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Abstract
Final report for Cognitive Computing for Security LDRD 165613. It reports on the

development of hybrid of general purpose/neuromorphic computer architecture, with
an emphasis on potential implementation with memristors.
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Cognitive Computing for Security LDRD

Overview

This LDRD project evolved into a one of an interrelated set of projects responsive to the
current interest in “Beyond Moore’s Law” technology and as articulated by the emerging
National Strategic Computing Initiative (NSCI). The network of projects is illustrated in
Flgure 1, w1th time flowing roughly top to bottom.
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Figure 1: Network of Beyond Moore’s Law projects

The set of projects started with a memristor research project funded by Work For Others
(WFO). The project was associated with Hewlett Packard and eventually led to a
Cooperative Research And Development Agreement (CRADA) with HP. This LDRD
was one of several spin offs due to Sandia personnel having their own ideas for novel
uses of memristors. Memristors were seen initially as an enabling technology for neural
networks.

Sandia embraced Research Challenges in early 2013, funding the Beyond Moore
Research Challenge LDRD. The scope of the research challenge was broader than the
current LDRD, acting as a sort of “umbrella” for several projects. One of the Sandia
people defining the Beyond Moore Research Challenge spent time in Washington helping
to define the NSCI program.

Around the beginning of 2014, Sandia staff figured out the new prioritization of

computing research at the Federal level. Not surprisingly, Sandia had many of the pieces
in house ready. However, this led to reorganizing the ideas in the projects of Figure 1 to
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create a suite of ideas that (we believed) better match the emerging research directions. In
Figure 1, these are:

Memristors as a new circuit element

The Turing-Neuron Architecture (this project)

Optimal Adiabatic Scaling (OAS), for 3D modules to succeed current 2D chips
Processor-In-Memory-and-Storage (PIMS) architecture for 3D modules

A theoretical model of evaluating energy efficiency of computing approaches,
called the kT model

6. The “Creepy” ultra-low energy processor architecture

Nk W=

These were accompanied by two patent filings by the PI, one associated with this LDRD.

Project status

The situation is fluid as this document is being written. The administration announced
new research direction a few months ago. We are in a three-month period where
government agencies make a plan. Sandia is assisting this process, including by sending
ideas in this document to one of the NSCI agencies to help make plans.

Remainder of this document
The remaining pages of this document are as follows:

A technical report on the Turon architecture. The technical report could be a stand alone
document, but LDRD rules call for us to append it to the end of this brief project report.

However, Appendix IV (non-interrogatable logic) is a slightly reformatted version of the
original anti-tamper security document that motivated this project.
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The Turing-Neuron Architecture (Turon)
Erik DeBenedictis, Fred Rothganger, 9/15/2015

Abstract

Von Neumann and Neuromorphic computers have been viewed as operating on different
principles, but this document shows how both can be viewed as special cases of a more
general architecture. One portion of a Turing-neuron (Turon) system described here can
use a specific artificial neuron to learn and recognize patterns as is common today in
neural network R&D projects. Digital circuits can be trained into other neurons, which
will result in a neural network that can execute the digital function by “imagining” the
digital circuit. The combination of the two would enable self-contained systems that do
both precise mathematical calculations and less rigid learning and recognition functions.

This document discusses the potential performance of various implementations, showing
that Turon could possibly simulate CMOS at lower power than CMOS could do on its
own. This would make Turon a candidate for a new approach to computing beyond
CMOS and the von Neumann architecture.
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Overview

A Turon computer would be manufactured as arrays of two types of unallocated
resources, one type corresponding to synapses and the other corresponding to neuron
bodies (soma). The architecture will allow resources to be partitioned into regions of
various sizes, each of which could be a neural network, a Boolean logic circuit, or a
hybrid of the two. The partitioning would need to occur on the fly for greatest generality,
just as a microprocessor system can assign memory to different tasks on the fly. However,
less ambitious, practical systems could have a reconfigurable design like a Field
Programmable Gate Array (FPGA).

Duality between neurons and logic circuits

A portion of the resources could implement digital circuits designed with CAD tools or
programmed with compilers. For example, the gate-level ALU illustrated in Figure 2 has
been partitioned into green-outlined, neural network regions that would be trained to
behave like the logic circuits shown within their boundary (with red lines indicating the
division of the neural network into multiple layers). Inter-region connections convey
signals just like the wires and busses in digital logic; a subset of the interconnect is shown
in purple. The design process would create training sets for the input-output mapping of
gates within each of the logic circuits. In some cases, training would be simulated in
software and yield tables of synapse values.

Example system: Legend:
Learning
#P T control
R | — e o
Clk > RIIERE | | ==gi == S = '_: Neurpl I =1
il — a. g
- Fl = »lnetwprk > <
» =nr= — )
PSllinmg > Inter-layer
mEat > S divider
| iy lnisSe Doy o
— : » ..
Mem | L. =10 —= Training
ming My Hlliis® ‘—zﬁm connection
. qu)k H.v,,j@)—}I;L I
T Ere D) ﬂ—f - “Global”
=S uiDe n iy interconnect
—~ : D-‘Dﬂ ==
- . =
First layer of | Second —
[J\ pattern layer of
id recognizer pattern
recognizer

Figure 2: Architecture of a mixed neural-digital computer
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Turon start up and operation

The example system in Figure 2 would contain only the controller in the upper left after
manufacture or power-up. The controller would first use FPGA-like features in the chip
to partition resources into the green regions defining neural networks of various sizes.
The controller could also establish connections as shown by blue lines for training and
the purple lines for execution. The controller would set up the behavior of the digital
circuits either by applying the training sets to the neural networks or loading the pre-
computed synapse values. Once programmed, the blue training connections would be
removed and purple execution connections would be added (such as connection to an
external clock). The system would have just added a digital logic circuit, which could
become a new controller for the rest of the system in a type of self-replication. The
controller could be a microprocessor, in which case it could execute any program and
thereby demonstrate Turon to be a finite Turing machine.

However, the controller could also use the FPGA-like features to create traditional neural
networks, such as the pattern recognizer at the bottom of Figure 2. While not fully trained
in advance, these portions will be exposed to training patterns during operation. A digital
logic circuit would provide control waveforms for the neural components.

For example, a digital logic circuit might, for example, produce waveforms on its output
wires that cause an external source (for example, a TV camera) to apply 1000 patterns to
the pattern recognizer, while other waveforms cause the patterns to be learned via back
propagation. After the learning phase, the digital circuit could produce different
waveforms that sequence an additional 100 patterns and attempt to recognize them.

Optimizations
Implementations of Turon are expected to be optimized for the following modes of
operation:

Memory support would be specifically engineered for high speed and storage efficiency.
The synapse resource can become computer-type memory at about a 1:1 ratio of synapses
to bits or words. Memory implementations would potentially be implemented as a
specialized neural network, where the memory cells at the intersection of rows and
columns in the memory are equivalent to synapses at the intersection of horizontal axons
and vertical dendrites.

High throughput would be a design objective, specifically when compared to a von
Neumann computer. A von Neumann computer executes one instruction per clock cycle
irrespective of the size of the computer, where Turon would have parallelism similar to a
FPGA. FPGAs group a few hundred transistors into a Look Up Table (LUT), which can
perform a logic operation each clock cycle. By analogy, Turon groups a few hundred
synpases into a region equivalent to a handful of gates. These perform their function once
each clock cycle. Since synapses are equivalent to memory in about a 1:1 equivalence of
capacity, Turon’s throughput is comparable but superior to a von Neumann computer
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because the throughput per clock cycle is not constant but proportional to the amount of
memory. This makes the throughput of Turon comparable with systolic arrays, FPGAs,
and processor-in-memory approaches.

Leaning has no simulation overhead for Turon — a feature that may be timely because of
current interest in machine learning. Neural circuits that can learn are valuable because
they create pattern-recognition logic on the fly that would otherwise require human
ingenuity. While the Church-Turing thesis holds that a von Neumann computer could
simulate Turon, such a simulation could require many instruction cycles to simulate the
learning of one synapse at a time. In contrast, many or all synapses in Turon can learn in
parallel and implementations should be optimized to do this quickly and efficiently.

Implementation approaches

As an architecture, Turon is independent of physical implementation, but discussion of
several implementations is helpful to understanding its possibilities. Figure 3A and
Figure 3B illustrate an analog implementation based on memristors. However,
memristors and other technologies can be used as memory cells in a 3D array storing
synapse values digitally as in Figure 3C. Both the analog neuromorphic circuit in Figure
3B and the 3D memory array in Figure 3C can emulate either a neural network as in
Figure 3A or a digital circuit as in Figure 3D.

A. Natural neural network B. Artificial neural network:
deformed to show equivalence:

M columns

voltage

o 6
(\G
d o

Array voltage
interconnect (or current)

Amplifier
Note: Interconnect not shown

C. Digital implementation D. Digital system:

[3D memory
Neural network 'S S A
‘ Neural network [ L Hr
Logic gates —
[Logic and ‘ gic g 1 T
interconnect [Layer Toidor
|:C001ing face

Figure 3: Explanatory implementations of the Turon architecture
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Boolean logic

The ability of a neural network to act as a digital circuit is extremely well founded in both
theory and experiment, yet the literature contains multiple interpretations. There are a
variety of papers that show mathematical equivalence of a (non-learning) neural network
and a Turing machine [Killian 93], yet we do not use this interpretation here. This
document uses the equivalence between certain artificial neurons and the Boolean logic
that underlies essentially all computers. The interpretation used here also embraces the
learning behavior of the neurons.

Logic circuits can be embedded in perceptron-class neural networks with about a 1:1
ratio of gates to neurons. As illustrated in Figure 4, a perceptron-type neuron can create
the input-output behavior of a logic gate by suitable choices of weights (w) and
thresholds () [Wing yy]. The diagram in Figure 4A is a two-level network like the ones
in Figure 3D, yet also showing resistive weights like Figure 3B (negative weights are
shown on resistors due to space limitations, yet they imply unrealistic negative resistors).
For example, the three columns and two rows in Figure 4A implement NAND, OR, AND,
and A OR NOT B functions along with interconnect to the necessary inputs. Figure 4B
shows the multi-level logic network equivalent to the multi-layer network in Figure 4A,
which is an example that generalizes. However, the number of neural network layers
must match the number of logic levels. The number of neurons and synapses in each
layer must be sufficient to hold the number of gates in the corresponding level.

A. Neural network: B. Equivalent logic circuit:
NAND OR AND AB AB AB

- % - % - % || @ C_j
9=-1.5<> 0= 5 () 921-5() %

(ATB)A(Av B)

0=1.5
AND RIS ErT (Ot
vl (AvB)v(AA B)

0=5
A OR * *
NOT B w=1 ¢TI yw=_1 'JLHJ“JQ_

| From [Wing yy]

Figure 4: Equivalence between gates and perceptron-style neural networks

A Turing machine includes a state machine, which is implemented in Boolean logic as a
combinational logic network with feedback. Neural networks often have feedback.
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It might look like the training set would have to be very large and learned with 100%
accuracy, but the techniques below tend to simplify training:

e A multi-layer neural network can be trained one or a few layers at a time, cutting
the exponential growth in training vectors.

e Most logic designs have “don’t care” input combinations. Eliminating these from
training set could improve efficiency. However, logic design tools do not
necessarily identify these.

Interconnect

The structure in Figure 4 duplicates both Boolean logic and its wiring pattern, with the
wiring pattern being learned as opposed to being manufactured into the device. This
effect can be viewed mathematically as a sparsity pattern in the array of Figure 3B. Zero-
valued array entries assume a role similar to wires carrying signals long distances without
their being involved in logic along the way. For the crossbar in Figure 3B, this would
either mean synapses (memristors) would have zero weight (infinite resistance) or the
crossbar would give way to a specialized interconnect structure based on the sparsity
pattern. The former option is inefficient while the latter reduces the generality of the
system. In contrast, the digital approach in Figure 3C would naturally support a signal
routing network in the interconnect layer.

Semirings and other computing primitives

The structures in Figure 3B and Figure 3C can be applied to different types of data and
operations. The functioning of many types of neural networks is described as a series of
matrix operations. For example, the neuromorphic array in Figure 3B can be described as
multiplication of a vector of voltages on the rows by a matrix of conductances
(1/resistance) at the row-column intersections, producing a vector of currents at the
amplifiers. While Figure 3B shows a single array with a single loopback of one signal, a
mathematical description of Figure 3D would be a chain of vector-matrix multiplies
where the result of one becomes input to the next.

Turon allows the data type of the elements of the vectors and matrices to vary over a
considerable range. The data types and elements can be a semiring [ Wikipedia SR],
which is defined as a set of elements with add and multiply operations defined. Semiring

Analog implementations of Turon can readily function with two semirings. Perceptron-
based neural networks such as Figure 4A use the semiring comprising natural numbers
under ordinary addition and multiplications. It should be noted that the circuitry in Figure
4A would limit the range of the natural numbers and their precision. Logic circuits like
Figure 4B use Boolean logic, where the values are just 0 and 1. However, mapping OR to
addition, AND to multiplication, and NOT(x) to 1-x make these two systems compatible.

Digital implementations are adaptable to other semirings, enabling support for a wider
range of applications. Floating point approximates a ring or semiring, subject to broader
limits on precision and range than possible with analog signals. Turon with floating point
would be able to do sparse matrix operations like finite elements, yet would require a
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digital implementation such as Figure 3C. Turon would be able to perform graph
algorithms if [Shinn 13] min and + on, essentially, floating point values correspond to
+ and x of what is called the distance semiring [Shinn 13]. There are many other
possibilities.

Scaling

Scaling rates differ for logic and memory, which impacts suitability of the approach in
Figure 3B versus Figure 3C. The conventional wisdom is that logic and memory should
be built from the same technology, thus subject to the same scaling rule. This is the basis
of today’s microprocessor and memory chip manufacturing. However, a fixed ratio of
logic to memory is not found in computing when viewed broadly. For example, the
capacity of disk drives is shown in Figure 5A and follows Kryder’s Law [Walter 05],
where disk drive capacity grows over time at double the slope of computer throughput
(which was very closely tied to clock rate in the era covered by the plot). Nature has also
created a family of information processing systems (brains) that follow the scaling rule
shown in Figure 5B. Over the evolutionary scale up sequence from roundworm to human,
the storage capacity (number of synapses) is proportional to the number of logic elements
(number of neurons) raised to the 4/3 power [Herculano-Houzel 11] [Wikipedia YY].

A. Computer systems: B. Brain scale up sequence:
10,000,000
— Synapses = Humay
& 1.00E+10 43
1 000,000 = 2 x Neurons
: \ T + Mhz = N
s Mo > 1.00E+08 Mouse
<=
1 |Expon. (Mo )
106,000 —— Expon. (Mhz) 8 1.00E+06 .
/ Nt Fruit fly
10,000 é 1.00E+04 ./
-
S 1.00E+02 Roundworm
1,000 p4
1.00E+03 1.00E+08 1.00E+13
Synapses (roughly storage capacity)
100
* < Growth rate of HDD storage space
10— compared to computer clock rate using
/ Apple consumer products (1984-2001).
1 # From Wikipedia, which cites the
= diagram to left as © Creative
0 . . Commons.
Januwary 1, January 1,  January 2, January
1980 1990 2000 2010

Figure 5: Throughput vs. memory scaling across diverse computing systems
Turon is illustrated Figure 3C as logic on the 2D face of a 3D solid, where the 3D volume

contains memory. This approach would cause memory capacity to grow as the amount of
logic to the 3/2 power. An exponent of 3/2 is closer to the observed scaling rate for
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computer systems in Figure SA (exponent 2) and biological brains in Figure 5B
(exponent 4/3) than von Neumann computers (exponent 1).

Security

The Turon concept developed from a security idea. A reformatted version of the original
document is included in Appendix IV.
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Analog vs. digital performance limits (non-sparse)

We developed a method of comparing computing approaches, which will show that
analog and digital are each more power efficient in different regions of the general
problem space. Figure 6A gives a simplified preview of the result, showing that the
circuit Figure 3B has the advantage a small scale and low precision as shown in green.
Digital approaches such as Figure 3C scale better, making them more advantageous in the
blue zone.

A: Parameter space B: Equations

Analog:  En, ~ OON’L?) kT

=

= .. . -
c .S Digital ~ Digital:  E,u, = O(N logo’L) kT + N log, L Ej,
2 g advanta T C T~
-2 g (logic energy) (memory energy)
]
5-‘ . .
& 2| Analog £, 1s the energy to access each bit from memory.
Z © . : ..
0 dvantage There is no universal consensus on circuit
2 4 definitions; see [3].
~ =2

Vector length N
Figure 6: Best approach for dense dot product

Figure 6B includes complexity expressions for the ultimate physical limits of an N-
element dot product calculation of L-level = log, L-bit values using analog/ digital
approaches. We merge ideas from Shannon [Shannon 48], Landauer [Landauer 61], and
computational complexity theory. Shannon tells us how raising signal energy as a
multiple of kT increases Signal to Noise Ratio (SNR) and gives more reliable results.
Landauer showed how energy in logic computation is also related to kT.

We merge these concepts to create a complexity measure that expresses energy for an
algorithm-computer combination in the form (N, L) kT, where f'is like a complexity
expression but with significant constant factors (i. €. not big-O notation). The expressions
are on the right of Figure 6 and documented in [DeBenedictis 14]. Digital £, energy has
separate terms for logic and memory energy, with £, being the energy to access one bit
from the memory. £, will be discussed later.

While the result for the digital circuit is consistent with ideas in the literature, readers

may find two surprises in the analog result. The first is that the analog result has the same
kT units as the digital result. The second is that the /’s have different asymptotic behavior.
For example, an analog N-element dot product consumes O(N L* kT) energy whereas a
digital one is O(N log,’L) kT.
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Energy efficiency limit of dense analog vector-matrix multiply

We first analyze an N-element dot product of two vectors v and g, M copies of which are
equivalent to the NxM dense vector-matrix multiply in Figure 3B. In preparation for
comparison with digital approaches, we want the answer to be correct with probability 1-

Derror

The voltages of v and the synapse values of g are both defined to be L-level analog
signals. Voltages v; driving each row are assumed to be uniformly distributed in the range
[-V, V]. The other vector g is defined by the state of memristors in a column and
comprises conductances g; uniformly distributed in the range [0, guax]. (The Vs will
cancel algebraically in the energy consumption equation, but the fact that the /s are
distributed symmetrically around zero will affect constant factors. The value gy, will
cancel similarly, but becomes the definition of the numerical value 1 for the elements of

9.

We use the resistive combining network in Figure 7, which actually forms the weighted
average of the input voltages instead of the dot product. However, the equations show a
weighted average is mathematically equivalent to a dot product divided by the sum of the
weights. We can recover the dot product by amplifying (multiplying) the voltage, but the
gain has to be chosen carefully.

Row Column of Column
drivers memristors conductor

$ + V 2 Vigi
Yo /\ /\ /\ /\ £o node Zi gi
Vno e V (0]

gain Zi gi = 1/2 gmax N
SN-1 A,=%N

VN-1
. . . Vdot = Zi Vi (gi/gmax)
Figure 7: Dot product circuit

Since multi-level neural circuits use the output of one vector-matrix multiply as the input
of the next, it would be best for the output and input signals to be compatible. We use
voltage. However, when voltage v; is multiplied by conductance g; during the
computation of the dot product, the result has units of current. Our remedy is to interpret
g/’s in the range [0, g,..] as weights in the range [0, 1]. If we assume the average
memristor conductance is 2 gy (Which is the statistical midpoint but strictly speaking
implies normalization on each step), the sum of the weights will be 72 gy N. If the
amplifier’s gain is set to 4, = 2 N, the circuit will compute the dot product subject to the
considerations just mentioned.

Gain 4, = "2 N is controversial among reviewers. In subjective terms, a signal entering
one input will leak backwards through the N-1 other inputs. As N grows, the amplifier
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must use more and more gain to counteract the reduced signal. However, gain in the
amplifier also amplifies noise and creates other deleterious effects. Appendix I has more
detail and the next section also analyzes a circuit with better scaling.

Transients will be due to Johnson-Nyquist noise in the limiting case, with the time
available for transients to die out determined by system speed or clock rate. For the time
being, let us assume the circuitry in Figure 7 is bandlimited to frequency f. The noise
power according to the Johnson-Nyquist noise theorem will be 4kT fat the input to the
amplifier. (F will cancel algebraically in the energy consumption equation.) Equating
noise power to voltage” divided by resistance, which is equivalent to voltage® times the
average conductance %2 gy N, we get

Pnoise = 4 ka= Vnoise2 1/2 gmax N) ( 1 )
Which yields
8 kT ”
Vnoise = —L ( 2 )
N Znax

In accordance with previous discussion, the noise will be amplified by 4, before
appearing on the output. However, we are interested in the peak noise transients that
occur with probability pe.or, Which requires multiplying the average noise voltage by

In(1/NPerror).

Vpeaknoise = Vnoise Av ln(l/ \/perror) = Vnoise 1/2 N 11’1(1/ \/perror) ( 3 )

The number of reliably distinguishable resolution levels L will be the output range 2V
divided by the peak noise voltage Vycarnoise-

72
2V N Gmar 1V
Vpeaknoise 8 kT f N ln(l/\/]?error)

Squaring ( 4 ) and rearranging yields a form that has units of energy and will be useful
later

V2 max
—Emar 12 N In(1peror) KT (5)

Energy per operation can be computed by the average amount of heat produced by the
memristors. V.. moves asymptotically to zero as N increases, so we assume in this
analysis that V,,z. = 0. If V4 1s grounded, there will be N uniformly distributed voltages
[-V, V] across resistors with average conductance g,,,/2. This yields the base power of
1/6 V'? @nax per resistor and total power

Prewron™ = 1/6 V? @pax N (6)

21/74



We will designate the base power with the superscript ®, which includes the assumption
of large N and V4. = 0. However, a correction for small N is given in Appendix I.

We must now establish a connection between operating speed and the Johnson-Nyquist
noise. We had previously assumed the circuitry would be bandlimited to f, but f'has so far
been just an algebraic symbol. We are now free to choose a specific value for f for lowest
energy per operation. The Nyquist sampling theorem states that the maximum rate at
which voltages could be applied to the rows would be 2f. If so, the energy to evaluate a
neuron would be P, times the sample-to-sample interval 1/(2f).

Dividing equation ( 6 ) by 2fand substituting ( 5 ) yields

= Pneuron(B) V2 max N

Erowron® = = L& = 10(1/perror)/24 L2 N* KT (7)
2f 12 f

The equation above is notable because implementation details V, g4y, and f cancel out

algebraically, leaving an implementation-independent expression.

In conventional computer terminology, the system will perform N multiply operations.
The energy per operation will be Enemn(B) from ( 7)) divided by N.

Energy/op = In(1/peror)/24 L* N KT (8)

Which tells us the energy per equivalent multiply operation is proportional to the number
of elements in a column. This is a notable difference from digital summation.

The above expressions are for a dot product. If we multiply ( 8 ) by the number of output
neurons M, we get the energy of an N x M vector-matrix multiply, as may occur in
software-based methods such as Deep Learning.

Evmn™ = In(1/perror)/24 L* N* M KT, (9)

where E,,, 1s the energy of a vector-matrix multiply.
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Improving dense analog vector-matrix multiply

It is possible to improve the performance of the analog vector-matrix multiply through a
simple method, albeit a method apparently not in the literature so far. The poor N* scaling
is due to the circuit activating all the rows at once. Say that an N-element dot product
were to be computed by dividing the dot product into j smaller dot products of N/j vector
elements each. This would require an additional activity of adding the j resulting analog

values, which we will designate as consuming power J. However, this would reduce the
energy from

C N kT, (10)
for some constant C to
JC NG KT +J=Clj N kT +J, (11)

which reduces the energy by a factor of j in exchange for the duty to add up intermediate
results at the end. It is possible that clever circuit design could yield J = 0 or nearly so.

If j = N, it reduces the exponent on N, leading to overall energy C N kT.
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Energy efficiency of dense digital vector-matrix multiply

This section will discuss the minimum energy consumption of a digital implementation
comparable to Figure 3B. Theory on the low energy limits of computation consider logic
operations while data storage and movement are not considered. A later section will
consider storage structures as well.

Figure 8 shows C-language software for dot product of two N-element vectors of ints,
ints in C being data words of an implementation-dependent number of bits treated as an
integer. Let us assume that the elements of v and w are B = log, L bits of precision. If so,
the variable holding the sum should be 2B bits. Bit field specifications are shown in red

(although not valid C syntax).
int V[N]:B;
unsigned w[N]:B;
int sum:2*B = 0;
for (int i = 0; 1 < Nj; i++)
sum += v[i] * w[i];

Figure 8: Software dot product

Each B-bit multiplier is assumed to require B gated one-bit full adders, each comprising
about a half-dozen gates (there are different multiplier and adder designs). If we
presuppose a 3x overhead for the additions and other control functions, this leads to
energy consumption for a digital dot product of

Edigirar = 3 1022°(L) N Ejuttadas (12)

where Ej .44 15 the energy of a full adder. Example energies of full adders are given in
Table 1. The definition of p,,, is used from earlier in the document.

Table 1: Full adder energy. Top two entries from [Nikonov 13]

Energy/32-bit Adder Fig 47 | Ejjiqaq units of kT
CMOS HP 31] 22,000 kT
HomJTFET A5 1) 1100 kT
Thermal limit About 9 gates:
In(1/peror) kT/gate 9 In(1/perror) kKT

At the thermal limit used for the analog example, this yields

Edigital =27 ln(l/p€rr0r) 10g22(L) NKT.

(13)

Many learning methods have been proposed for memristor and other analog synapse
types, but idealized devices are sufficient for this document. Specifically, the ultimate
limits of energy efficiency will not appear for many years, by which time device

behaviors will be more ideal.
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Comparison discussion

The energies for matrix-vector multiplication summarized in Table 2 are notable for both
similarities and differences.

Table 2: Energy for NxM dense vector-matrix multiply at thermal noise limit

Approach Energy per vector-matrix multiply

Analog full parallel 124 In(1/perer) L N M kT

Analog time sequential | 1/24  In(1/prror) L? N M kT | +addition
Digital 27 In(1/peer) logs (L) N M KT

The most profound similarity is that the limits of all options can be expressed in units of
kT. Radio signals are easily attenuated to kT levels of lower by moving the receiver
further away from the transmitter. This yields audible static in many cases. Computer
energy is well known to scale down with Moore’s Law, with kT being a reasonable
ending point of that scaling. However, analog computer circuits are unusual enough that
most people do not have an experience base for their scaling over time. This analysis
shows the limits of analog computing are the same as everything else, which is perhaps
unexpected but not unreasonable.

The results are in Table 2 are close but not the same, which has implications for Turon.

Consider the last two rows of Table 2. Ignoring the energy of the last addition, the two
energy expressions will be equal when L = 190 or about a B = 8-bit numbers. It is
reassuring that these numbers are close in magnitude, but it would be unwise to develop
performance expectations based on these numbers. In the opinion of the authors, not
being close would probably mean we made a mistake. However, it took microelectronics
70 years and perhaps a trillion dollars to get CMOS to its current level of around 10,000x
the physical limit. Analog computing has had much less investment.

The results can also be viewed as vastly different. Due to the scaling being different,
Figure 6 shows that the different circuit types will be applicable in different regions.

We claim Table 2 supports the novel proposition behind Turon, which is that the analog
neural network could simulate CMOS at similar energy levels to what CMOS could do
on its own. The argument is that the digital circuits in Figure 2 and Figure 3D use L=2
and N in the range, say, 4-10. This is a region where the analog approach could have an
advantage. However, this could change with sparsity.
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Adiabatic memory

It is possible to be even more energy efficient than the above analysis suggests by
recycling some of the energy expended to drive access lines to memory. Typical arrays
operate by charging one row (of capacitance C) at a time to some voltage V. When access
moves to a different row, the previous line is discharged to ground, the energy is
dissipated as heat, and more energy is drawn from the power supply to charge a different
row. The charging and discharging cycle ultimately consumes CV* energy. However, the
adiabatic circuit in Figure 12 (derived from [Karakiewicz 12]) uses a different approach.
A bi-directional switch connects an energy storage unit to one row at a time. To switch
rows, the CV? energy is withdrawn from the row and put in the energy storage unit. The
switch then shifts to a different row and the energy in the storage unit is put into the next
row. With good technology, the losses will be a small fraction of CV7.

Bi-directional

switch ------- * ¢ = 1000x1000
1 memory
Energy T bank
storage unit
(inductor) § Loss
mechanism

(see text)

Figure 9: Adiabatic clocking for four PIMS replication units

If the energy storage unit is an inductor, a “tank” circuit is formed between the inductor
and the collective capacitance of one row per memory bank. The tank circuit will
oscillate sinusoidally. The bi-directional switch can change to a different row without
affecting the oscillation, as long as the change occurs at a point in the cycle where there is
no current flowing.

The circuit in Figure 12 can have substantially lower losses than a conventional memory.
When viewed as a tank circuit, the circuit in Figure 12 can be characterized by a quality
factor or “Q” in standard electrical engineering terminology. (Q can be viewed as the
number of oscillations after which the energy is reduced to 1/e of the original value.) In a
key demonstrated circuit [Karakiewicz 12], the Q value was about 85, which is
equivalent to the fraction 84/85 of the energy in one row being recycled to the next.

The adiabatic circuitry in Figure 12 is applicable to both analog and digital memory. In

the case of a memristor crossbar, it can be applied to both rows and columns. In the case
of digital memory, it applies only to the rows.

26/74



Learning

The preceding section dealt only with a computer performing its programmed or
otherwise intended function, with this section dealing with the process or specifying that
function. Specification occurs at two levels. At the higher level, the resources are
partitioned into regions like in Figure 2. This is almost identical mathematically to
treating the resources as a one giant matrix and defining a sparsity pattern for it, a
similarity that will be exploited shortly. The lower level trains the synapses within each
region. Analog and digital implementations will have different properties at each level.

The analog memristor crossbar in Figure 3B has good and bad attributes with respect to
learning. For Figure 3B as shown, the energy efficiency limit is very high. As the
discussion below shows, energy is consumed only when and to the extent that a synapse
changes. The fraction of synapses changing at any given instant is very small, and that
fraction is effectively a multiplier for energy consumption. On the other hand, the
structure in Figure 3B is inflexible. It is not possible to change the manufactured array
structure into an array of different dimensions or into a sparse matrix.

The digital system in Figure 3C can accommodate sparsity at the expense of complexity
and somewhat larger energy consumption. Figure 3C would not be very energy efficient
if viewed as digital hardware for just dense matrix in Figure 3B. Digital electronics
would evaluate mathematical formulae for the amount of synapse change in each learning
cycle, most of the evaluations consuming energy but specifying zero change to a synapse.
In other words, the dense matrix approach would not take advantage of the small fraction
of synapses being updated each cycle. However, digital Turon implementations are
expected to use sparse matrix computer algorithms that organize the activity so formulae
are only evaluated for the synapses likely to have nonzero changes. While there is
overhead in the management of lists and pointers, sparse matrix approaches often have a
large net beneficial effect. The digital system in Figure 3C would need to alter the
sparsity structure on the fly, which is feasible but adds complexity.

These ideas will be further developed below.
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Analog Learning

The delta rule is a key operation in several neural learning algorithms, including classic
back propagation. It updates the weight matrix W by the outer product of the input | and
error E vectors:

W+=gEI’, (14)

where « is the learning rate. The definition of E depends on the specific learning
algorithm. The use of rows and columns here is arbitrary, that is, the transpose of this
system is equally valid. We developed a system where the weight matrix W is defined by
the memristor conductances in an array such as shown in Figure 3B.

Ideally we want to update all of W in a single pulse event, where the row and column
voltages are carefully selected so that the voltage difference across each element is just
the right amount to shift its resistance by the correct amount. If all the elements had the
same symmetric exponential response curve dw/d=exp( V), this would be possible.
Specifically, the row and column voltages could be chosen to be the logarithms of their
numeric values, such that dWj/dt = exp(log r; + log cx) = rjci. In practice we would also
need to add an offset voltage to overcome the programming threshold, but this does not
change the argument. This method is described in Appendix III.

Unfortunately, we show below that real devices do not cooperate with this scheme. There
is variability in manufacturing and their response can be highly asymmetric. A number of
alternate approaches have been introduced by various researchers. Several of these
amount to varying the duty cycle during a write, such that the overlap of column and row
pulses produce the desired amount of shift over a period of time:

e Vary voltage on columns and duty cycle on rows [Sapan Agarwal, unpublished].

e One long pulse on columns and series of shorter pulses on rows [Kadetotad 15].

¢ Random pulses on both rows and columns with approximate duty cycle [Merkel

14].
e Spike Timing Dependent Plasticity (STDP) [Snider 08].

Another approach involves delivering minimal (threshold level) voltage of the
appropriate sign to the rows and columns, and relying on multiple training cycles to
produce sufficient movement [Hu 14]. Provided that any single programming pulse rarely
or on average does not exceed the amount of change needed, this method is consistent
and will converge.

Memristors exhibit both read and write noise. (Some of this write noise can be explained
as hidden state, as discussed in the Memristor section below.) It is important to choose a
network configuration and learning method that can work within the precision limits of
the available devices. For example, it has been shown theoretically that a minimum of
about 12 bits is needed for backprop [Holt 93]. The specific number depends on the
desired level of convergence.
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Digital learning

The discussion below will discuss digital implementation of Turon initially as a machine
that could simulate the neural network in Figure 3B, both for learning and execution. As
the discussion proceeds, features will be added that accommodate sparse matrices. By the
end of the discussion, the digital implementation will be able to accommodate matrices
where the sparsity pattern changes on the fly. This would contrast with the analog
implementation that require remanufacturing of the chip to change the sparsity pattern.

The exposition will start with a dense vector-matrix multiply in the form of dataflow
[Dennis 80] and systolic arrays [Kung 79]. We start with Figure 10 showing a 2D systolic
array rotated clockwise 45°, rotated so data flow direction corresponds to other diagrams
in this document. The original systolic array in Figure 10 had a synchronous or systolic
clock, which we will modify shortly. Numbers flowed according to the arrows, one step
per clock. The blocks labeled “DPU” perform an algorithm-specific arithmetic operation
on input data and one or a few locally stored numbers.

Diagram from
Wikipedia

Figure 10: Systolic array

Figure 11 shows a Microsoft Excel simulation of Figure 3B using methods similar to
Figure 10 — although using a 4x4 matrix. The top of Figure 11 shows the matrix equation
XA =y with the bottom of Figure 11 simulating the calculation of y using the systolic
array in Figure 10. However, Figure 11 uses Excel equation dependencies as opposed to
using clock cycles like a systolic array. Figure 11 originated as an Excel spreadsheet
embedded in a Word document, so the reader may be able to access the formulae that do
the matrix calculation if this document is in a suitable form or the reader can access the
associated material.
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Figure 11: Diagram of the spreadsheet for 4x4 vector-matrix multiplication

A key property of Turon will be derived from the fact that the spreadsheet in Figure 11
can be easily changed from performing vector-matrix product to the delta rule. Figure 11
comprises a data flow layout plus operations in cells. Changing a single formula (albeit
one that is repeated in each of the yellow cells) will change the function while retaining
the data flow layout. The data flow layout captures the sparsity pattern of the matrix.
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For the vector-matrix multiply illustrated, the cell at point of the green and blue arrows
(matrix element a;3) contains a formula that updates y; by a multiply and add, specifically
“=P21+N22*L20” corresponding mathematically to 3’ = y3 + a3 * x;.

However, the expression “N22 + o * L20 * P21” would update the value for the a3,
specifically computing “a;3” = aj3 + a * x; * y3.” a is in the role of a learning rate and
could be replaced by, say, .01 or the contents of a cell. This expression would have to
appear in all the yellow squares, albeit with the Excel coordinates changed so they
represent the same relative positions.

However, the desire is to perform the same functions on sparse matrices. Users familiar
with spreadsheets will understand that cells can be rearranged without changing the
underlying mathematical calculation. So let us convert Figure 11 to an efficient form for
sparse matrix calculation that we call an “operational layout.” This requires two steps:

¢ Eliminate the formulae in each yellow square where the matrix element is zero.
To maintain consistency, a formula elsewhere that references an x or y value that
is deleted must be adjusted to use the x or y value in the formula that was deleted.

e Use a 2D graph layout algorithm to create a compressed or operational layout.
The graph layout algorithm must be oriented so that all graph arcs point

downward.

This will produce an operational layout like Figure 12, which the reader will see produces
the same output value.
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Figure 12: Operational layout corresponding to Figure 11

An implementation of Turon can be constructed by loading the operational layout in
Figure 12 in the memory of Figure 3C, as illustrated in Figure 13. Both the numeric
values and information in the formulae of the Excel spreadsheet in Figure 12 would be
loaded into the adiabatic memory, preserving the layout in terms of rows and columns.
Instead of the Excel spreadsheet evaluating the dependencies, the adiabatic memory
would be accessed in top to bottom order. This would send the numeric values and
formulae to the ALUs in an order that could be used for computation. (This effectively
changes the vertical dimension in Figure 12 into the time sequence of row access in
Figure 13.) Since the original spreadsheet had all data flowing downwards, the ALUs will
receive data in an order that can be processed — as long as they can shift values between
themselves leftward and rightward. Graph layout algorithms attempt to minimize total arc
length. Minimizing arc length will reduce the amount of ALU to ALU communications.
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Adiabatic memory:

Adiabatic Green 1s input
row - Yellow is the matrix
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Purple is CMOS
A v + v ¢+ ¢ % calculationunits
Control » ALU ALU ALU Red is communications
N <> > e between ALUs

Figure 13: Turon digital architecture option

The approach described above can perform both vector-matrix multiply and delta rule
update with the same sparsity pattern (although the layouts illustrated in Figure 11 and
Figure 12 are not sufficient to illustrate this point).

Digital analog summary

Digital and analog implementation approaches differ in terms of flexibility and scalability.
This suggests a future user should analyze the problem at hand and then use the least
complex system that will solve the problem.

The approach using an analog crossbar is simple, elegant, and could be very energy
efficient. However, the crossbar should be small because the energy consumption has an
N term whereas a digital approach has just an N term. Furthermore, the crossbar is not
easy changed to a different structure. While it is certainly possible to embed any structure
in a large crossbar by making entries zero, this is inefficient. Creating a different structure
is also possible, but it would generally require remanufacturing the chip.

The digital approach addresses the limitations of the analog system, yet would lead down
a path of increasingly sophisticated systems for addressing a more and more diverse
problems — almost certainly with decreasing energy efficiency. Specifically, the energy
consumption of digital dot product is lower when the vectors are long — although analog
approaches should be more energy efficient when the vectors are short. Furthermore, a
digital implementation could represent a sparsity or communication pattern as what we
call an operational layout that is stored in memory. A chip could be repurposed to a
different pattern by changing memory — which is a lot less cumbersome than redesigning
the chip.

33/74



Memristor characterization

Sandia performed experiments to test the readiness of TaOx memristors for Turon. While
we found memristors were not ideal enough for neural applications, we made some
advances in the technology for characterizing memristors.

Experiments performed on TaOx memristors reveal that the state space is characterized
by more than resistance. Millions of memristor tests were analyzed to assess the
resistance change due to a probe pulse in a narrow voltage range. The amount of
resistance change was found to depend on resistance as expected, but it was additionally
found to depend on the history of how the memristor got to the initial resistance state.
Figure 14 illustrates the key result: Each dot is a test colored by the memristor’s history
prior to the test. The chart would have a uniform color when viewed at a distance if
memristors were characterized only by resistance, but there is a conspicuous blue-green
area. This implies that a memristor’s state can be expressed as {R, extra state}. The extra
state is invisible to a resistance measurement but can be revealed by essentially applying
a probe pulse and seeing how much change in resistance results.

A novel experimental protocol was used: A special memristor test fixture was constructed
that applied a continuous stream of random pulses to a memristor, collecting over 9M
samples in the data set use for this document. The resulting 300+ megabyte file was “data
mined” in Matlab to extract a subset of the random sequences that met experimental
criteria.
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Experimental method

Prior to this project, experimental technique involved applying a voltage or current
sequence or waveform and observing the change in resistance. However, we found the
process unreliable. Applying a voltage /; to a memristor with resistance R; does not
always change the memristor to the same resistance R,. This makes it impossible in
general to create a test that moves a memristor through a resistance sequence R, R,, Rj.

The new experimental method involves executing a very long sequence comprising (a)
applying a random voltage pulse and then (b) measuring the resistance. The {V, Ri}
values are saved in a computer file. Experiments are performed by loading the data file
into Matlab and doing what is essentially “data mining.” With this method we can find
resistance sequences like R;, R,, R; (to some resistance tolerance) within the random data
set and then do statistical analyses on the voltages V;, V>, V3 that produce the resistance
sequence.

The experimental apparatus is shown in Figure 15. It comprises a custom PC board
produced by a Sandia partner company. The board illustrated contains A-D and D-A
converters to drive and sense memristors in a memristor array-containing chip on the left
in a standard package. The bottom side of the board contains a PIC microcontroller on a
mezzanine board, which we programmed in C to generate the random voltage sequence
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alternating with resistance measurements and transmit the data to a computer via a USB
cable.

Figure 15: Experimental apparatus

The test apparatus has the ability to control the duration of voltage pulses. However, all
pulses are 2 uS in this paper.

The voltage sequence is highly random, but we found a need to control distribution
function. We use a software random number generator on the PIC microcontroller to
generate a uniform distribution of voltages within a range. The range varies with the
memristor’s current measured resistance in accordance with the distribution in Figure 16.
The distribution function has been chosen to avoid damaging the memristor and also
collecting samples preferentially in the range we want to analyze. Fine details of the
distribution function are not very important because random samples will later be
selected by the data mining process.
8 ; ; ; ; ;
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Figure 16: Random pulse distribution
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For this document, the experimental apparatus was applied to a specific memristor and
9.6 million samples were collected in somewhat over 24 hours, yielding a 300+ megabyte
file. We did a manual inspection of the data file and concluded that the memristor became
around 20% less responsive over the course of the testing, which we attribute to wear out.
The test protocol has been applied to other memristors, including memristors from
different fabs (but this paper discusses results from only one memristor).

Results

Let us first discuss how Figure 14 is incompatible with the idea that a memristor’s state is
entirely captured by resistance. Figure 14 plots the change in resistance due to a pulse in
the range of -3v...-3.1v (we will subsequently call this a -3v pulse), selected from a long
sequence of random voltage pulses. Each dot represents a test. Memristors had been
subjected to a random voltage sequence, with the sequence ending in a random voltage
generated in accordance with Figure 16. The resistance was then measured and
designated R,. If a memristor’s state is indeed captured entirely by resistance, the history
of the how the memristor came to state R, would be irrelevant; more on this point below.
The memristor was the subjected to a -3v pulse and measured again and the resistance
designated R,. A dot was placed at (x, y) coordinates corresponding to (Ry, R)).

The plot shows two regions, that can be identified subjectively as a “galaxy” viewed edge
on and a “wisp.”

1. The galaxy structure represents tests where the resistance was stable, which we
will designate the “-eager” state (meaning the memristor was not eager to change
resistance). A brief look at the galaxy structure reveals it is a noisy rendition of
the identity function; the change is resistance is about zero on average.

2. The wisp structure shows a memristor in a state that is more easily programmed
by the -3v pulse, which we will designate the “eager” state. The -3v pulse will
increase resistance by 50% or so.

Each dot is drawn in a color that represents something about the history of how the
memristor got into the R, state. The color is specifically the voltage of the random pulse
applied to the memristor before the test, thus representing the immediate history but not
the long-term history. If the memristor’s state were entirely represented by resistance, the
plot should have a nearly uniform color. (Dots are colored by a software random number
generator programmed to the distribution in Figure 16, which the human eye will blend
into a nearly uniform color.) However, the wisp structure has a plainly evident blue-green
color corresponding to a random pulse of 2v...4v.

The broad conclusion from Figure 14 is that a memristor can be in a given resistance state
with different internal physical configurations, although a discussion of the physical
nature of a memristor’s state is out of scope of this document by the choice of the authors.
These configurations reveal themselves in this experiment by applying a -3v “probe”
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pulse and seeing how much the resistance changes. The probe pulse is a “destructive
read” in at least some instances.

We can describe some of the behavior of the extra state in a memristor based on Figure
14: A memristor enters the eager state when it drops sharply to a low resistance. A
subsequent negative pulse will be cause a large rise in resistance. However, if the
memristor wanders up and down between resistances in a narrow range, it will be in the
more stable —eager state.

Emulation

We used the data to emulate a memristor in a non-parametric manner. One option is to
find the nearest neighbor in (R;, V) space and use the third member of the tuple as the
resulting resistance. That approach would be slow and overly sensitive to input values. A
better approach is to extract statistics from the data and store them in a table that allows
direct indexing.

We constructed a table that ranged from —10V to 10V in 0.1V increments. Resistance
ranged from 0Q to 20kQ in 100Q2 increments. We distributed each sample to its four
nearest bins in (R;, V) space with bilinear weighting. For each sample we calculated
A=R,—R;, and for each bin summed weight, weightxA and weightxA’. From these we
calculated the mean and standard deviation of A for each bin.

The resulting table still required a number of post- processing steps to be useful for
simulation. First we determined the write voltage threshold to be 1.6V by examination.
Voltages near zero showed a small amount of resistance increase, even though in theory
they should produce no change at all. The cause of this is undetermined, but possibilities
include an actual increase in resistance due to the read protocol of the measurement board
(Figure 15). The lower-level software samples the resistance many times, and we have
observed some cumulative effect from sub-threshold pulses. We forced these entries to be
zero, and subtracted their average from other entries in the same row (associated with a

100Q-wide bin), effectively removing the read drift. Figure 17A shows the resulting table.
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Figure 17: Measured memristor voltage change and standard deviation
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We applied a similar procedure to the standard deviation values. There were nonzero
entries in cells below the write threshold, which we interpreted as read noise. We
subtracted the average read noise on a per-row basis, and recorded it in another table for
use during simulation. We interpreted the remaining standard deviation values as write
noise. Figure 17B shows the resulting table. Note that these two tables (uA, ¢A) do not
fully capture the behavior of the device, because they treat the hidden state described
above as noise. However, this is sufficient for the experiments described next.

The A (resistance change) values showed some noteworthy patterns. Unlike the typical
model of a memristor as a symmetric pair of exponentials, we found significant
asymmetry. Figure 18 plots a row of the uA table at 4kQ), showing A in response to pulse
voltage. Note the “cliff” in response to positive voltages. We expect this from a circuit-
based argument. When a memristor is subject to a voltage sufficient to cause a decrease
in resistance, the current will increase and cause an temperature increase due to £/R
heating. A rising temperature increases the rate of resistance change, creating a feedback
loop that drives resistance down even faster.

2000

1500 -\

7.2

-1500

-2000

-2500 ‘
Figure 18: Real albeit non-ideal memristor resistance change with voltage

Read and write noise varied across the space. Focusing on the regions that were useful for
our simulations, read noise (one cycle) was about 1.5% of the resistance value. Write
noise for positive pulses (decreasing resistance) was about 10% of R;. Write noise for
negative pulses was about 0.5% of R;. With the finished table, we simulated a pulse to
the memristor by retrieving the four cells closest to (R;, V) and interpolating between
them. The new resistance resulting from the pulse was R,=R;+A+G(ow)xNy, where G(*)
is the Gaussian distribution with zero mean, oy is the interpolated standard deviation, and
Ny is an optional scaling for write noise. Similarly, we simulated a noisy read as
R;+G(or) xNg, where Ny is an optional scaling for read noise.

This model approximates the function f(R;, V) =R, with a piecewise linear (ruled) surface.
In rapidly changing regions such as near the “cliff”, the model introduces systematic error
due to large differences between the actual slope and straight-line fit. Sometimes this
difference exceeds 100Q2. One solution would be to use finer binning.
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Backprop Learning

For clarity, we give a very brief summary of multi-layer perceptrons (MLPs) and the
Backpropagation algorithm (Backprop). One stage of an MLP has the form of a matrix-
vector multiply followed by a differentiable squashing function: O=f(WI), where | is the
input vector, W is the weight matrix, O is the output vector, and typically f{x)=1/(1+e'™)
(the logistic sigmoid function). Simple function composition expresses multiple layers:
O=f(W,f{W;1)). The Backprop algorithm is an application of gradient descent to the
weights W; where the derivatives are determined by the chain rule. Specifically:
O; =W,
O: =f(W:0,)
E 2 =T-0 2
8 (’/2E22)/8 Wg =_E2°f(WZO1)O]T
0 (HES)/ 0 W; =—(—Ex»f{W,0,))"W; of (W, )I”
=—E;of" (W, )I”
where T is the “truth” or “target” vector for the network output, E; is the error feedback
to a given layer, and ° is element wise multiplication. Each layer is updated using a step
size o

W —W-a 9 (%E’)/d W. (15)

The step size is typically a positive constant much smaller than 1. Alternately, a line
search can find the step size that gives the largest improvement in each cycle. We used a
constant a=0.01 in all the tests reported below.

A memristor crossbar (abbreviated “xbar’’) could be part of an electronic module that
does all the work of one perceptron layer. These modules could be chained together to
form an MLP. A module may be implemented in several different ways. Figure 22 shows
a highly abbreviated xbar. In addition to a dense 2D array of memristors, a certain
amount of peripheral circuitry would be needed to drive the devices and perform the
functions described by the equations above. In the design shown here, each perceptron
weight is represented by one memristor device. In order to have signed weights, there is
an additional row of conventional (non-programmable, low noise) bias resistors. These
produce a bias current which is fed to each row circuit.

Calumn drivers

rTrRrhln ,.r"‘

»
[ o Row drivers

(Rawt)

gy

Figure 19: Xbar
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The rows and columns also have driver circuits which pulse the array to program the
memristors. Omitting the electronic details, an output circuit contains two key resistors
that determine the operating range of the memristor devices. Ry, 1s the fixed
conventional resistor that determines the value of a “zero” weight. R,,, is an output
resistor that scales current to voltage. A weight w translates to a conductance (inverse of
resistance) in this system, which has the following relationship with its associated
memristor value R:

W=Rou(1/R - 1/Rpias)- (16)

Ultimately, R contributes to a voltage that represents the linear (non-squashed) output of
the perceptron. This passes through some electronic implementation of the sigmoid
function. In our simulations R;;,;=4kQ, as this is roughly in the center of the cleanest data
in the table. The scale factor was R,,~40kQ, which gives us weights in —3.3 to 10 for
resistances in 6k to 2kQ respectively. We observed that conventional MLPs trained on
the problems presented here typically had weights in [—3, 3], so this configuration was
sufficient.

Precision

Our tests showed that the emulated memristor crossbar with a realistic level of noise
trained to a lower level of performance than the equivalent conventional digital (“float™)
network. In particular, they were incapable of reaching 100% accuracy on a simple
Boolean mapping (one of the green blocks in Figure 2). It is well known that noise places
a lower bound on precision. We argue here that the precision necessary for Backprop

to converge is finer than that allowed by the observed noise of the device. First we
examine the precision used by the conventional digital network.

An IEEE 754 single-precision float has a 23-bit mantissa, the equivalent of about 6
decimal digits. A cursory analysis of Backprop shows that this is just enough.
Specifically, suppose a=0.01, 1=1, and WI=0 so f{WI)=£(0)=0.25.

Substituting these into Equation ( 15 ) gives:
W —W-+aEsf"(WIDIT
wew+0.01xex0.25x1
wew+0.0025%e

Since the typical range of network weights is [-3, 3], we assume no more than 5
significant digits after the decimal point. This implies that e<0.001 will be lost in the
addition operation. Late in training, observed values of e are on the order of 0.1 to 0.01,
so single-precision floats are sufficient for our purposes. See [Holt 93] for a more
detailed analysis of precision required by Backprop.

However, the Xbar emulation brings more loss of precision. Weights are represented by

resistances. From Equation 2 it is easy to derive the relationship between weight change
and resistance change:
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Wa—Wb:RoutX(]/Ra - ]/Rb) (17)

If we let R,=R;,—100Q and R,=4kQ), we get a weight change of 0.244 per 100Q2. This
amount varies between 0.11 and 0.95 depending on where we set R, but that does not
change this order-of-magnitude argument. Given the observed values of e, we can expect
resistance changes as small as 0.0025x0.01x100€/0.244~=0.01Q. Our resistance values
are on the order of 10%, so such updates are right at the limit of single-precision floats.
Furthermore, they evaluate to voltage pulses that are only a few microvolts above
threshold, again straining the limits of single-precision. We could improve the simulation
by increasing to double-precision, but all this would accomplish is to more accurately
compute the noise that overwhelms the algorithm.

It is extremely unlikely that a practical electronic implementation of an xbar will support
microvolt pulses or sub-Ohm resistance changes. Even under closed-loop control, the
smallest step is on the order of 10Q2, two orders of magnitude larger than the needed
value. The fact that Backprop leads naturally to such absurd scales suggests that it is not
the appropriate algorithm.

Consider that we observed cW =~ 400Q2 in the “cliff” area, four orders of magnitude larger
than the needed resistance step size. If the goal were simply to train the network offline
and then burn it to an xbar, then this would be acceptable, as we could use closed-loop
control to set the resistances. The only barrier to practical use would be read noise. We
observed or~60Q2, which degraded the performance in our simulations by various degrees,
but often produced tolerable results.

LOTTO

In order to train the Boolean circuits in a Turon we must achieve 100% accuracy, that is,
full convergence. Backprop on memristors is problematic, so we devised a random-walk
learning method, whimsically named LOTTO (Lazy Optimization Through Targeted
Oversampling).

The algorithm alternates exploration and exploitation steps until convergence. An
exploration step picks a new random point in the weight space. An exploitation step goes
back to the best point seen so far and samples a random location near it. In either case,
LOTTO then iterates through the training data (a full epoch) to measure the goodness of
the new point. If it is an improvement, LOTTO accepts the new point, then takes a

small random step in the direction of increasing resistance. As long as each new point is
an improvement, LOTTO continues the random walk (Figure 20).

A random set of weights (exploration step) can be created in a manner similar to the
random-pulse sampling method described above. The small steps of the random walk are
made by pulsing the entire Xbar with a negative voltage at the write threshold. Due to the
inherent randomness, all resistances will increase by small but varying amounts.

In outline form, the algorithm is:
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repeat

{Alternate explore and exploit steps}

if explore then

Random (low cost) initialization

else

Set to best point, using -bounded precision

end if
{Random search}
loop

for all data do

Test classification accuracy

end for

if accuracy is better than current best point then
Set new best point

else

Break inner loop

end if

Apply small negative pulse to whole xbar

end loop
until convergence

T, =—

Figure 20: LOTTO illustration

Conclusions

In this document, we specified the Turon computer architecture that blends properties of
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Turing machine and neural networks.

In the language of computational complexity, Turon can simulate a von Neumann
computer. Turon’s memory can be used essentially to store gate-level descriptions of
computers circuits and then execute them like an FPGA. Thus, Turon can load a von
Neumann CPU (microprocessor) into a portion of its memory and use another portion of
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its memory as the von Neumann computer’s memory. Turon can then simulate the von
Neumann computer, and hence a finite Turing machine. Furthermore, multiple von
Neumann computers could be loaded into different portions of Turon’s memory, letting
Turon simulate a parallel von Neumann computer — like a current supercomputer. This
latter simulation would be entirely parallel, meaning the full speedup of the parallel von
Neumann computer would be realized in its simulation by Turon.

On the other hand, Turon could load its intermixed memory/neural network resources
with a pattern recognition neural network of the type used in Deep Learning. However,
this form of neural network was only discussed in this document for perceptron-style
neural networks with back propagation learning. This portion of the resource could be
used to learn and recognize “cat faces” in Youtube videos [Le 13] (the famous example).

The document discussed the potential physical efficiency of a Turon computer based on
two exemplary implementations. According to the theories of computation put forth by
von Neumann and Landauer, the minimum energy for computation of this type should be
multiples of kT. These theories are normally assumed to apply to digital computation, but
this is not really clear. When we estimate the minimum energy for Turon, the minimum
energy is a multiple of kT for both analog and digital forms — although the expressions
are different in constant factors and they scale differently.

A memristor-based analog implementation was analyzed for both function and theoretical
limits. The document used an idealization of memristor behavior widespread in the
literature. A functional circuit for both learning and performance was presented. The
document then included simulation tests of less idealized memristors learning the digital
circuits that are a novel advance or Turon. The non-idealized memristors worked much
less well. A theoretical limits analysis of memristor-based circuits revealed that the
idealized memristor circuit has theoretical limits that can be compared to Landauer’s
“limit” of O(kT) per device or the Shannon-inspired digital limit of around 100
kT/operation. However, the analog memristor limit has a different scale dependence than
digital circuits (more on this later).

A digital implementation based on 3D scaling of memory was discussed, yet in reference
to other published works by the author. The physical limits based on the same Landauer
or Shannon argument from the paragraph above were analyzed.

A comparison of maximum performance for the analog and digital approaches were made
and were instructive.

An analog approach could potentially outperform the digital approach in small neural
networks. However, digital neural networks scale better. This is important to the ability
of Turon to simulate digital circuits. The digital circuits would be constructed from large
numbers of small neural networks, each simulating a dozen or so logic gates. These
neural networks would be in the size range where the efficiency of the analog
implementation would dominate its poor scalability.
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The digital approach has its merits as well. There are important classes of neural network
(e. g. brains) that have a large amount of memory in comparison to the throughput of the
logic. Existing research prototypes tend to be chips with very low power consumption (e.
g. TrueNorth has just a few milliwatts of power consumption) because most of the chip
area is filled with memory, leaving little space for logic. A digital Turon approach could
exploit trends in 3D integration, which are more mature for memory than logic. A Turon
could have a large amount of memory in the volume of its 3D structure while having
logic only on a 3D face. We discussed an computer and brain scaling, showing that this
2D/3D scaling was a fairly good match in terms of polynomial exponent.
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Appendix I: Energy limit of a sparse memristor network

We analyze a scaled N-element dot product of two sparse vectors V and g, based on a
sparsity model discussed below. By scaling, we mean the result of the mathematical dot
product multiplied by a scaling factor . M such dot products become equivalent to an
NxM sparse vector-matrix multiply. The voltage on each row and the synapse values are
both defined to be L-level analog signals. In preparation for comparison with digital
approaches, we want the answer to be correct with probability 1-pe.-. The strategy is to
multiply using Ohm’s law for the memristors and add with Kirchhoff’s current law for
the column conductor.

It will turn out that the energy per operation will be in units of kT, k being Boltzmann’s
constant and T being the absolute temperature. While this is the same form as the
minimum energy for a digital computation as identified by von Neumann [cite], Shannon
[cite], Landauer [cite], and others, the scaling will be different from a digital circuit. As a
preview, the energy for a vector-matrix multiply will turn out to be

Evmn™® = In(1/perror)/24 fL* N* MKT, (18)

for a NxM matrix of L-level signals, and a gain factor of f. The quadratic exponents on N
and L are different from digital computers, which allow interesting comparisons.

Voltages v; driving each row are assumed to be uniformly distributed in the range [-V, V]
and comprise vector V, as illustrated in Figure 21. (The notation “v; ~ U(a, b)” means v; is
a random variable uniformly distributed between a and b.) The other vector g is defined
by the state of memristors in a column and comprises conductances g; uniformly
distributed in the range [0, gna]. (The Vs will cancel algebraically in the energy
consumption equation, but the fact that the V*s are distributed symmetrically around zero
will contribute to constant factors. The value g, Will cancel similarly, but becomes the
definition of the numerical value 1 for the elements of ¢.)

dOt(V, g, ﬂ) = ﬂ/gmax v-g

f pTTTTTTT T ,
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Figure 21: Definition of the dot function as g/g times the dot product of vand g
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The vectors have N elements and may be sparse, as illustrated in Figure 21. Exactly p,N
elements of v and p,N elements of g are nonzero, with p,p,N pairs of corresponding
elements both being nonzero (meaning the multiplication step in the dot product will
yield a nonzero result in exactly p,p,N cases). While p, and p, may serve as probabilities
in practice, in this analysis we interpret them as exact ratios.

Figure 22 includes the p,N non-infinite resistors. Of these, p,p,N are driven by a voltage
v;. The remainder shown in red are modeled as connected to ground, as they represent
sparse vector elements that would have zero numerical value and hence zero voltage.
Elements of Vv in the sparse region paired with elements of g elements in the nonsparse
region load the circuit electrically but should not change the result.

Row Column of Column
drivers memristors conductor

+ + y Zi Vigi

Yo ANN /\gO node = Zi g
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L
GND —\/\/\/\PFH—

Figure 22: Circuit for analysis of sparse dot product

Vdot = ﬂ/gmax Zi Vigi

The network in Figure 22 through point V.4 forms the weighted average of the input
voltages instead of the dot product. However, the equations show a weighted average is
mathematically equivalent to a dot product divided by the sum of the weights. We can
recover the dot product by amplifying the voltage, but the gain has to be chosen carefully.

Since multi-level neural circuits feed the output of one vector-matrix multiply to the input
of the next, it would be best for the output and input signals have the same physical
representation and units. We use voltage. However, when the dot product multiplies
voltage v; by conductance g;, the result is a current. Our remedy is to interpret g;’s in the
range [0, gnmax] as weights in the range [0, 1].

If we assume the average memristor conductance is %2 g, (Which is the statistical
midpoint but strictly speaking implies normalization on each step), the sum of the
weights will be /2 gax poN. If the amplifier’s gain is set to 4, = 2 N, the circuit will
compute Vo, = [/2max V - g, which is close enough to dot product for the circumstances.
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The 4, =28 p.N is controversial among reviewers. In subjective terms, a signal entering
one input will leak backwards through the N-1 other inputs. As N grows, the amplifier
must counteract with more and more gain. However, the amplifier also amplifies noise
and creates other deleterious effects.

Transients will be due to Johnson-Nyquist noise in the limiting case, with the time
available for transients to die out determined by system speed or clock rate. For the time
being, let us assume the circuitry in Figure 7 is bandlimited to frequency f. The noise
power according to the Johnson-Nyquist noise theorem will be 4kT £ at the input to the
amplifier. (F will cancel algebraically in the energy consumption equation.) Equating
noise power to voltage® divided by resistance, which is equivalent to voltage” times the
average conductance 2 pax peN,

Pnoise = 4 ka: anez 1/2 gmaxpgN ( 19 )
Which yields
)
Vnoise = [ﬂi t| ( 20 )
PN Ziax

In accordance with previous discussion, the noise will be amplified before appearing on
the output. However, we are interested in the peak noise transients that occur with
probability perer, Which requires multiplying the average noise by In(1/\pesor).

V:Deaknoise = Vnoz’se Av ln(l/ \/perror) = Vnoise 1/2 ,B pgN ln(l/ \/perror) ( 21 )

The number of resolution levels L will be the output range 2/ divided by the peak noise
VOltage Vpeaknoise-

V2
2V max 4V
I = _ PN _ g (22)
V:Deaknoise 8 kT f ﬂpgN 111(1/ perror)
Squaring ( 22 ) yields
72— 2PN Gmax V2 (23)
kT B ZngN Zexp(2/ Perror)
Rearranging ( 23 ) to a form that has units of energy and will be useful later
2
V8nax — vy FI2 pN In(1/pemor) KT (24)

f

The power consumption of the circuit is addressed now. Only the energy turned into heat
in a resistor is irrecoverable in this situation, so we will analyze the average power
dissipated by all the resistors. We will express the power as a base value plus small-scale
correction.
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Va0de moves asymptotically to zero as N increases, with the base value for power
assuming Vyoge = 0. If V04 1s grounded, there will be p,p N uniformly distributed
voltages [-V, V] across resistors with average conductance g,,../2. This yields the base
power of 1/6 y? Zmax Per resistor and total power

Pneuron(B) = 1/6 VzgmaxpvpgN (25)

We will designate the base power with the superscript ® and use it in subsequent
discussion of higher level functions. However, we have numerically computed the small-
scale correction. Given that the v’s and g’s in Figure 21 have well-defined distributions,
the average heat produced by the resistors in Figure 7 can be computed as

Pneuron = Psimulate(pvpg]v: (pv‘pvpg)]\/) Vzgmax pvpgN (26)

where Pgipmuiae(M, Z) 1s the result of a numerical computation. The authors wrote a
computer program that rolls uniformly distributed random numbers in the range [-1, 1]
for v’s and [0, 1] for g’s and computes the power dissipation as a function of the number
of uniformly-distributed drive voltages M = p,p,N and additional zero voltages due to
sparseness Z = (pg-p.pe)N and given V' = g,..« = 1. A graph of this function is illustrated in
Figure 6.

0.15 ~
/ ' — 750
0.1 Z is the number of | 740

j -
[«B]
E grounded signals 730
0.05 - 720
0 ‘ ‘ ‘ ‘ . |—Z10
0 10 20 30 40 50 |—Z0

pvpgN
Figure 23: Computation of average power Psimulate

The curve in Figure 23 is asymptotic to 1/6, with the interesting behavior on the left. The
lowest curve labeled Z0 is the power when all the applied voltages are uniformly
distributed in the range [-V, V] and there are no additional grounded signals applied due
to sparsity. This curve shows less average power due to V.4 shifting away from zero
towards the applied voltages and reducing power. The other curves labeled ZNN include
the addition of NN grounded signals applied due to sparse values in the voltage vector.
Tying V4. to additional grounds would be expected to reduce fluctuation in V.4 and
cause the curve to approach the asymptotic value more quickly — which is what is
observed.
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We must now establish a connection between operating speed and the Johnson-Nyquist
noise. We had previously assumed the circuitry would be limited to frequencies below £,
but fhas so far been just an algebraic symbol. We are now free to choose a specific value
for f for lowest energy per operation. The Nyquist sampling theorem states that the
maximum rate at which voltages could be applied to the rows would be 2f. This would
imply the limiting case of a clock period of 1/(2f). In this limiting case, the energy to
evaluate a neuron would be the power P, multiplied by the clock period.

The equation below is a rearrangement of terms from ( 25 ) above, divided 2f.

B) _ Pneuron(B) _ Vzgmax pvpgN

Eneuron - - ( 27 )
2f oo
Substituting ( 24 )
- DN
Enewron™ = 5 FL? peN In(1peror) %4/24 L ppuN In(1pemor)
1 (28)

The equation above is notable because V, g4, and f cancel out algebraically. The
equation is thus an implementation-independent representation of the minimum energy
Eneumn(B) as a function of the nature of the problem being solved and the thermodynamic
quantity kT.

There is redefinition of terms that may yield insight. Expressing Epeuon' ) from ( 28 ) in
terms of N, = p\N and N, = p,N the nonzero signals in the vectors,

® _ B2 L* N Ny In(1/\perror) KT

Eneuron ( 29 )
24 N

In conventional computer terminology, the system will perform p,p,N multiply

operations. The energy per operation will be E,euron> divided by PPN

Energy/op = 1/24 8% L* Ny In(1/perror) kKT (30)

Which tells us the energy per equivalent multiply operation is proportional to the number
of nonzero elements in a column of the weight matrix. In subjective terms, this means the
cost of a multiply depends on how many similarly computed products might be added up
afterwards.

Further note the implication to software-based Artificial Neural Networks (ANNs), such
as Deep Learning. As mentioned above, Deep Learning typically does not assume any
sort of sparse coding or gain £. This would imply = p, = p, = 1 and the energy per
neural evaluation would be

Eneuron—Deep—Learning—equivalent(B) = 1/24 L2 N 2 ll’l(l/ perror) kT ( 31 )
The above expressions are for a dot product. If we multiply by M, which is the number of

output neurons, we get the energy of an N x M vector-matrix multiply, as may occur in
software-based methods such as Deep Learning.
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Evn® = 1/24 BL* N> M In(1/perror) KT, (32)

where E,,,, 1s the energy of a vector-matrix multiply.
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Appendix Il: Memristor data

While using the same 9.6 million sample data set, the software portion of the experiment
was run for pulse sizes of 1.5v, 1.8v, 2v, 2.5v, 3v, 3.5v, 4v, 4.5v. The plots are include
below.
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Figure 24: Memristor resistance change test due to a -1.5v pulse
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Figure 25: Memristor resistance change test due to a -1.8v pulse
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Figure 29: Memristor resistance change test due to a -3.5v pulse

57/74



Ry post fixed pulse

resistance
8000 Pulse filter: -4v to -4.1v -6
7000 -4
6000 N -
5000
-0
_Color is history; specifically
the magnitude of pulse 2
immediately preceding the
measurement of R,. Scale = 4
L L L I L L oY
2000 3000 4000 5000 6000 7000 8000
R post random pulse resistance
Figure 30: Memristor resistance change test due to a -4v pulse
R, post fixed pulse
resistance
8000 Pulse filter: -4.5v to -4.6v -6
7000 -4
-2
-0
Color is history; specifically
the magnitude of pulse 2
immediately preceding the
measurement of R,. Scale = 4
L L M

-'.'J:.. _':J’."f _.l._
3000 400 5000 600 7000 800
Ry post random pulse resistance
Figure 31: Memristor resistance change test due to a -4.5v pulse

2000

58/74



Appendix lll: Analog delta learning rule

Many learning methods have been proposed for memristor and other analog synapse
types, but idealized devices are sufficient for this document.

We use natural memristor behavior to implement the delta learning rule [cite] in analog
and on an entire array at a time. The delta learning rule is significant because it is the core
of several neural learning algorithms, including back propagation. The delta rule
essentially performs in-place addition of the outer product of two vectors to a weight
matrix. Specifically, for matrix W, two vectors r and ¢, and a rate constant ¢, the delta
rule computes 3; Wy += a r; c. We developed a system where the weight matrix W is
defined by the memristor conductances in an array such as shown in Figure 3B. The delta
rule update uses four applications of voltages simultaneously to all the rows and columns
of the matrix. Each application scales and shifts the voltages differently.

The initial insight is to use the memristor property of exponential resistance change as a
function of voltage as a way to change multiplication into addition. The general rule of
thumb is that dWj/dt of a memristor is exponential in the applied voltage. Furthermore,
the voltage applied to a memristor is the difference in voltage between the row and
column wires. An array such as in Figure 3B thus generally performs an analog voltage
subtraction between the voltage on the row wire and the voltage on the column wire (or
vice versa), applying the difference in voltage to the device at the cross point. If the
columns are driven with log r; and the columns with -log ¢y, the voltage applied to each
memristor (in parallel) will be log r; + log . The resistance rate of change will be the
exponential of this voltage dWj/dt = exp(log r; + log cx) = rjck. The insight above is a
good start, but there are a number of issues before we can claim complete execution of J;,
k W/}'k +=a Vi Ck.

While the memristor learning rate may be exponential in voltage, it is not an unadorned
exponential function. This description assumes only a locally exponential behavior for
positive and negative applied voltage, but that the specific exponential functions are
shifted and scaled differently on the positive and negative sides. We assume dR/d¢ = -¢
b for positive applied voltages and dR/df = e """ for negative applied voltages, as
illustrated in Figure 3B. We further assume the system will be engineered to have a
maximum positive or negative rate of change, and that these maxima are the places for
which the exponential approximation is defined.
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(row<0; col > 0; assume r>0; c>0)

M — aavib e a’ (-row) +a’ col + b’

dt

(row>0; col < 0; assume r>0; ¢<0)

M = e av+b:_earow+a(-col)+b

dt

Now let row = log(r)/a
col =-(B +log (-¢))/a

Now let row = -log(r)/a’
col=(B’ +logc)a’

_ o logr+loge+B +b b’ logr+log(-c)+B+b b

B+ B+
€ =rce =-C =rce

Figure 32: Delta learning rule

As illustrated by the algebra on the bottom of Figure 32, it is possible to scale voltages so
resistance will rise or fall based on the analog multiplication of signals on the rows and
columns. However, it is necessary to scale the voltages to match the a or a’ parameter of
the memristor. The circuit actually computes (r¢)* (multiplication and then raising the
product to a power x), but proper scaling of voltage causes x=1 and the result to be a
simple multiplication.
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The engineer should choose offset voltages B and B’ so the circuit meets requirements for
maximum positive and negative rate of resistance change. The engineer will know
memristor parameters b and b’ and the maximum engineered values of 7 and ¢, so B and
B’ can be found.

The voltages described in Figure 32 can be applied to all rows and columns at once with
a useful result, although this point depends on a property we will call here the “short
range condition.” Figure 32 contains two descriptions of dynamic behavior (lower left
and lower right) which apply to mutually exclusive conditions >0, ¢>0 and >0, ¢<0.
The short range condition implies that no resistance change occurs when one of these
voltage scenarios is applied without the conditions being met. The inputs to the delta
learning rule (r and c) will each have a range defined. The procedure described linearly
transforms » and ¢ and applies their difference to each memristor, which means the
voltage applied to each memristor will also have a range that can be computed. The
paragraph above further specifies that the engineer should pick B and B’ so one end of the
range meets the engineered point for maximum resistance change. If the short range
condition is met, the memristors will see a voltage range like the ones illustrated by the
yellow arrows in the middle of Figure 32. The condition is that one end of each range
meets an engineered maximum voltage but the range is short enough that the other end
falls short of a voltage where the memristor starts to program in the opposite direction. If
the short range condition is met, the portion of the voltage range that does not meet the
conditions (>0, >0, etc.) will fall onto a region of the memristor curve that does not
cause significant resistance change. If this is true, it will be possible to create a protocol
involving application of multiple voltages where the steps in the protocol do not interfere
with each other.

The short range condition illustrated by the yellow arrows of Figure 32 seems to apply to
all memristors in our experience, but we cannot guarantee it is always true. If the
memristor dR/d¢ curve is “steeper than an exponential” in voltage, the yellow arrows will
tend to be shorter. It would seem prudent for readers to revisit this question upon
encountering memristors with new behavior.

The equations at the bottom of Figure 32 only have two (>0, ¢>0 and >0, ¢<0) of the
required four voltage applications, with <0, ¢<0 and <0, ¢>0 missing. It is left as an
exercise to the reader to develop equations like the ones on the bottom of Figure 32 but
with signs flipped to meet new conditions. However, the author will point out here that
these additional conditions could be met by setting » € -r and ¢ € -c and then applying
the same equations (presuming » and ¢ have a defined range symmetric about the origin.)

The complete protocol is in Table 3.
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Table 3: Delta rule protocol.

Phase Condition Row voltage Column voltage
addressed

1 r>0; <0 LOG r/a -(B+ LOG (-¢))/a

2 r<0; >0 LOG(-r)/a -(B+ LOG c)/a

3 r>0; ¢>0 -LOG r/a’ (B> +LOG o)a’

4 r<0;c<0 -LOG(-r)/a’ (B’ +LOG (-o))/a’

Note: LOG(x) function is equivalent to log(x) in an operating range (of say 1-5v) but zero
elsewhere, including zero for all negative values.

There are several other issues or approximations that have not been dealt with in the
discussion above. However, the discussion is just to justify the architecture. The issues

arc:

Memristors have resistance change noise.
No memristor curves are truly exponential, and it is unknown if the exponential

approximation is good enough.

The memristor programming rate dR/d¢ depends on R. However, as R is restricted
to a narrower and narrower range, the dependence of R drops.
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Appendix IV: Non-interrogatable logic

This appendix describes a new implementation of tamper-resistant logic circuits that can
perform functions but which are resistant to revealing their function by interrogation of
the device.

An encryptor is an example application for such a circuit. A non-interrogatable encryptor
would readily encrypt by using key built into its circuit but would resist revealing the
specific encryption algorithm and hence the key by interrogation of the device.

The method used is based on a novel use of artificial neural network technology. While
high-level cognition from artificial neural networks is a research topic, artificial neural
networks have little difficulty being programmed into systems with the sophistication of a
half-dozen logic gates. However, figuring out which half-dozen logic gates a specific
artificial neural network is implementing is difficult by physical analysis.

If an encryptor (for example) were implemented as a network of these small
non-interrogatable circuits, reverse engineering of the encryptor would just show it to be
a circuit of many gates. The reverse engineer would not know which gates were AND,
OR, or some other gate type and hence would have too little information to figure out the
encryption function and hence the key.

The method is illustrated in this paper with TiO, memristors. In these devices, a large
electrical current will change the thickness of a tunnel barrier by a few angstroms. This
small change varies the resistance of the device to a smaller sensing current and can
represent the synapse weight in an artificial neural network. However, the synapse
weights would be difficult to image microscopically or read it out in other ways.

The method should be scalable to more cognitively sophisticated functions. This may be

a future growth path, but is not essential to basic use of the function. It is well known
today how to make artificial neural networks learn behavior equivalent to less than some
number of logic gates. This maximum number is expected to rise with advancing
technology. At some point, the circuits would become "cognitive" as traditionally defined.
This document does not address the issue of cognitive function, but should be able to
make a secure implementation of cognitive functions if they are created by other means.

Non-interrogatable functions

The basis of non-interrogatability is illustrated in Figure 33. A logic designer will
recognize the general pattern of the circuit on the left as an Arithmetic and Logic Unit
(ALU), but to actually figure out whether the circuit will add, subtract, perform logical
AND or OR requires analyzing the exact wiring pattern and gate types.
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Figure 33: Basis of non-interrogatability

The right of Figure 33 shows a way to make the ALU non-interrogatable. A gray polygon
has been placed over groups of up to 8 gates. Imagine that each gray polygon contains an
artificial neural network that implements a function equivalent to the gates on the left.
Provided that we can create a neural network that emulates 8 gates, we can obviously
create a tiling of any logic circuit.

The function of the right part of Figure 33 is harder to identify. While a logic designer
could trace the interconnections between the polygons and might identify the right of
Figure 33 as an ALU, identifying whether the ALU is adding or subtracting at a given
time would require information from within the polygons. As will be further described
below, the function of an artificial neural network is difficult to discern by observation.

Creation of the circuit on the right of Figure 33 must be considered as well. The problem
can be seen by analogy to Field Programmable Gate Arrays (FPGAs). An FPGA chains
the equivalent of the polygons (which are called Look Up Tables or LUTs by analogy)
together into a configuration shift register. An external memory feeds the register and
loads the circuit identity into each LUT. The FPGA shift register can be used to unload
the function as well, providing a means of discerning the function. The remedy in for a
non-interrogatable circuit is to give each polygon its circuit identity with a "write only"
capability and where there is simply no electrical circuitry provided that can read out the
circuit identity.

One implementation is illustrated in Figure 34, where each polygon obtains its circuit

identity by an automatic learning process. The idea here is that the synapses in each
polygon are initially unprogrammed. The polygon is sent training vectors during a
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programming phase and is sets the synapses to learn the proper behavior. Once this phase
is complete, the circuit identity is in synapse weights.

Training

vectors

Synapse array — q
polygon per
— previous figure
q Outputs

Training vectors are never stored in the synapse array. Instead, the difference
between the learned output and the training vectors is computed with XOR
gates and serves as a stimulus to change synapse weights. Therefore, the path
from the circuit output to the training vectors would require going backwards
thorough a gate

Inputs

Figure 34: Programming a synapse array without a readout path.

The obvious way to identify the function programmed into Figure 34 would be to unload
the training vectors. However, the training vectors are applied at the factory and they are
transient voltage signals. Once the programming phase completes, the training vectors
will only be present indirectly through synapse weights.

A second way to get circuit function would be to monitor the outputs during operation
and deduce the operation of the circuit from the learned behavior. After all, each output
shares an XOR gate with a wire going to the source of training vectors. The XOR gate is
pointed in the wrong direction, forming a basis for security.

Application-level security

We propose a security paradigm based on protected "black-box" functions, and illustrated
in Figure 35. A black box in the general English usage is defined as a function that can be
evaluated and accessed through its inputs and outputs, but whose internal structure and
operation are hidden. We propose a black-box function whose function is determined by
the synapse weights in an artificial neural network like Figure 34 and occupying a portion
of a CMOS chip. A collection of neural networks could duplicate any logic function like
Figure 33, but it would be difficult for reverse engineering to figure out the function
based on analysis of the synapses However, it would still be possible to deduce the
function by analysis of input/output behavior. We will give two examples of black-box
functions for illustration. One is a black box that encrypts with a specific key (there is an
obvious but incorrect interpretation of this statement, so this will be clarified in the next
paragraph) and the other is a complex circuit for dynamic control of a robot.
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Memristors are layered onto a portion of a CMOS chip. The memristors
implement a function that can be used but is difficult to reverse engineer through
physical access.

Figure 35: Security and implementation paradigm.

There is an obvious but incorrect interpretation of the encryption example, so we will
explain. Typically, an encryption function is defined as ciphertext = encrypt(key,
plaintext). While it would be possible to make a black box implementation of the encrypt
function, the sensitive information is really the key not the algorithm. If the key is outside
the black box, it is not protected. So, we are suggesting black-box implementation of a
key-specific encryption algorithm defined as ciphertext = encrypt*® (plaintext). The
encrypt™ function is a special function that encrypts with only a specific key. It
incorporates the key into the implementation of the encryption algorithm by replacing the
variable key with constants and optimizing the implementation. This essentially encodes
each bit of the key into a gate by selecting the gate's function to be AND or OR. If
encrypt™ is in a protected black box, there is no key stored separately to find. We do not
propose protection of encryptkey from reverse engineering by observing its external
behavior; encryption algorithms are specifically designed to be secure against that type of
attack.

The second example is the protection of a complex system from reverse engineering. The
idea here is that the substantial resources are invested in electronic designs. While the
basic algorithms are not nearly as sensitive as an encryption key, original designers
would like copying to be as difficult as possible. In this example, we propose that the
expensive intellectual property investment be put in the synapse weights and protected as
a black-box function. Reverse engineering will not be able to simply "read out" the
function but would instead have to reverse engineer by observing the behavior of the
system. However, reverse engineering by observing the behavior is nearly as expensive
as developing the function from scratch.
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Memristors and physical security

Memristors are an emerging new device that can be added to CMOS chips in order to
bolster both function and security. Industry is in a race to try and commercialize hybrid
memristor-CMOS chips as new "redox memories" for memory markets like flash drives
and Solid State Disks (SSDs). There has also been research on the use of memristors for
logic, such as Field Programmable Gate Array (FPGA) replacements and artificial neural
network circuits.

It is hard to determine memristor device state physically, particularly in 3-D layered
structures. Reverse engineering programmable memristor logic would thus require
accurate determination of analog state from memristors. We discuss in this document a
sequence of security features that create a "black box" function using memristors, or a
function that could be used just like logic on a chip but where it would be very difficult to
determine the design of the function.

Overview of security features
The basic sequence of the exposition in this paper is as follows:

1. Memristors encode Os, 1s, or analog values in their changeable resistance, but
they are encoded in a very subtle physical form. The state of a memristor is so
subtle physically that is troublesome to research scientists trying to get the devices
to work in the first place and may pose a significant problem for reverse
engineering.

2. Memristor-based programmable logic is feasible; it will have its function encoded
in the memristor values, rather than the structure of the chip. This offers
flexibility like FPGAs. This also means reverse engineering process must
determine the state of the memristors otherwise they will end up with just the
equivalent of the schematic of an unprogrammed FPGA.

3. Since memristors do not require any crystalline materials (as transistors do), they
can be grown in multiple layers on a chip. This bolsters density, but determining
the values programmed into the memristors will require characterizing and
removing the outer layers without changing the programming in the middle layers.
This raises difficulty.

4. Memristor logic chips are likely to be manufactured with flaws, just like today's
memory chips. In programming memristor logic chips, slightly flawed chips will
be programmed to avoid the unique pattern of flaws on each chip. This means
every chip will be different. This will bolster manufacturing yield, but it also
means reverse engineering will have to be performed on just one instance of a
chip. Flaws can also serve as the basis of a trust anchor; more below.

5. Memristors also have an irreversible short circuit state. Besides the items above, a

memristor could be coupled to an active tamper detection system that shorts some
or all or the memristors when intrusion is detected. Memristor shorts seem to have
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a substantial advantage over e. g. erasing cells in a flash memory. To erase a flash
memory requires repeatedly writing zeros and ones to the same cell, a process that
takes considerably longer than just writing a value one time. In contrast, shorting
a memristor requires no exceptional voltages and a write time perhaps just
nanoseconds longer than just writing data. In addition to the shorted state
destroying that memristor's state, the shorted memristors will make the values of
other memristors more difficult to reverse engineer due to the interconnected
nature of memristors on the crossbar. Shorts can also serve as the basis of a trust
anchor; more in the next item.

Both flawed and shorted memristors can be the basis of forming a unique ID for a
chip that cannot be unprogrammed, also called a trust anchor. The multilayer
nature of memristor chips could make the unique ID difficult to extract, further
bolstering its security.

Memristors are always willing to learn, and this could become the basis of a
security feature. A black box can be characterized by observing the output when
all possible stimuli are applied (a method that does not require physical
tampering). An example is cracking a password by applying all possible
passwords and seeing which one works. However, memristor circuits will learn
during operation whether we want them to or not. It is possible to create a circuit
where applying huge numbers of test vectors as is done in an exhaustive search
would cause the circuit to learn the tests and forget the intended behavior.

Some proposed memristor logic chips (specifically the artificial neural networks),
use memristors as resistors programmable to a continuum of values rather than
just on and off. This can be a security feature. Reverse engineering becomes more
difficult as the resistance values need to be obtained to tighter variances, like 1%
or .1 %. The technical basis of the security feature is as follows: Neural network
chips depend on ratios of resistances rather than absolute resistances. This makes
neural chips tolerant of process variations, temperature variations, etc., which is a
benefit. However, the reverse engineering process will need to characterize
resistance ratios to a specific overall degree of precision otherwise the function
will not be identified correctly. The security feature is to design and build the
memristor crossbars so that the trauma inherent in reverse engineering will alter
resistance values so much that the function cannot be identified.

The design freedom offered by the new memristor component permits the series of tricks
outlined above. While the tricks may not be new or unique, we believe the collective
value of these tricks could be quite large.

Memristor operation

The relevant operation of a memristor device is shown in Figure 36. The devices are
grown at the crosspoints of a nanowire array for all the architectures under consideration.
For applied voltages under around 1 volt, each memristor is characterized by a resistance
in the range of 1M-1K ohm. Memristors can be programmed by applying more than
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around 1 volt; a voltage in one direction increases the resistance and in the other direction
the resistance decreases.

Off state: On state: Shorted state:

e. g. 1.2 nm
T105 insulator

e. g 1.8 nm
TiO, insulator

O depleted TiO;
conductor

Diagram
Unclassified

Y -direction
nanowire

The memristor shown in read and green is in the junction of two nanowires and
nominally comprises oxygen-depleted TiO,, which is a conductor. A layer
comprised of insulating TiO, of e. g. 1.2-1.8 nanometers is thin enough for
tunneling and produces effective resistances of 1M ohms (left) to 1K ohms
(center) in typical circuits. By applying 1-3 volts, a voltage gradient of a
gigavolts per meter is created across the insulating material, which causes the
boundary to move (left to center or back). If the insulator thickness is reduced to
the pointwhere it disappears, the junction shorts. When the insulator disappears,
there is no longer a layer to create the large field to move the oxygen vacancies,
so a short is irreversible

Figure 36: Memristor operation for TiO,.

The basic nature of the device has security implications for attempts to read out the state
physically. Other memory technologies (e. g. phase change memory) have a cell where
the state of all the material is different (e. g. crystalline or amorphous) between the 0 and
1 states. However, the change in the memristor cell is an e. g. 6 angstrom change in the
thickness of the non-depleted layer (Picken, 2009), which is merely a stoichiometry
change caused by movement of just a handful of atoms. The fact that states are
differentiated by such a small physical difference confounds the physical science
researchers that are trying to engineer the systems and would confound reverse
engineering (Guanglei Cheng, 2010).

Notably, the memristors can be put into an irreversible shorted configuration. A shorted

memristor has resistance of e. g. 200 ohms, which is substantially below the lowest on
state resistance. The shorted state could have security value, as will be explained later.

69/74



Naturally booby-trapped 3-D layered structure

The use of 3-D layering has obvious advantages in terms of density, but it will also make
it more difficult to read memristor states physically. Due to the fact that memristor layers
can be applied through Molecular Beam Epitaxy (MBE) and other surface deposition
methods rather than requiring a crystalline layer, it is straightforward to make a handful
of layers. See Figure 37. If reverse engineering of memristor chips is to be successful, it
will need information from all the layers. It is of course possible to remove layers, cut
holes in layers to access lower ones, etc. However, the layers that have to be removed
will have information as well. Memristor outer layers are thus a booby trapped protection
of the inner layers because destroying the protection destroys some of the information
needed.

Probe, FIB,

Have to blast through an
information-bearing layer
to get to other layers

emristors

CMOS base chip with transistors to
drive and sense the memristor array

The information needed for effectively duplicating function is in multiple
layers. To get to inside layers will require blasting through outer layers.
However, the outer layers contain information also relevant to reverse
engineering.

Figure 37: Multi-layer memristor security advantage.

The multi-layer structure would be particularly effective against reverse engineering
where only one copy of a chip is available, and we will see below how to enhance the
probability of that occurring. With only one copy of a chip, the reverse engineer would
need to fully characterize and remove layers one at a time for access to the ones below.
This would have to be done gently enough that the information in lower layers would not
be corrupted.

Manufacturing variability and security

Programmable logic has well-known advantages for manufacturing yield, but this type of
logic could yield security advantages as well. The best known use of soft programmable
logic is to increase the manufacturing yield for memories. Most large memories are
constructed with spare rows and columns. During the manufacturing test process, a fully
functional memory is created by using fuses (or a related technology) to substitute spare
rows or columns for others that had manufacturing defects. As a result, the layout of the
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actual data in memory chips in PCs, notebooks, etc. is different on a chip-to-chip basis.
This is a factor to consider when using memory imprints to identify the past contents of
memories.

Soft-logic memristor circuits could use a similar concept for a security advantage. It is a
great convenience for reverse engineering to have a supply of identical systems to work
on. This permits destructive processes to be used, because the destroyed chip can be
replaced with another. If every circuit is different, the reverse engineer will be limited to
gentle processes. This leverages the protection illustrated in Figure 37.

Analog properties and security

Artificial neural networks typically have analog synapses, which would be
implemented by memristors used in an analog programmable resistor. The fact that the
memristors are analog would further confound the reverse engineering process.

Neural networks are fault tolerant — to an extent, and we can exploit both the fault
tolerance and the limits of the fault tolerance. Neural networks rely on forming weighted
sums of neuron outputs to form the inputs to the next layer of neurons. In that model, the
weights are analog values representable with e. g. 100 levels of coupling strength. The
number of levels is controllable to some extent during the engineering of the circuit.
During engineering of the overall neural network circuit, the system can be over
provisioned so that a few missing synapses will not make the circuit stop working. The
circuit can also be made tolerant of systematic shifts in neurons, such as might be caused
by a change in temperature. These are advantages to a neural network that will serve to
bolster reliability and manufacturing yield.

However, a given neural network system will require that ratios of neuron resistances
stay fixed within some specific tolerance. If a reverse engineering process cannot meet
the required level of fidelity on a large scale, a replacement circuit will not function. This
consideration invokes the issues in Figure 37 again: In chopping apart the circuit in
Figure 37, we not only have to avoid destroying the binary values of memristors in the
inner layers, but we have to avoid changing their analog resistance by e.g. 1%.
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