 L2/Tref .. vN-1 L2/Tref are simply 
aggregated, the result will be a stream with a spike rate that is the sum of the rates of the 
input streams. Thus, stream aggregation adds the rates. 
 

Tref 

Rate v0 L2/Tref 

Rate v1 L2/Tref 

Rate vN-1 L2/Tref 

Rate ∑i vi L2/Tref  
Calculation: 
4/L2 + 2/L2 + 11/L2 = 17/L2 
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The precision of a number in the rate-modulated code depends on the number of spikes. 
The uncertainty in the measurement will be the standard deviation in the number of 
spikes, which will be the square root of the number of spikes. The largest standard 
deviation will be when v = 1 and there are L2 spikes. This point of maximum uncertainty 
will have a standard deviation of L spikes out of L2, for an equivalent of L levels. L thus 
has the same definition as used previously in this document. 
 
Spikes can be aggregated with remarkably high energy efficiency as shown in Figure 19. 
Ignoring the attenuators for now, Figure 19A comprises a binary OR-gate tree of 
logarithmic depth. While biological neurons do not have a binary tree of OR gates, the 
biological equivalent would be a dendrite structured as a (generally non-binary) tree of 
branches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19: Dot product for rate modulated spikes 
 
According to the theory outlined in Ref. [Landauer 1961], heat must be created when the 
information entropy of a gate’s output is less than the inputs. A gate in Figure 19A 
receiving no spike produces no change in entropy when it computes an output with no 
spike. If a gate in Figure 19A receives a spike on either or both inputs and produces a 
spike on its single output, it has “forgotten” which input combination it received the spike 
and must generate heat on the order of kT. 
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With the attenuators, Figure 19A actually performs a dot product of the weights wj in the 
attenuators and the input signals. The vision for how such a circuit would work (should 
somebody engineer the required attenuator) is that the attenuators would randomly delete 
spikes such that the fraction αwj pass through. If each attenuator passes a random fraction 
αwj of a random spike stream of Poisson distribution with rate vj L2/Tref , the attenuator’s 
output will be a spike stream with Poisson statistics but rate αwjvj L2/Tref , thus 
performing the multiplication wjvj as needed in computing the dot product. 
 
Following biological inspiration, the idea is that the attenuators would either pass a spike 
or completely ignore it without consuming energy [Mainen 1995]. This attenuation is 
thus comparable to the probability of release at the pre-synaptic terminal of a biological 
synapse. An important note is that this correlation of the probability of release to the 
weight, while effectively assuming uniform conductances, is somewhat complementary 
to that of biological systems in which the probability of release is often assumed to be 
uniform (aside from short term plasticity effects) with variable post-synaptic 
conductances. 
 
The energy dissipation of the dot product circuit Figure 19A will depend on the aggregate 
number of spikes that pass through all the gates during the computation of a dot product. 
We assume α is adjusted to scale the number of spikes using methods outside the scope 
of this document. Irrespective of how the number of spikes is reduced to the range 0..L2, 
the total number of gates activated will be 0..L2 log2 N for a theoretical minimum energy 
of 0..L2 log2 N kT, or in more practical implementations 0..L2 log2 N Espike, where Espike is 
the energy of a spike. 
 
While the OR gates in Figure 19A are useful for illustration, some form of “digital 
restoration” would be required to have a complete system. While a spike entering one of 
the OR gates in Figure 19A would produce something that looks like a spike on the 
output, the shape of the spike (e. g. the spike’s width) would gradually change due the 
buildup of circuit and timing imperfections and noise. A mechanism would be needed to 
restore spikes to a canonical form (a concept called digital restoration). The neuristor 
[Pickett 2013] could be the device/circuit for implementing spikes such as in Figure 19B. 
The energy/spike in (Williams) is 6-60 fJ. The neuristor circuit in Figure 19B performs 
the same logical function as an OR gate, but restores the output to a pulse instead of a 
level. 
 
The reader should note the profound difference in the scalability of spiking representation. 
The energy of spiking representation scales with L2 log N, which has slow growth with N. 
The other methods in this document scale at least linearly with N. However, the price 
spiking’s efficient scaling with N would appear to be quadratic scaling with L. 

Summary of scaling 
We will make comparative plots of scaling of various implementation approaches, after 
defining those approaches. As summarized in Table 9, we analyze (in approximate order 
of top-to-bottom in the plots – which is most efficient at bottom) a consumer GPU, the 



  

 71/96 

resistive crossbar neural network, Landauer’s limit, a spiking implementation based on 
neuristors, and a PIMS system [DeBenedictis 2014]. 
 
Table 9: Summary of vector-matrix product energies. 
Implementation Energy (N × M matrix, N = M, L-level values, B = log2L) 
nVidia GTX 750 Ti A simple analysis indicates the nVidia GTX 750 Ti (a state of 

the art consumer GPU at the time of this writing, costing $150) 
will be memory bandwidth limited. The computational strategy 
is the assume it will consume its standard 60 Watts and process 
data as fast as it can be read from memory. The memory rate 
will be based on synapse values of the specified number of bits 
+ 4 bits of sparsity control information from [(appendix 1)]. 

Resistive crossbar 1/24 N2 L2 p3 M kT, as discussed in text. 
Landauer’s Limit Full adder is 3 kT. Energy is 3 N2 p2 B2 kT ln 2 
Neuristor spike train L2 log2N spike energy = 22B log2N Espike; 6-60 fJ/spike for a 

neuristor (we use 6 fJ), as disclosed 
PIMS See author’s other paper; TFET logic and adiabatic memory  

 
Energies per vector-matrix multiply are plotted in Figure 20 for four scenarios, with all 
scenarios have N = M (square matrix). The top row represents L = 65536 levels or B = 16 
bits = log2 L arithmetic, which is generally representative of ANNs that were developed 
for implementation on digital computers. (While single precision floating point with 21 
bits precision may be more common, using 21 bits instead of 16 would simply strengthen 
and already strong distinction). The bottom row represents L = 8 levels or B = 3 bits = 
log2 L arithmetic, perhaps more representative of biology. 
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Figure 20: Comparison of implementation approaches 
 
The right column represents the obvious dense vectors and matrices (p = 1), but the left 
column represents a sparsity pattern somewhat representative of biology. The specific 
equation is p = 1.7/N.6, which was developed by hand to represent the sparsity the authors 
subjectively observe in the literature. Specifically, the product Np varies from 2.6 to 68 as 
N varies from 3-10,000. This is consistent with the authors understanding of the sparse 
coding biology uses. 
 
The reader’s attention is called first to the green curves representative of spiking. Spiking 
is nearly unaffected by the number of synapses, but has poor performance at high 
precision. Interestingly, the human-manufactured and measured neursitor matches 
Landauer’s limit in the low-precision, dense, scenario, at scale. This remarkable 
achievement is due to the better algorithmic scaling of spiking overcoming the handicap 
of having been implemented with components created in a real laboratory as opposed to 
the infinitely advanced components assumed by Landauer’s method. 
 
The performance of the resistive crossbar neural network deserves comment. It is the 
worst performer in the Deep Learning scenario and an excellent performer in the Brain 
Scaling scenario. It would seem reasonable for the human programmers that created Deep 
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Learning technology to have adapted their information coding and data structures to the 
properties of digital computers. Due to the digital signals being restored (as opposed to 
analog signals that accumulate noise that cannot be removed) and place-value number 
representation having L levels of precision for log2 L resources (bits), software for digital 
logic can use large quantities of high-precision numbers with relatively low impact on 
energy efficiency. However, this type of data will exacerbate the power of the analog 
neural system due to the N2 L2 M scaling being quadratic in precision and cubic in scale 
(assuming square matrices where N = M). 
 
However, the curve for the resistive crossbar neural network is always steeper than the 
digital implementations. 
 
The resistive crossbar neural network will have issues in two classes to succeed as a 
Beyond CMOS option. First, the analysis in this document is based on best performance 
theoretically possible. Actual implementations of the resistive crossbars will need to 
improve. Second, implementers will need to cope with the less effective scaling. This 
analysis shows that even with perfect devices, a consumer-grade GPU will be more 
energy efficient for data derived from Deep Learning. The remedy to the second issue 
would be sparse coding, small scale, or perhaps a hybrid architecture. 

Conclusions 
We developed a method of cross-comparing the energy efficiency of ANN technology 
stacks between themselves and CMOS. The method can compare large amounts of 
technology, but is not very precise. CMOS is highly mature due to an investment of 
around a trillion dollars whereas ANNs have received just a miniscule fraction of that 
amount. To avoid the comparisons being biased by either overhyping immature concepts 
or the large amount of data available for highly mature concepts, we developed an 
approach based on theoretical analysis of the physical limits. This approach could make 
broad statements like “concept A will have worse energy efficiency than concept B by an 
amount that grows over time” but would be unable to say that “concept A has 1.23× 
better energy efficiency than concept B,” if both were in fact true. 
 
A conclusion can be drawn about the comparison between resistive crossbar neural 
networks and CMOS digital implementations. The energy to perform a vector-matrix 
multiply of dense N×M arrays of fixed point numbers of L levels of precision is O(N2 L2 
M) kT for the resistive crossbar neural network and O(N log2(L) M) kT for digital. This 
clearly favors the digital implementation for large N and large L (large L equating to high 
precision). 
 
However, we also analyzed a sparse data representation where only the proportion p (let 
us assume here p=pv=pg) of the numbers were nonzero. The resistive crossbar energy is 
actually O(N2 L2 p3 M) kT in this case. The expressions indicate that a resistive crossbar 
could possibly beat CMOS if sparse data representations were exploited. While the 
proponents of resistive crossbar neural networks often claim that they are exploiting 
sparse data representations, this is rarely, if ever, used as a design criterion with a formal 
quantification (e. g. p=1/√N). We can conclude that resistive crossbar neural networks are 
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thus most likely to be viable at small scale or if sparse coding can be added to the 
technology mix. 
 
We analyzed the scalability of an artificial spiking neural network and found it to have 
major advantages – although the absence of a proposed realization of a suitable 
manufactured synapse is a current flaw. In the spiking vision, a vector-matrix multiply 
would be O(log(N) L2 M) kT. This would significantly beat the O(N log2(L) M) kT energy 
of a digital implementation for large N and small L. However, the vision includes a 
synapse that duplicates the probability of release at the pre-synaptic terminal of a 
biological synapse. In other words, the synapse passes a spike to its output with 
probability p or ignores it with probability 1-p it (where “ignoring” means not consuming 
any energy). In contrast, what we see in the literature are synapses that absorb a 
proportion p of the spike’s energy. Thus, we conclude artificial spiking neural networks 
have upside potential if a physical realization of the necessary synapse can be found. 
 
(By the way, we have not analyzed the use of sophisticated software algorithms on a 
conventional computer. These could offer advantage over sparse matrix algorithms.) 
 
We have also applied the method to higher-level algorithms. The vector-matrix multiply 
function and the expressions for its energy consumption of a resistive crossbar neural 
network were used as a building block for a higher-level algorithm. The example 
algorithm was equivalent to a vector-matrix multiply followed by a “winner take all” 
function. The combination outputs the largest element in the product. The algorithm 
involves multiple applications of the resistive crossbar where the precision varies, rows 
and columns are turned off, and the system is run both forwards and backwards. The 
algorithm reduces the energy consumption from O(N2 L2 M) kT (per above) to O(log1.68L 
N2 M) kT. The fact that higher-level algorithms have an advantage is widely understood 
in biology and computer science, but we have developed a framework that can quantify 
the advantage for ANN implementations. 
 
The method of quantifying energy efficiency can be compared to other methods of 
performance estimation. 
 
The energy of a neuron operation can be compared to the energy-per-gate-op in 
conventional computing logic gates. However, the equivalent neuron parameters are 
functions of the number of synapses instead of simply being scalars. We show how to 
express the energy of a neuron operation as a multiple of kT, which makes it cross-
comparable to computer logic gates in accordance with the principles outlined by 
Landauer. 
 
An important outcome of this analysis is a strategy for assessing the advantages of 
neurobiological properties. While the brain appears to leverage a number of unique 
approaches, such as hybrid analog-digital spiking, temporal coding, highly parallel 
computation, the decision to implement these in conventional computational systems has 
often been ad hoc due to the lack of a rigorous way of quantifying their contribution. The 
sparse coding of biological neural circuits is a notable example of this.  
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This limitation of analog hardware on accelerating dense neural algorithms allows digital 
approaches to be advantageous. The crossbar analog neural network and a CPU/Graphics 
Processing Unit (GPU)/Processor-In-Memory (PIM) system are both elements of a more 
general architecture. The more general architecture would process batches of rows in 
groups, with one batch corresponding to an analog neural network and N batches of size 1 
corresponding to digital hardware. The digital computer is more energy efficient in key 
cases, disputing unproven assertion that neuromorphic hardware is simply superior to von 
Neumann-class computation. 
 
As future work, it should be possible to devise more ANN technology stacks and quantify 
their performance. These systems would comprise a series of interconnected ANNs, like 
the layers in a Deep Learning system or a cortical network. However, these ANNs would 
be executed by Beyond CMOS components (i. e. neither Deep Learning software nor 
living cells) and would be able to execute algorithms where the physical components are 
run forward, backwards, turning elements on and off, shifting thresholds, etc. The 
methods in this document would allow the algorithms to be assigned a 
computational/energy complexity in the form F(N) kT that would quantify the 
algorithm’s quality. From a study of multiple algorithms of this type, perhaps devices and 
architectures could be devised that provide good performance over a variety of 
algorithms, thereby forming a possible Beyond Moore’s Law computer system. 
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Appendix III: Spin Wave Computing 
 

Spin Wave Computing 
Peter Sharma’s document “Spin wave computing, Peter Sharma, 8656, Materials 
Physics,” (received by e-mail 9/13/2013) 
 
171060 SAND Report (PI: DeBenedictis) 
Spin wave computing, Peter Sharma, 8656, Materials Physics 

Overview of spin wave computing 
Why spin waves? What are spin waves? Properties of spin waves. Spin wave logic. 
Experimental progress for logic functions. Spin wave logic materials. Logic requirements 
and spin wave computing. Advantages of spin wave computing. Disadvantages of spin 
wave computing. Spin wave computers and optical computers.  

Benchmarks for spin wave computing 
Nikonov and Young’s uniform benchmark methodology. Six figures of merit, Energy for 
excitation/detection of spin waves. 1-bit adder using spin waves. Logic delay and critical 
path in 1-bit adder. Systems level evaluation of spin wave computing using Rent’s rule. 

Overview of spin wave computing 
The energy and speed of CMOS integrated circuits is largely determined by the charging 
and discharging of planar wire interconnects. For instance, charging long wires is 
estimated to make up more than 90% of the ~106 kT estimated energy cost of CMOS1. An 
important part of going “beyond” Moore’s law is to devise a way of computing that does 
not involve charge. The spin of the electron has long been proposed as an alternative state 
variable to charge and there are numerous schemes for using spin for computing2. 
Devices based on spin-polarized charge currents are unlikely to have any advantages over 
CMOS technology3. Thus, one common aphorism in this field is that transporting only 
the spin degree of freedom will avoid the charging energy in a CMOS approach and thus 
lead to low power logic designs. We do not discuss spin-based memory technologies here. 
 
Spin systems possess hydrodynamic modes4 similar to conventional fluids, and can be 
both diffusive and propagating. Therefore, spin-based information transport is possible. 
Spin waves are propagating hydrodynamic modes of ordered ferromagnetic materials 
corresponding to transverse fluctuations around a uniform spin direction defined by a 
global magnetic field. There are several types of spin waves depending on wavelength, 
magnetic field, and the shape of the ferromagnetic material5. Hertel et al.6 were the first 
to propose that logical operations could be performed through the interference of 
magnetostatic spin waves in ferromagnetic microstructures. Binary logic is accomplished 
by interfering two or more incoming spin waves and mapping the phase of the output 
spin wave to logic ‘0’ and ‘1’ for a phase of 0 and π, respectively. The phase of the 
outgoing spin wave is inferred from the outgoing amplitude.  
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Two groups were the first to explore the use of spin waves to perform simple logic 
functions for classical computing7,8. Using spin waves in this way was motivated by the 
discovery that Gaussian wave packets of magnetostatic spin waves could propagate over 
distances of over 50 μm in ~45 nm thick permalloy thin films9 through microwave 
excitation. In this experiment, the magnetostatic modes of the permalloy thin film had 
wavelengths of ~18 μm and traveled at a group velocity of ~2.5x104 m/s. The group 
velocity of spin waves observed by Covington et al. is on the order of the speed of a 
surface acoustic wave in diamond and about three orders of magnitude less than electrical 
signal propagation speeds in metallic interconnects. The characteristic decay time of such 
spin waves was ~1 ns.  
 
A NAND gate was demonstrated by Schneider et al.10. Spin waves were launched into the 
two arms of a Mach-Zehnder interferometer made of a low loss insulating ferromagnetic 
material, YIG. A relative phase is introduced between the spin waves using two separate 
DC currents, which induce a small difference in local magnetic field. The output phase is 
thus controlled by the difference in input DC current. A majority gate was demonstrated 
by Shabadi et al.11 in a 20 nm thick NiFe alloy on a Si substrate, where three input spin 
waves with different phases were made to interfere, and the phase of the output spin wave 
possessed the majority phase. An inverter is required to make majority logic Boolean 
complete, but is considered to be easily constructed by fabricating a spin waveguide of 
length equal to an odd integer multiple of the wavelength. All logical operations using 
spin waves were demonstrated by microwave excitation using asymmetric coplanar 
microstrip antennas patterned directly on magnetic features. Typical spin waveguide 
widths in these logic experiments are microns. Spin wave propagation in a dense array of 
planar permalloy wires has been observed for widths down to 300 nm with ~100 nm 
spacing12. Arrays of wires exhibit different spin wave frequencies and propagation 
velocities than single wires. Circuits involving more than one logical operation have not 
yet been demonstrated, but have been extensively modeled13,14. Spin wave computing 
appears in the latest 2012 ITRS roadmap document15.  
 
The materials used in these experiments are either ferromagnetic metallic NiFe alloys 
(Permalloy), Co-Fe alloys, or ferrimagnetic insulator Y3Fe5O12 (YIG). Spin wave 
computing materials should be ferromagnetic or ferromagnetic in order to have as large a 
magnetic moment as possible and low magnetic damping to ensure long coherence 
lengths for spin wave packets. A large magnetic moment is necessary for coupling a 
passing spin wave packet to proposed detection/amplification schemes. Any magnetic 
material with these properties should be useful for spin wave computing. Metals or 
insulators can be used, although insulators tend to have lower magnetic damping due to 
the lack of electron-magnon interactions. NiFe alloys are easily fabricated on Si 
substrates, making them in principle CMOS compatible. YIG requires a lattice matched 
substrate (Gd3Ga5O12) to achieve the highest quality and thus the lowest magnetic 
damping. Deposition on Si may be possible with suitable buffer layers between Si and 
Gd3Ga5O12, but this fabrication process has not been developed. We found no studies 
relating the microstructure of these materials to their spin wave propagation properties, so 
it is not clear what level of purity or crystallinity are needed for spin wave computing. 
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Computers carry out ~109 instructions (e.g. floating point operations) composed of many 
more sequential and parallel logical operations per second, which imposes several 
constraints on any new logic devices16,17. Logic devices must possess Boolean 
completeness, concatenability (multiple inputs/outputs must be possible to construct), 
gain, signal restoration, and input/output isolation. Nonlinearity is sometimes identified 
as a separate logic requirement18, but here we conflate this idea with gain.  
Spin wave devices can be made Boolean complete through NAND gates or majority and 
inversion gates and both approaches have been demonstrated experimentally for single 
logic operations. Spin wave computing encodes logical bits into the phase of a spin wave. 
Multiple spin waves can be made to interfere at different frequencies in parallel, so spin 
wave computing is believed to have a high fan in/fan out capability19,20. Covington et al. 
demonstrated that spin wave packets obey linear superposition9, so this idea has some 
merit. The main disadvantages of spin wave computing are gain, signal restoration, and 
input/output isolation. 
 
Spin wave logic relies on encoding a bit in the phase of a spin wave packet. We define 
the amplitude of a spin wave packet as positive for a phase of 0 and negative for a phase 
of π. In this way, the amplitude of a spin wave packet that has undergone interference 
between two or more input wave packets is a function of phase. A continuous range of 
amplitudes and phases are possible during a logical operation. There is no intrinsic gain 
(or nonlinearity) in a spin wave device. Gain must be built into spin wave devices using 
CMOS components.  
 
There is no known method of achieving signal restoration for the phase of a spin wave 
packet. Many schemes have been proposed for detection/amplification of spin waves13,21-

23. Spin waves have been also been proposed to switch the direction of a magnetic 
domain above a certain phase threshold13. However, none of these schemes enforce a 
phase of 0 or π at the output of a spin wave logic device. Signal restoration might be 
achieved using CMOS components but amplification will be necessary since spin wave 
detector voltages are not compatible with CMOS switching voltages. The lack of signal 
(phase) restoration is probably the most fundamental flaw in spin wave computing.  
 
Spin wave majority logic gates as proposed by Khitun7 have no explicit input/output 
isolation. Spin waves could, in principle, reflect from the boundary of a logic device and 
feedback into the input nodes. Clocking the inputs and outputs using CMOS technology 
may be one (unproven) way of getting around this problem, but implies additional 
unknown power, delay, and complexity overheads. Another effect not considered in the 
literature is that all wave phenomena are susceptible to localization17,24, where multiple 
interference in the presence of disorder (in some general sense) can halt wave 
propagation entirely, thereby halting a logical operation. Clocking would not solve the 
problem of localization. Localization has not been observed in experiments at the micron 
level, but could pose a serious problem when scaling to submicron dimensions.  
 
There is an even more fundamental problem with spin wave computing outside of the 
basic requirements for logic. It is difficult to guide spin waves around corners of an 
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interconnect25. All previously cited logic device experiments interfere multiple spin 
waves using straight, line-of-sight, spin waveguides. The difficulty here is that the local 
magnetization direction is determined by two different factors: the shape anisotropy of a 
thin planar magnetic interconnect and the global magnetic field needed to remove 
magnetic domains. When an interconnect curves away from the global magnetic field 
direction, an inhomogenous demagnetizing field distribution arises in the curve region. 
The internal demagnetizing field will be inhomogeneous for any non-ellipsoidal-shaped 
contact geometry26. The magnetostatic spin wave dispersion is highly anisotropic, so an 
inhomogenous field distribution will cause different frequencies of a spin wave packet to 
slow down or speed up and further distort a spin wave packet beyond that implied by the 
intrinsic material magnetic damping.  
 
Vogt et al.25 showed that in the presence of a magnetic field, spin wave propagation halts 
at the curve of a magnetic waveguide. Vogt et al. were able to solve this problem by 
pinning the global magnetization direction in a waveguide to an underlying gold contact 
with an applied current in the absence of an applied magnetic field. This result implies 
that an underlying pinning layer will be required to route spin wave packets around 
curves. Such a layer will further complicate fabrication.25 An alternative method of 
guiding spin waves around a right angle was shown by Bracher et al27. Two spin waves 
are generated at the ends of a “T” configuration. The output spin wave was shown to 
have the correct phase relationship for interference and passed at right angles to the input 
spin waves.  
 
The results of Vogt et al. and Bracher et al. suggest that interference and propagation of 
multiple spin wave packets in a majority gate is possible but may be very sensitive to the 
local geometry. Thus, there may be a large variability in each logic operation and/or 
higher system complexity due to geometrical constraints on the shape and relative 
alignment of magnetic waveguides. Fan in/fan out may also be effected by the limitations 
suggested by Vogt et al. and Bracher et al. Finally, large scale architectures may be 
limited to a very narrow range of topologies.  
 
Spin wave computing, as it relies on the wave nature of spins in a material, shares many 
of the same characteristics as optical computing, which has been considered as a CMOS 
alternative for many years28. The reader may find this analogy interesting. Many of the 
advantages and disadvantages of spin wave computing probably have analogs in optical 
computing. One advantage of using spin waves over light waves is that the size of optical 
components are limited by the wavelength of light, which is one of the barriers to large 
scale optical integration. Spin waves exist at wavelengths comparable to lattice spacing, 
and may have better scaling properties than optical computers. 

Benchmarks for spin wave computing 
Nikonov and Young’s single device benchmarks. Six Figures of Merit. 1-bit adder using 
spin waves. Energy for spin wave logic. Energy cost for excitation/detection. Signal 
propagation and latency for spin waves. 1-bit adder using spin waves. Systems level 
evaluation of spin wave computing using Rent’s rule. 
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Nikonov and Young recently compared many different devices under common 
benchmarks29,30. In their work, the energy and speed of single devices was compared for 
common operations, including inverters and full adders. Spin wave computing was 
compared in this work with CMOS and other non-CMOS approaches at an abstract level. 
For instance, possible CMOS-based overheads that may be needed for spin wave logic 
operations or excitation/detection are not considered. Furthermore, a systems level 
analysis was not attempted, which was beyond the scope of that work. We attempt to 
modify Nikonov and Young’s analysis along these lines. Only a 1-bit adder is considered 
due to space limitations. We also attempt a systems level analysis for spin wave 
computing using Rent’s rule to simulate interconnect length distribution. We benchmark 
spin wave computing in the present work with respect to six figures of merit as proposed 
by Debenedictis: (1) physical dimension, (2) speed, (3) energy per operation, (4) ratio of 
on energy to off energy, (5) propagation energy, and (6) propagation velocity.  

Size 
MOSFET performance can be limited by dimension, as for example determined by short 
channel effects. We do not discuss these here, except to note that 5 nm is believed to be 
the smallest feature size compatible with a CMOS approach. Electromigration limits 
current densities in metal interconnects to ~ 106 A/cm2, which imposes another size 
limitation. There are also significant manufacturing challenges in lithography at feature 
sizes less than 100 nm. 
 
Spin wave transmission is significantly changed at submicron sizes31. Spin wave 
propagation implies that the wave vector components of a Gaussian wave packet are well 
defined. When confined to sizes below typical magnetostatic wavelengths (~1−10 μm as 
observed in present experiments), Gaussian wave packets will no longer propagate. One 
way to see this is that as magnetic elements are reduced in size, the frequency becomes 
independent of wave vector and so the group velocity (dω/dk) becomes zero. 
Translational invariance is broken, and magnetostatic modes of vibration have nodes at 
the boundaries of a magnetic feature, which by definition is where spin waves must be 
detected. Thus, neither phase nor amplitude information can be transmitted across small 
structures. This limitation is the same as that found in optical computing. Spin waves 
exist at wavelengths on the order of a lattice constant (<1 nm) due to the exchange 
interaction so spin wave computing is still possible in principle at very small dimensions. 
However, experiments have not demonstrated coherent propagation of these exchange 
spin waves. Intermediate wavelength (exchange/dipolar) spin waves may determine the 
propagation at feature sizes between 1 nm and 100 nm. Due to a lack of experimental 
data, we analyze spin wave computing based on the known properties of long wavelength 
magnetostatic modes, for which logic operations have been demonstrated experimentally. 
We set the size limits for spin wave computing at the same dimensions as for CMOS, as 
assumed by Nikonov and Youg. Thus, our assumptions are inconsistent, but our analysis 
can be updated given new work in this field.   

Speed 
CMOS speeds are determined by the time needed to charge a capacitor, given by RC, 
where R is a resistance and C is a capacitor, typically a fraction (1/10) the speed of light 
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or ~107 m/s. Covington et al. found that propagating Gaussian spin wave packets travel at 
~104 m/s in permalloy, which we assume is a typical speed. Higher speeds are possible in 
YIG, which has a lower damping. Spin waves are thus at least 1000 times slower than 
CMOS. Latency or delay is a more important parameter than speed, so slower speeds can 
be compensated for by reducing dimension. Ignoring the previous problems with scaling 
spin wave transmission, delay for a 45 nm structure is ~10 ps, which is comparable to the 
corresponding CMOS node13. Speed will be a problem for longer interconnects using 
spin wave buses. This problem is treated later.  

Energy per operation 
The main contributors to energy for spin wave logic circuit are spin wave generation and 
signal restoration, which are all driven by CMOS. The energy for a spin wave logic 
operation is then determined by how many CMOS gates are needed. Spin wave logic 
circuits can be built out of majority gates, which require fewer components, and thus 
fewer CMOS gates than any corresponding homogenous CMOS operation. We quote 
energy values in units of kT. CMOS computing presently involves energies of ~106 kT at 
a systems level. 1 kT is ~4×10-21 J or 0.004 aJ at room temperature. 
 
We assume that a simple CMOS inverter will be used for generation. Generation and 
detection need not have the same mechanism. Detection schemes may or may not be 
compatible with a typical CMOS switching voltage (~1 V), and so amplification may be 
needed. Spin waves are generated by microwave signals in previous logic experiments, 
but this method is not scalable to the submicron length scale. Generation of microwaves 
given typical magnetization densities in the appropriate frequency range costs an energy 
of ~109 kT32. We ignore microwave generation/detection as a feasible mechanism for 
computing  
 
Another suggested method involves using piezoelectric/magnetoelectric 
heterostructures19, also known as magnetoelectric cells. Magnetization dynamics can also 
be driven by a spin polarized current33, at current densities of ~106 A/cm2 typical of 
CMOS. Simulations of a magnetoelectric cell coupled to a spin wave packet lead to 
typical output voltages of ~1−10 mV, given typical magnetization densities in permalloy. 
While this switching voltage is lower than in CMOS, such heterostructures have no 
intrinsic gain and so cannot be used to switch a subsequent spin wave excitation without 
amplification. We assume that the amplification cost would be large since a ~1 mV signal 
cannot be used to directly switch a CMOS inverter. This problem is similar to that for 
superconducting computing using Josephson junctions, which work at ~mV signals. We 
borrow a design from the literature that uses 12 MOSFETs34 for hybrid Josephson 
junction/CMOS memory to amplify a piezoelectric/magnetoelectric heterostructure as an 
order of magnitude estimate of CMOS overhead. The latency associated with this design 
is ~550 ps using a 350 nm process, which we assume scales as expected for CMOS. For 
instance, a 15 nm process is ~23 times smaller than a 350 nm process, leading to a 
latency of ~24 ps. Simpler designs may be sufficient for amplification of 
piezoelectric/magnetoelectric heterostructures, but there is a lack of research in this area. 
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Thus, in the present analysis we assume current-induced magnetization switching as the 
excitation method given the compatibility with CMOS, which is the only way to achieve 
other logic requirements. Current-driven magnetization dynamics may not posses full 
phase coherence35 and it is not clear how current controls phase, but we ignore these 
complications due to the lack of basic research in this field. A CMOS inverter (e.g., as 
described in Nikonov and Young) will be assumed to drive the right amount of current to 
induce magnetization dynamics. A CMOS inverter may also be considered an upper 
bound for magnetoelectric generation of magnetization dynamics. 

Ratio of on energy to off energy 
Spin wave logic consumes no energy when not used. The ratio of on to off energy will 
entirely be determined by the surrounding CMOS components. This figure of merit is 
assumed to be the same as in CMOS.  

Propagation energy and velocity 
In the present analysis, a spin wave is generated by a current-induced spin torque at a 
current density of ~106 A/cm2. While a spin wave packet has a very small characteristic 
energy of ~1000 kT 29, there is a threshold current required for excitation of 
magnetization dynamics. There is no analog of the CV2 energy for charging a metal 
interconnect for spin wave propagation. Propagation velocity for a spin wave packet is 
~104 m/s as discussed previously. For long interconnects this will lead to a large penalty 
in latency. Thus, there could be a large energy savings but a large penalty in speed using 
spin wave interconnects. Parallelism is an often quoted solution to beyond-CMOS 
technologies with large latency. We do not explicitly treat parallelism as a way to 
overcome the high latency of spin wave computing architectures, but point out that the 
foundational results of Covington et al.9 imply that multiple spin wave packets can pass 
through a single interconnect without signal degradation over distances of at least ~10 
μm, potentially enhancing throughput as originally pointed out by Khitun et al.36 
 
We only consider a 1-bit adder here as an example. We use the design described by 
Khitun et al.13 A 1-bit adder is reproduced in Fig. 1, with points of generation and 
detection labeled by G and D, respectively. This adder functions in a sequential manner, 
and so the lengths of the spin wave guide must be carefully controlled. The spin wave 
packets from A, B, and Cin arrive at Cout simultaneously, and represent a majority gate 
that calculates the carry out. However, for the sum to be correctly computed in this 
design, the signal from Cin is assumed to arrive at S before A and B. The S terminal is 
assumed to be set to 0 before computation. This setting should be accomplished with a 
clock signal driving an inverter, whose output adjusts the magnetoelectric cell at S. For 
Cin with a phase of 0 or π (logic 0 or 1), terminal S is 0 and π, respectively. Signals A 
and B have a relative phase shift of p. Khitun et al. assume that a pinning layer 
underneath one of the A signal arms will allow a phase shift of π, but still allow signals A 
and B to arrive simultaneously. If the length of A is adjusted to accomplish a phase shift 
of π, then signals A and B will no longer arrive at the same time. The 1-bit adder shown 
in Fig. 41 of Nikonov and Young would not operate correctly, but should have a similar 
area to the design in Fig. 1.  
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All terminals labeled G are assumed to be the output of a CMOS inverter. All terminals 
labeled D are assumed to involve amplification using the 12 MOSFET design of 
Yoshikawa et al.34 The delay of this operation is given by the critical path from A to S 
(TSW), the delay of an inverter for driving A, B, or Cin (TINV), and the delay for 
amplifying and standardizing the output terminal S (TSTD). The total delay is TADD = TSW 
+ TINV + TSTD. TSW is about 10F/vSW, where F is dimension of the half pitch defined by 
Nikonov and Young and shown in Fig. 41 of that reference, and vSW is the group velocity 
of a spin wave packet (~104 m/s).  We used intrinsic CMOS properties for a 15 nm node, 
as reported by Nikonov and Young in Table 10 in Ref. 29. We set the half pitch F to 15 
nm for all estimates. In this way, TSW is 15 ps, TINV is 0.25 ps, and TSTD is ~24 ps, leading 
to a total delay of ~64 ps for a one bit adder, and ~2000 ps for a 32 bit ripple carry adder, 
approximately one order of magnitude lower than that shown in Fig. 50 of Nikonov and 
Young.  
 
We similarly sum the energy for required CMOS components. There are three energy 
terms for generation (EG) and two terms for detection (ED). The G terminals use one 
inverter each, so E = (2x20)x3=120 aJ according to Table 10 of Nikonov and Young. The 
D terminals each have a cost of 12 MOSFETs, so ED = 2x(12x20) = 480 aJ. The total 
energy is EG + ED = 600 aJ per one bit adder, or 19,200 aJ for a 32 bit adder. There are 
many implementations of a one bit CMOS adder, but we assume ~20-30 MOSFETs are 
needed. Thus, in terms of the number of required MOSFETs, the one bit spin wave adder 
is not clearly better than a CMOS adder, as 12 MOSFETs are needed for each D terminal 
and 1 for each G terminal in Fig. 1. There is an additional delay of 15 ps in the spin wave 
1-bit adder.  
 

 
Fig. 1 1-bit adder as proposed by Khitun13. The spin wave packet in the top arm of the 
adder must be phase shifted by π in order for this design to function correctly. Signals A, 
B, and Cin arrive simultaneously at Cout. Signal Cin must arrive at S before signals A 
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and B. Signals A and B should arrive simultaneously at S for the sum to be computed 
correctly. We assume the area of this design is similar to that in Nikonov and Young.  
 
As pointed out previously, spin wave packets have no analog of the CV2 energy in an 
electrical interconnect. The lack of a charging energy suggests that a great deal of energy 
can be eliminated relative to the 106 kT figure for CMOS. We ignore the 1000x slower 
propagation speeds of spin waves relative to electrical interconnects, relying on a 
hypothetical parallel solution for this problem. While there is no charging energy along a 
long spin wave waveguide, spin waves may only travel a certain distance before falling 
below the noise floor. The spin wave signal will need to be restored after a certain length. 
We assume the same detection mechanism as in the discussion surrounding the 1-bit 
adder, where amplification is needed. To re-propagate a spin wave signal, we assume an 
additional CMOS inverter is needed.  
 
Long electrical interconnects obey the diffusion equation37, and the time to charge a wire 
scales with the square of the interconnect length. Inserting repeaters (such as an inverter 
consisting of 2 MOSFETs) reduces latency and adds an energy penalty.  
 
We treat the propagation length of spin waves as an adjustable parameter, LSW, which is 
in units of gate pitch We assume that a repeater for a spin wave interconnect requires an 
amplification step (e.g. 12 MOSFETs) and an inverter step (e.g. 2 MOSFETs). The 
energy cost for a long spin wave interconnect is then given by the charging energy for 
supplying the repeater voltage, which we assume takes place on electrical wires of similar 
lengths.  
 
Calculations for spin wave interconnect energies are compared with CMOS assuming a 
15 nm node leading to an interconnect capacitance per unit length, εIC, of 126 aF/μm, as 
given by Nikonov and Young in eq. (26), page 48. Charging energy is ~CVdd

2. Assuming 
Vdd ~1 V, the energy is given by Ceff as defined by: 

 (1), 
where l is wire length in units of gate pitches, N is the number of gates, and g(l) is an 
interconnect density function38. The interconnect density function is based on Rent’s rule 
and depends on the rent exponent, rent prefactor, and fanout. For N = 109, a fanout of 4, 
rent prefactor of 4, the energy, in units of kT depends on the Rent exponent as shown in 
Fig. 2. Higher Rent exponents imply a larger density of long wires. Eq. (1) is probably 
not the most accurate way to estimate energy based on Rent’s rule, however we use this 
equation to compare CMOS with spin wave architectures in a relative way. 
 
The energy for a spin wave interconnect is assumed to be given by an interconnect 
capacitance per unit length, εSWIC of: 

 (2),  
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where εIC is 126 aF/μm, N is the number of gates, and LSW is the effective spin wave 
propagation length in units of gate pitch. The symbol δ is the Dirac delta function, which 
is 1 if l=jLSW and 0 otherwise. j is an integer ranging from 1 to 2N1/2/LSW, the number of 
repeaters for a given number of gates. θ is the Heaviside function, which is 1 for l<LSW 
and 0 otherwise. We assume that below a spin propagation length, most of the 
architecture will be CMOS based given the discussion surrounding the 1-bit adder. This 
interconnect capacitance function per unit length is then integrated using the same 
interconnect density function shown before. For the same parameters, the energy of a 
spin wave architecture is compared to that for CMOS in Fig. 2. We chose several LSW 
values from 5−100 μm. 
 
In the simulations in Fig. 2, incorporating spin wave interconnects reduces the overall 
energy relative to CMOS. The energy savings is greater at larger Rent exponents, 
meaning that when the system uses more long wires, more energy is saved, as expected. 
For smaller spin propagation lengths, the energy also decreases. There is a peak in energy 
around a particular Rent exponent for smaller spin wave propagation lengths. This effect 
is probably an artifact of the crude approximation made in Eq. (2). 

 
Fig. 2 Charging energy averaged over an interconnect length distribution. CMOS is 
compared to spin wave architectures. The drop in energy at small propagation lengths is 
likely an artifact of the crude approximation used for the interconnect density 
distribution. 
 
In Fig. 3, we plot the spin wave charging energy as a function of spin propagation length. 
In the top panel of Fig. 3, the total spin wave energy is shown for different Rent 
exponents. At small spin wave propagation lengths, higher Rent exponents lead to a 
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larger energy drop, while energy increases at larger Rent exponents for larger spin 
propagation lengths.  
 
The bottom panel in Fig. 3 shows the change in energy of the two terms in Eq. (2) with 
spin propagation length at a fixed Rent exponent. The θ term (black symbols) is the 
charging energy associated with CMOS interconnects below the spin propagation length. 
We assume this because most of the logic functions will require CMOS components, and 
we found no clear advantage in terms of power or energy relative to a homogenous 
CMOS design. The δ term in Eq. (2) (red symbols) is meant to account for the charging 
of CMOS repeaters, assumed to be associated with similar wire lengths as the spin wave 
interconnect. Thus, at higher spin propagation lengths, there is a higher CMOS logic cost 
and a smaller spin wave interconnect cost (fewer repeaters for a given number of gates). 
Eq. (2) implicitly assumes that wire lengths greater than a spin propagation length, there 
will be no logic functions. The interconnect density distribution may need to be modified 
to take into account the heterogeneous nature of spin wave computing. Nevertheless, the 
simulations in Fig. 2 and 3 do indicate that there is a potential cost savings using spin 
wave interconnects, even accounting for CMOS-based repeaters.  
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Fig. 3 Spin wave charging energy as a function of spin wave propagation length in units 
of gate pitch. Top panel: total energy for different Rent exponents. Bottom panel: two 
terms in Eq. (2) for a fixed Rent exponent of 0.7.  
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