

An Optimization Algorithm for Space Mission Design

Dynamically Simulating Energy-Efficient Trajectories

Erika DeBenedictis

May 14, 2008

2

Table of Contents

1. Executive Summary ... 4

1.1 Introduction .. 4

1.2 Problem Statement .. 4

1.3 Novel Method ... 4

1.4 Results .. 5

2. Research ... 6

2.1 Astrophysics ... 6

2.1.1 Elastic Collisions ... 6

2.1.2 Frames of Reference .. 7

2.1.3 Two Massive Body System .. 7

2.1.4 Lagrange Points ... 10

2.1.5 L1, L2, and L3 ... 11

2.1.6 L4 and L5 ... 11

2.1.7 Forbidden Region for a Specified Energy .. 11

2.2 Mathematical Elements .. 12

2.2.1 Jacobi Integral .. 12

2.2.2 N-Body Problem .. 13

2.2.3 Lagrange Points Move Chaotically .. 13

2.2.4 Computing Accurate Planet Positions on an Ellipse .. 14

2.2.5 Integration Methods ... 14

2.2.6 Simulation Accuracy .. 15

2.3 Existing Methods .. 16

2.3.1 Invariant manifolds .. 16

2.3.2 Heteroclinic Connections ... 16

2.3.3 Finding Heteroclinic Connections.. 17

2.3.4 Using a Poincare Map to Find the Intersection of Invariant Manifolds 17

2.3.5 Applications of Low-Energy Paths .. 18

3. Novel Method for Finding Spacecraft Trajectories .. 19

3.1 Itinerary-Based Optimization ... 19

3.2 Part I- Launch From Earth to a L1 Lyapunov Orbit ... 21

3.3 Part II- Finding Heteroclinic Connections .. 22

3.3.1 Using Jacobi Integral to Set Lyapunov Orbit ... 22

3.3.2 Using Itineraries to find Heteroclinic Connections .. 23

3.4 Part III- Transfer From L2 Lyapunov Orbit to Planet .. 24

3.5 Effect of Spacecraft Energy .. 26

4. Computation Structure Analysis .. 28

4.1 Program Structure ... 28

4.1.1 Region Method Program Structure .. 30

4.1.2 Itinerary Method Program Structure .. 31

4.2 Parallel Code Analysis .. 32

4.3 Algorithm Analysis ... 32

5. Conclusion.. 34

6. Acknowledgements .. 35

3

7. Bibliography ... 36

8. Appendices ... 37

8.1 Mathematica Equations .. 37

4

1. Executive Summary

1.1 Introduction

To navigate the solar system effectively, the gravity and movement of planetary bodies can be

used to boost a spacecraft’s speed and change the spacecraft’s position and velocity. Simulating these

interactions can reveal the optimal way to launch a spacecraft that minimizes fuel by maximizing the

effect of planets in lieu of propulsion.

This project focuses on the simulation and optimization of spacecraft trajectory as well as the

mathematical theory underlying this process. Its end goal, using the theory of low-energy orbits as a

mathematical basis, is to automatically construct trajectories that go from one planet to another with

minimal energy expenditure.

1.2 Problem Statement

How can complex low-energy spacecraft paths be automatically planned and efficiently

simulated?

1.3 Novel Method

In this project, a novel itinerary-based algorithm is developed to find spacecraft trajectories for

specified routes. To navigate in an area of space, spatial boundaries are established, and as a spacecraft

moves through the area without additional thrust, its route may be described by the order in which it

crosses these boundaries. The objective is to specify an itinerary of boundary crossings, and have the

computer automatically find the trajectory that satisfies the crossings.

Since the optimal launch conditions are unknown, the itinerary of boundary lines should be valid

for all potentially optimal paths. The objective of the simulation is to identify the optimal trajectory that

satisfies the itinerary.

Algorithm

Itinerary Trajectory

Objective:

5

In order to do this, the computer uses the boundary crossings to optimize the initial trajectories.

The program simulates the paths of several spacecraft as they are affected by the gravity of all the planets

in a 2D simulation and records the boundaries they cross. Then it uses this data to choose the path that

was closest to the desired boundary crossing order.

The ‘best’ path is used to optimize the initial conditions of all the spacecraft and simulate again.

This guided optimization is and effective method for finding paths with specified itinerary, and works for

complex non-elliptical orbits.

1.4 Results

The program utilizes multi-core processors for optimal performance. It has automatically planned

and simulated Lypanov orbits, heteroclinic connections, and Moon gravity assists, thereby escaping the

Earth’s orbit without any propulsion. Below shows the general plan for the trajectory that involves all of

these sections. The actual versions of these maneuvers may be found in Figures 14, 15, and 17.

Earth

Moon

Moon Flyby

Orbit Schematic Inter-

Planetary

Space

Lagrange Points

Refinement

Optimization:

Best

Rocket

6

2. Research

This section presents the concepts underlying orbit construction, focusing on gravity, planet-

spacecraft interaction, mathematical methods used in the project, and existing methods used to find

spacecraft trajectories. In researching these elements there were several sources that were especially

helpful and form the basis of this project, including “Dynamical Systems, the Three-Body Problem, and

Space Mission Design” by Koon, Lo, Marsden, and Ross.

2.1 Astrophysics

This section describes the forces a spacecraft experiences when moving through the solar system.

2.1.1 Elastic Collisions

The ‘slingshot’ interactions between a spacecraft and a planet rely on the movement of the two

objects, rather than the planet’s gravity, can be described as elastic collisions. In elastic collisions, both

momentum and kinetic energy are conserved. In contrast, some kinetic energy is converted into another

form of energy during an elastic collision. Should a spacecraft actually crash into a planet, its velocity

would be converted to heat energy, it would be considered an inelastic collision. However, we are usually

dealing with ‘slingshots,’ where the spacecraft never touches the planet, and there is no energy

conversion.

We consider a spacecraft of mass �, initial velocity ���, final velocity ���, and a planet of mass

�, initial velocity ���, and final velocity ���. Conservation of momentum tells us

���� ����� 	 ���� �����. (1)

Conservation of Kinetic Energy says �
������ � �

������ 	 �
������ � �

������ . (2)

Rearranging (1) we get �
��� � ���� 	 �
��� � ����. (3)

From (2) we have ����� ������ 	 ����� �������

����� � ���� � 	 ����� � ���� �

���� � ������� � ���� 	 ���� � ������� � ����.

Because of (3) we can cancel, and find that

��� � ���� 	 ��� � ����. (4)

Using equations (3) and (4) we can solve for the spacecraft’s final velocity, ���
 ����� ����� 	 ����� �����

 ���� ����� 	 ���� ����� ���� ������ ����� ����� = 2���� ���
� � ��� � ���
� ��� = 2����
 ��� 	 ���������
������

���� (5)

Similarly, we can solve for the planet’s final velocity, ���
 ���� ����� 	 ���� �����
 ���� ����� 	 ���� �����
2���� 	 ���� ������ ����� �����
2���� 	 ���
� ��� � ���
� ���
 ��� 	 ���������
������

���� (6)

Assuming that � is much larger than �, or that � � �, ��� � ���� � ��� (7)

7

 ��� � ��� (8)

In other words, the planet’s velocity is not affected by the spacecraft, while the spacecraft now has twice

the planet’s velocity.

We can now apply these equations to find the velocity gains for general spacecraft and planet

interactions.

First we will consider when the planet and the spacecraft are moving toward each other. Notice

the negative sign on the spacecraft’s velocity accounts for its direction. We can use the equations to find

the velocity of the spacecraft after the collision, which is substantially higher, as it is largely dominated

by twice the planet’s velocity. This is an example of a slingshot maneuver that would be especially

advantageous for gaining velocity.

Now we look at what happens the bodies are traveling in the same direction:

Elastic collisions in two dimensions are essentially the same. Conservation of kinetic energy deals

with a scalar, it is unnecessary to include the angle. However, we must change our Conservation of

momentum equation to ���� ��� �! ����� ��� �! 	 ���� ��� �" ����� ��� �". (9)

The solution to this equation is much more complicated, but essentially the same as its one-

dimensional counterpart.

2.1.2 Frames of Reference

When dealing with systems where there are multiple moving objects it quickly becomes difficult

to understand relative movement by looking at absolute movement. In many cases, both mathematically

and graphically, we choose a synodic system. In a synodic system, we choose two objects we want to

appear stationary, and then only look at the other objects’ movement relative to our chosen objects. For

example, when we think of a rocket leaving Earth to go to the Moon we would make the Earth and Moon

appear stationary (rotating with them), while watching the rocket’s progress toward the moon. If we

looked at each objects movement around the sun it would be very difficult to gauge the rocket’s progress

toward the moon. In the same way, mathematically, we often choose a synodic frame of reference in order

to simplify equations.

Another useful convention for a system with two massive bodies is to put the center of mass at

the middle. This is called the center of mass, or CM, frame. This helps reduce many equations, especially

those involving momentum, helping to further simplify our calculations. The combination of synodic and

CM is another frequently used frame.

2.1.3 Two Massive Body System

In a two massive body system we can describe the potential energy as a combination of the

gravitational potential energy from both bodies and the centripetal speed.

M
vib m

via

M
m vfb

��� � ��!# � ��$

M m
vib -via

M
m vfb

��� � ��!# � ��$

8

We consider a synodic CM system with total mass m+M units and two bodies. The larger body

with mass M, is fixed at (-m,0) and the smaller mass m is fixed at (M,0), making the center of mass at the

origin. A spacecraft of negligable mass at position (x,y). For the purposes of the example, we make M=99

and m=1, so the total mass is 100. We can describe the gravitational force on the spacecraft from each

planet with

%&' 	 (()*

���+���,�+

�)*

((�+���,�, where G=6.67*10

-11

And the centripetal force as

 -. 	 +��,�
� .

These equations can be combined and plotted using Mathematica. Exact commands used for each graph

may be found under the title of the graph in the Appendix “Mathematica Equations.” Figure 1 is a graph

of total potential energy, calculated as shown.

Two areas of interest are the two red colored depressions on the sides of the central body’s

potential energy hill. By ignoring all the values we can isolate these areas and view them separately.

Figure 2 shows these two areas, from the perspective of looking up at the bottom of the previous graph.

These two areas are where the least amount of potential energy is acting on an object at that point. We

will see later that they are also the location of two Lagrange points, and that objects tend to collect here.

M m

Figure 1: Potential Energy

Synodic, CM system. The larger body is in the middle,

while the smaller body is at the top of the spike on the

right.

9

One of the challenges in launching any spacecraft is escaping the Earth’s gravity well. Figure 3 is

an inverted and rotated version of Figure 1, showing how much energy a spacecraft would need to escape

the gravity well of Earth.

Figure 4 shows the very top portion of Figure 3, the bright pink ring. This enlargement shows the

benefit of going past the moon on the way out of the system, as the moon’s placement causes a depression

in the total amount of energy needed to get out of Earth’s gravity well.

Figure 3: Gravity Wells in a 2-Body System

Synodic, CM system. The graph intuitively shows

what a spacecraft must do that exits the system. It

expends energy climbing out of earth’s gravity

well.

m
M

Figure 2: Lowest Potential Energy Depressions

Synodic, CM system. This graph shows the very bottom

of the previous graph. The larger body is at the center,

and the smaller body is in the break in the graph on the

far side.

M

m

10

2.1.4 Lagrange Points

The potential energy maps of the two-body system are extremely important because they later

become the basis for calculating low-energy paths. Lagrange points are where all the forces balance, and

therefore there is no acceleration on an object at that point. These points have several unique properties,

and become the basis for interplanetary space travel. Figure 5 shows the locations of Lagrange points.

Figure 5: Lagrange Points

Synodic, CM system. Positions of L1-5

/�0�
/�0�

L1 L2

L4

L5

L3

m

Figure 4: Moon’s Effect on Decreased Energy to

Leave System

Synodic, CM system. This graph shows the energy

needed to overcome the gravity of both planets. As

shown, the energy needed near the moon is least.

M

m

11

Below, we look at the positions and properties of all the five Lagrange points, notated by L and a

number, in a two-body system.

2.1.5 L1, L2, and L3

The first three Lagrange points are located on the line between the two massive bodies. L1 is the

most intuitive point: it lies between � and � such that the gravity from each body cancels. Usually, an

object orbiting � that is closer than � would have an orbital period that is shorter than �, however, ��
exerts enough force to lengthen the period of the object’s orbit and allow it to rotate at the same speed as ��.

Similarly, L2 is on the far side of � the same distance away as L1. In this case, �‘s force is

pulling the object along with it, shortening the orbital period to sync with �‘s.

L3 lies on the far side of � and is a result of both bodies pulling on the point so that it rotates at

the same speed as �.

If � is much smaller than ��, we can approximate the distance, 1, between � and L1 and L2 by

the equation

1 � 2) 3 �
4�

5

Where 2 is the distance between�� and �, in our previous example, 100.

Although L3 is not frequently used in orbit planning, L1 and L2 are the primary players in

leaving one two-body system to get to another, mostly because of their proximity to the smaller body. As

we saw before, the area around the smaller body has a reduced energy requirement to pass into the outer

region, putting L1 and L2 directly in the path of an exiting spacecraft.

More importantly, L1 and L2 are highly unstable. This means that the acceleration near these

points changes dramatically over very small distances. Therefore, a spacecraft with little fuel would do

well to burn its engines at these points because the smallest change in distance has the greatest effect at an

unstable Lagrange point. The navigational benefits of these points as well as their proximity to a body that

will impart energy to the spacecraft make them perfect for designing low-energy interplanetary paths.

Despite the instability of L1 and L2, it is possible to find a path that circles around these points

known as a halo orbit. Since these points have no mass, a spacecraft in a halo orbit is not actually

‘orbiting’ the point, but rather using the instability of the space to find a very precise path that stays in the

vicinity of the point. The planer version of a halo orbit, which is used in this project, is known as a

Lyapunov orbit (Contopoulos, 2004). Lyapunov orbits are used extensively in orbit planning as a holding

orbit, one that allows the spacecraft to wait to resume its trip until the planets move into a more favorable

position. It is identifiable by its distinctive oval shape when shown in a synodic system.

2.1.6 L4 and L5

The last two Lagrange points in a two-body system, although not used in orbit planning, are

gravitationally interesting. They lie at the tips of equilateral triangles whose two other endpoints are at the

center of mass and the middle of �. They lie in the two ‘Potential Energy Depressions’ shown in Figure

2. L4 and L5 are unique because they are the only stable Lagrange points. Indeed, objects tend to collect

in these potential energy troughs, orbiting the point.

In our solar system, Jupiter’s L4 and L5 points are home to the Trojan asteroids. In general,

asteroids at L4 are named after Greeks and those at L5 are named after Trojans, accounting for almost all

the asteroids near Jupiter’s orbit. Other planets exhibit their own collections of moons, asteroids, or dust

clouds at their L4 and L5 points.

2.1.7 Forbidden Region for a Specified Energy

By studying potential energy maps, we can determine all the locations a spacecraft cannot get to

because it does not have enough energy. When we think of a spacecraft trying to leave earth’s gravity

well, we intuitively understand that if it does not have enough energy to get over the lip of the well it will

fall back down. This concept of falling back down can be applied to the solar system as a whole. We can

12

view the areas a spacecraft of a particular energy can attain by plotting a potential energy contour map, as

in Figure 6. The higher the contour, the more energy a spacecraft would need to be allowed in that region

of space.

Both the circular red regions are gravity wells. The more energy the spacecraft has, the more

boundary lines between contours it may cross. For example, a spacecraft with low energy might ‘fall

back’ when it reaches the light blue, while a more energetic spacecraft might attain the yellow region

before running out of energy. For this spacecraft, the black region in the picture represents space that it

cannot attain- the forbidden region for that amount of energy.

However, if all we need is for our spacecraft to be able to get to the outside red region it is not

even necessary to enter the green region. Since the moon lowers the energy requirement for exiting the

system, we can slip through with lower energy than would be needed to overcome earth’s entire gravity

well.

2.2 Mathematical Elements

2.2.1 Jacobi Integral

In a 3- body system (two massive bodies and a spacecraft), it is possible to relate position, speed,

and energy, allowing one to be found if the other two are known. This is known as the Jacobi Integral,

and is the only known general solution to the 3-body problem (Szebehely, 1967).

When the spacecraft exits Earth’s gravity well its velocity decreases while it’s potential

gravitational and centripetal energy increases, allowing its energy to remain constant. We use a familiar

system to express this relation. There are two bodies in this synodic CM system, the larger body with

mass �, at –�7 �� and the smaller with mass � at
�7 ��, making the center of mass at the origin. A

spacecraft of mass 1 at position
87 9� and with velocity 8: and 9: . 2 is the distance of the spacecraft from

the larger body, and ; is the distance from the smaller body. < is the mean motion, or� �=
>?@�A$B�CD?�>E. For

some constant energy, FG,

Figure 6: Energy Contour Plot

Synodic, CM system. Shows energy levels

required in various regions. The red areas are

gravity wells.

M

m

13

FG 	 <�
8� � 9�� � � H�I � �
? J �
8: � 9:�. (Szebehely, 1967)

In other words, the energy equals the centripetal energy, the gravitational energy, and the kinetic

energy.

Although it may not be immediately obvious how to use this, it is a powerful tool for constructing

low-energy routes because it allows positions to be evaluated for speed and vice versa.

For example: suppose we want to construct an orbit that will spiral onto an unstable Lagrange

point, and after an infinite amount of time, will come to rest on the point. Normally, this would be almost

impossible because we would have to guess and check different initial velocities and positions and then

simulate their paths for an infinite time. However, with the Jacobi integral, we can choose either a starting

position or a starting velocity, and then find the corresponding position or velocity that will result in the

spacecraft coming to rest exactly on the Lagrange point.

We can solve for the energy constant by using the fact that the velocity at the Lagrange point is

zero. Using the point’s position, distance from the objects, and zero velocity, we can find FG. Once we
know this constant, it is an easy matter to use our chosen start point’s characteristics to solve for velocity.

Although slightly more difficult, it is also possible to solve 2 and ; for 8 and 9, and then use a velocity to
find the corresponding position.

It is important to remember that the velocity described in the Jacobi integral is the velocity in the

synodic CM system, not the total velocity in space. When we solve for a velocity, it is therefore necessary

to add back on both the centripetal movement around the center of mass as well as the velocity of the

center of mass in the solar system.

2.2.2 N-Body Problem

Beyond the Jacobi integral, a solution to the 3-body problem, there are no further closed-form

solutions to problems involving more bodies. This necessitates the need for a timestep integration

method. When simulating the movement of a spacecraft, the computer must constantly re-calculate the

total acceleration the planets exert on the spacecraft. It also must calculate the force each of the planets

exerts on each of the other planets. This allows the planets and the rocket’s velocity to be correctly

updated as accurately as the timestep will allow.

The N-Body Problem makes a simulation necessary and one that is highly compute intensive. It

also renders all the elegant 3-body problem closed form solutions inaccurate, changing the actual

positions of Lagrange points, the shape of gravity maps, and the heteroclinic paths. Higher order

integration methods become useful to enhance the accuracy of the simulation.

2.2.3 Lagrange Points Move Chaotically

Since there are more than two planets in the solar system, points of zero acceleration in a two-

body system come under the influence of the gravity of every other planet. The effects of more planets

does not destroy points of zero acceleration, but it moves them. However, since the planets chaotically

interact with each other, the higher order coefficients, such as jerk, have value. This means that while it is

possible to find a point of zero acceleration, this point will be moving chaotically with the rest of the

planets.

For example, Figure 7 shows the effect extra planets have on Lagrange points. Their presence

deforms the gravity map, manifesting in asymmetrical spacecraft movement.

14

We notice that the spacecraft on the left do not fan out from the Lagrange point in a symmetrical

fashion. On the right, it is more apparent that they are centered on a potential energy saddle point, as their

movement fans out from the point.

Having a misplaced Lagrange point can disrupt energy-dependent calculations in many ways. If a

spacecraft is at a point where there should be zero acceleration, but where there is acceleration from other

planets, then the speed of the spacecraft will be initially changed. When the Lagrange point is adjusted for

the gravity of other planets the rest of the energy surface is deformed, but not shifted. This allows the

two-body system math to be used as an approximation.

Unfortunately, there is no solution for the chaotic movement of Lagrange points in a system with

more than 2 bodies, so approximation such as the one demonstrated in Figure 7 must suffice.

2.2.4 Computing Accurate Planet Positions on an Ellipse

Although it is possible to use an integration method to calculate the movement of the planets, this

does not yield a completely accurate result. In order to calculate the true position of the planets at a

particular real time it therefore becomes necessary to find an equation for their elliptical orbit.

Primarily, planet ellipse calculations take into account the semi-major axis of a planet’s orbit, or

it average distance from the body it orbits, as well as the eccentricity, which describes how pronounced

the ellipse shape is relative to a circle. Other elements and calculations account for the planet’s position in

its orbit at a start time and perturbations caused by other planets in their orbit.

For this project, the equations from Paul Schlyter’s “Computing Planetary Positions,” were used

in the program.

2.2.5 Integration Methods

The presence of more than two gravitational bodies in the solar system necessitates an

approximation of spacecraft movement. Integration methods calculate the changing acceleration (K�,
velocity (��, and position (8) of the spacecraft as it moves in time (L�. During such simulations, we

separate time into small timesteps, where the movement is calculated at each.

The order of the integration method describes its complexity as well as its accuracy. The basic

first-order approach we call Newton’s Method. In this approach, we calculate the acceleration on the

spacecraft at the beginning of the timestep and use this, along with the current velocity of the spacecraft

and its position to calculate the position and velocity at the end of the timestep with the basic equations

M8 	 ��L � �
�KL� and �� 	 �� � KL. However, if acceleration is changing rapidly with position (the

planets are moving) then this method gives inaccurate results with large timesteps. For the sake of

runtime, it is not favorable to run this calculation for every spacecraft every .1 simulated second or so, so

instead we try to come up with a more accurate calculation that will give more accuracy for longer time

periods.

This is accomplished by the Runge-Kutta Method, which evaluates the acceleration in the middle

of the timestep and using it to adjust the velocity mid timestep. The adjusted velocities are weighted into

Figure 7: Lagrange Point Correction

Synodic, CM system. Moon-centric with L1 on left. On the left are rockets set in a

circle around the Lagrange point as calculated in a two-body system. The rockets

on the right were set around the Lagrange point corrected for more bodies, making

their orbits more symmetrical.

15

the final movement. This creates a calculation of the form M8 	 MA
N
O� � �O� � �OP � OQ� Where ML is

the length of the timestep,��
L7 8� is the velocity at time t and position x, and O� 	 �
L7 8�
O� 	 �
L � ML

� 7 8 � ML
� O���

OP 	 �
L � ML
� 7 8 � ML

� O��
OQ 	 �
L � ML7 8 � MLOP�.

In the program, the velocity function also contains Runge-Kutta calculations of acceleration, so

this is coupled with a similar equation for M�, whose k terms are calculated with an K
L7 8� function. The
derivation of the coupled form of Runge-Kutta used in the program may be found at Hut, Makino, and

Heggie’s “Integration Algorithms: Exploring the Runge-Kutta Landscape,” section 5.2.

Although Runge-Kutta methods involve more calculations, they make up for this extra compute

time in accuracy. While the error of Newton’s Method is on the order of ML, with fourth-order Runge-
Kutta the error is on the order of MLQ.

2.2.6 Simulation Accuracy

One frequently asked question is “how accurate is the model?” or “have you compared this model

to other programs.” The program written for this project uses both Runge-Kutta integration and the

elliptical positions of a planet at a given time to make the simulation accurate and realistic. However,

since the orbits that are being planned here are unique (not everyone simulates spacecraft going 213m/s

on Jan 12, 2010) they are not directly compared to commercial software.

While it is important for the program to be realistic, it is not a perfectly accurate model of the

solar system for several reasons. Foremost, the simulation is 2D, meaning that some of the orbital

elements of the planets are not taken into account. Also, the moons of the planets as well as asteroids are

not included in the simulation. Although these elements are obviously crucial in actually launching a

spacecraft, their absence makes spacecraft paths much easier to research, and adding them back in would

not add complexity to the algorithm in a significant way.

Although each trajectory is not compared to an outside source, the maneuvers may be compared.

Koon, Lo, Marsden, and Ross found a method of transferring to the Moon that uses less energy than the

normal method (Koon W. , Lo, Marsden, & Ross, Low Energy Transfer to the Moon, 2001). This

maneuver was executed by an early version of the program used for this project and yielded the same

result (Cordwell, DeBenedictis, & Lott, 2007), as shown in figure 8.

Earth

Moon’s Orbit

L1 L2

Figure 8: Maneuver Verification

Synodic, CM system. Earth-centric with Earth-Sun L1 on left. Here the program is

executing a low-energy maneuver. The results match other studies.

Sun

16

This example shows that although the model is not directly comparable to other software, it may

act as a realistic basis for research.

2.3 Existing Methods

Most orbit projection and planning research to date is based on mathematical models describing

spacecraft movement in conjunction with methods of simplifying the problem with fewer planetary

bodies and approximating the solution with elliptical orbits. This view is hardly surprising, as Poincare’s

work on the n-body problem was the first major study of how orbits work, and it was largely from a chaos

theory point of view.

Currently, there are two major branches of orbit planning. One is the kind NASA uses for their

missions, which involve elliptical orbit approximations and corrections and disregard many available low-

energy maneuver opportunities. The other is the mathematical study of orbits as differential equations

(Olds, Kluever, & Cupples, 2007) or ‘invariant manifolds (Koon W. , Lo, Marsden, & Ross, Dynamical

Systems, the Three-Body Problem and Space Mission Design, 2000).’ The two are separated primarily by

a difference in goals: one wants to get to other planets while the other is interested in how it happens.

This research project differs from both these approaches in that while it is mathematically

grounded, it employs a computer science prism on the problem of orbit planning, which creates a

compromise between the theoretical mathematical basis and the practical goal of navigating the solar

system.

2.3.1 Invariant manifolds

As we have seen, the Jacobi integral (page 12) allows us to find positions and their corresponding

velocities that create a total constant energy. The collections of these points and their velocities for a

particular energy can be called an energy surface. However, unless we restrict our surface to certain initial

conditions it would include every point with a velocity vector pointing in every direction. By adding more

qualifications, such as 'all orbits that wind onto a Lagrange point,' we get what is known as an invariant

manifold.

Like its name, and invariant manifold has invariant energy, but changing position. We can

arbitrarily assign it enough conditions that it is a continuous surface, rather than a vector field. Although

these manifolds may seem highly mathematical, they actually describe the way we compute trajectories.

When calculating the position of an invariant manifold, we assign 'tracer objects' at intervals

along the initial conditions. For example, if we want to see the invariant manifold that starts at one point

but has a velocity vector pointing in every direction, we would need to take test cases of the velocity

vector direction at intervals with all the tracers at the same place. By simulating the movement of the

tracers, we can see the outline of the invariant manifold.

These manifolds are used constantly in orbit planning. Their highly mathematical nature as well

as the ease at which they are described by computer simulations make them the perfect medium for

simulating constant energy spacecraft.

2.3.2 Heteroclinic Connections

When attempting to find the most energy efficient method of exiting a two-body system, we pick

the lowest possible energy level required to maintain a path out of the system. In this case we can see

three main regions of space we must pass. In the Earth-Moon system, they are three primary gravitational

regions: the Earth’s gravity well, the Moon’s gravity well, and the Outside region. Although it is easy to

launch a rocket so it gets to L1, it is a more delicate matter to get the same rocket to L2. A heteroclinic

connection is exactly that: a path between L1 and L2, or a connection between Earth’s gravity well and

the outside region (Koon W. , Lo, Marsden, & Ross, Dynamical Systems, the Three-Body Problem and

Space Mission Design, 2000).

17

2.3.3 Finding Heteroclinic Connections

To find a Heteroclinic Connection we start by defining two equal-energy invariant manifolds

around L1 and L2 that wind asymptotically onto the Lagrange point. We simulate the movement of the

tracer particles as they enter the Moon’s gravity well.

What we want to find is the intersection of these two manifolds. The intersection will be made of

two tracers that have the same position but opposite velocity vectors. By splicing together these

two halves of the path between L points, we for a heteroclinic connection.

We find the intersections of the invariant manifolds with a Poincare map. This map is a cross-

section of the tracers as they pass by the moon, showing the positions and velocities of tracers from both

sides as they pass over this middle line. In a two-dimensional simulation, one dimension of the Poincare

map is distance from the moon and the other is speed. Because all the tracers are of the same energy, the

direction of their velocity vector is unimportant beyond which side of the moon, in terms of L points, it is

going. The Poincare map reveals the hidden relationship between the tracers that were launched, and the

intersection of the two invariant manifolds reveals a heteroclinic connection between L1 and L2.

By choosing different two-body systems, we can find heteroclinic connections between the Earth

and Moon, and then the Earth-moon and another planet.

2.3.4 Using a Poincare Map to Find the Intersection of Invariant Manifolds

In a two-body system the following method, which we will call the exact method, may be applied

to a simulation to discover a trajectory that will lead to a heteroclinic connection. This section describes

how the exact method could be used. The basic reason the exact method, even with optimization, does not

work for a complex system is that time must be reversible for the exact method to work. Both methods

use the Jacobi Integral to set a Lyapunov orbit. The exact method uses a Poincare map to find the

intersection of two spacecraft manifolds, while the actual method uses boundaries to track the progress of

the spacecraft.

Every time the rockets are moved the program checks to see if they have crossed the boundary

line for the Poincare map. These intersections are compiled at the end of the program into a map that

shows distance from the moon and velocity. A heteroclinic connection would form when two rockets

have the same position but opposite velocity on the Poincare map.

18

Although scientists such as Martin Lo have achieved heteroclinic connections, they disregarded

the other planets in their calculation. Figure 9 shows a heteroclinic connection Martin Lo found using

only two planets and the Poincare map method in his paper “Dynamical Systems, the Three-Body

Problem and Space Mission Design.”

By adding the other planets the Lyapunov orbits become increasingly unstable and difficult to

work with. In actuality, the exact method for finding a heteroclinic connection may not be applied to a

complex system because the Poincare Map reveals rockets whose paths would connect if time was

reversible. Thus, although this method involves optimization, it still does not account for the chaotic

nature of planetary movement in the real solar system. However, the concept underlying this process may

be applied to itinerary-based optimization, which automatically reveals heteroclinic connections.

2.3.5 Applications of Low-Energy Paths

Although NASA and other space organizations do not regularly use low-energy paths for

spacecraft, they have been effective when utilized. The Genesis spacecraft used a series of Earth-Sun L1

and L2 Lyapunov orbits to collect solar wind samples (Koon W. , Lo, Marsden, & Ross, 1999). Another

example was the Hiten, a Japanese spacecraft designed to be a relay signals for the Hagoromo. After the

Hagoromo failed, a low-energy transfer to the moon was executed, allowing the Hiten to gain moon orbit

even though it had 10% less fuel than was traditionally needed (Grayzeck, 2008), making the mission a

success.

Other possible applications include the movement of heavy spacecraft, such as unmanned supply

crafts for space colonies. Since it requires a large amount of fuel to initially launch such heavy crafts, the

spacecraft would have little fuel still available when in space to maneuver, making it the perfect

application for gravity-assist propulsion. Since these paths take longer to execute than traditional

methods, these supply crafts could be launched even ahead of the initial mission and then wait in orbit

around another planet.

Figure 9: Two-Body Heteroclinic Orbit

Synodic, CM system. Moon-centric with L1

on left. A heteroclinic connection found by

Martin Lo and the Poincare Map method.

19

3. Novel Method for Finding Spacecraft Trajectories

3.1 Itinerary-Based Optimization

This method is based on a model which takes into account all of the planetary bodies and uses a

guided optimization algorithm to identify orbit paths. It does not rely on creating an approximation that

works for fewer bodies and then correcting the approximation. In this way, the program is not restrained

by elliptical orbit approximations and can easily find more complex non-elliptical orbit patterns.

Below is a picture of the primary boundary lines used to construct itineraries. These lines are

supplemented by circular boundaries around planets, which detect when spacecraft go near planets, as

well as other boundaries specific itinerary, such as boundaries around the Earth Sun L2 point.

The program tracks the boundary crossings of each spacecraft so that it can refine on spacecraft

trajectories that yield the most correct list of boundary crossings. These crossings make up the itinerary

for the flight.

Figure 10: Boundary Positions for Earth Moon System

Synodic, CM system. Moon-centric with L1 on left. This is the layout

of the boundaries (boundary numbers included) which are used to

analyze the paths of the spacecraft.

Moon

L2 L1 1

6 7 8

3

13

4

0

9
10 11 12

5

2

Earth

20

Itinerary is described by a list of spatial boundaries each spacecraft must cross in order. For

example, an L1 Lyapunov orbit, shown in dotted green in Figure 11, would satisfy the itinerary 1, 10, 9,

0, 4, 5.

Since the optimal launch conditions are unknown, the itinerary of boundary lines should be valid

for all potentially optimal paths. The objective of the simulation is to identify the optimal trajectory that

satisfies the itinerary. In order to do this, the computer uses the boundaries that have been crossed to

optimize the initial trajectories.

 By continuously refining the initial positions to fit the requirements for a long list of itinerary,

the computer may find the appropriate path.

Figure 12: Optimization of Spacecraft Trajectories

Synodic. L1- centric. When the program finds a spacecraft that is close to

the specified itinerary, it moves all the other spacecraft closer, thereby

refining their trajectories.

Refinement

L1
1

4

0

9 10

5

Optimization:

4

0

9 10

5
Best

Rocket

Earth Earth

Figure 11: Interpetation of Itinerary

Synodic. L1- centric. The left shows the itinerary as it is described to the

computer for computing a Lyapunov orbit. The right shows the actual

trajectory the computer would find that meets the boundary specifications.

L1
1

4

0

9 10

5

Algorithm
L1

1

4

0

9 10

5

Itinerary Trajectory

Objective:

Earth Earth

21

3.2 Part I- Launch From Earth to a L1 Lyapunov Orbit

Although this is the first step of a trajectory to another planet, it is calculated last, after the rest of

the spacecraft paths have been determined. By running time backwards, it is possible to find the

spacecraft’s intersection with Earth. This section does not require complex itineraries because it takes

place exclusively within Earth’s gravity well, although it does require a burn. One possible path is shown

below.

Earth

Moon’s Orbit

Moon

L1 L2

 Not Synodic, Earth-centric showing Moon and Synodic, CM system. Moon-centric

 L points’ orbits.

Figure 13: Launch into L1 Lyapunov Orbit

This shows one possibly method of going from Earth to L1. The spacecraft are launched, and circle

Earth once, do a slight burn right before getting to L1, and enter a Lyapunov orbit.

Earth

22

3.3 Part II- Finding Heteroclinic Connections

3.3.1 Using Jacobi Integral to Set Lyapunov Orbit

The first step in finding a heteroclinic connection is to find a Lyapunov orbit around the L1 point.

This is done automatically by the program, by finding the Jacobi integral’s value for a range of positions

along the L1-Moon line. As spacecraft are refined and reset, the positions and their velocities are

recalculated according to the Jacobi integral for their new position. Although the Sun changes the Jacobi

integral constant, this can be manually adjusted. Variance between consecutive spacecraft paths in the end

result is minimal because the spacecraft are eventually placed so close together.

Figure 12 shows this process of refining a Lyapunov orbit over several simulation cycles.

Notice that in the last picture there are two Lyapunov orbits, but they do not line up entirely. This

is because the orbit of the Earth and Moon are elliptical.

Figure 14: Lyapunov Orbit Iterations

Synodic, CM system. L1 in center. This shows a few iterations in which the computer is

automatically adjusting the initial spacecraft conditions to achieve Lyapunov orbits at L1.

3 1 2 4 5 6 7

10 11 12

End Result

8 9

L1

Earth

= rocket to

refine on

23

3.3.2 Using Itineraries to find Heteroclinic Connections

We apply the same boundaries to find a heteroclinic connection between an L1 and an L2

Lyapunov orbit.

Each boundary has a side that it ‘favors,’ meaning it prefers spacecraft that pass nearer to one

endpoint more than the other. This allows for the computer to find paths more quickly.

Figure 15: Finding A Heteroclinic Connection

Synodic, CM system. Moon-centric with L1 on left. These show the iterations

the computer goes through to find a heteroclinic connection.

1 2

3 4

5 1 1 6

Moon Earth

= rocket to

refine on

24

3.4 Part III- Transfer From L2 Lyapunov Orbit to Planet

Once a spacecraft has achieved an L2 Lyapunov orbit, it is outside the strong gravitational pull of

the Earth and its movement is largely unconstrained. Before leaving Earth’s vicinity it is possible to gain

extra energy or maneuverability off the Earth-Moon system. One option is to go into an Earth-Sun L2

Lyapunov orbit, and exploit the instability of this point to gain maneuverability. However, Earth’s low

mass makes the Earth-Sun L2 weak, and therefore it is better to perform a gravity-assist off the Moon.

In order for this to work, the Moon must be in the correct position when the spacecraft approach

it, so they perform an extra Lyapunov orbit before attempting the slingshot. Below are two pictures that

show the setup before the slingshot stage of optimization:

At this stage in the simulation, the program saves all the positions of the spacecraft as they pass

over bound 25 and starts re-optimizing their initial positions from there. The program switches from

checking for boundaries 1-13, and instead only checks for the circular boundaries around the Moon,

shown in the first slingshot picture. By switching boundaries, the program does not need to satisfy the

rectangular boundaries as well as the circular ones in some set order, allowing it to get the greatest gravity

boost from the moon possible.

L1

Moon

L2

Circular

Boundaries

Earth-Sun

 L1

Earth-Sun

 L1

Earth

Moon’s Orbit

Point A

Bound 25

Top: Synodic, CM system. Moon-centric

Bottom: Not Synodic, Earth-centric showing Moon and L points’ orbits.

Figure 16: Slingshot Setup

The first picture shows the simulation of the second Lyapunov orbit. As these spacecraft

leave the Earth-Moon L2 Lyapunov orbit they cross over bound 25, as shown in the bottom

picture. As they come back down, they should intersect with the Moon from behind

somewhere near point A.

Earth

Sun

25

This shows the optimization the program performs to find a slingshot off the moon.

The program has successfully optimized the positions of the spacecraft so they pick up energy

from the Moon and exit the system with considerable energy of their own to diverge from Earth’s orbit.

Figure 17: Lyapunov Orbit Iterations

Top: Not Synodic, Earth-centric showing Moon’s and

Earth-Sun L2.

Bottom: Synodic, CM system. Moon-centric with L1 on

left.

Here the program is optimizing off a different set of

boundaries; the circular ones around the Moon. This

allows it to find a slingshot.

Right: Not Synodic, Sun-centric showing the orbits of

Mercury, Venus, Earth, Mars, and the spacecraft.

This shows how the spacecraft have gained enough

energy to exit Earth’s system as well as diverge from

Earth’s orbit.

L1 L2 L2 L2 L2 L1 L1 L1

L2 L2

Earth’s

Orbit

Sun

Venus’

Orbit
Spacecraft

1 2 4 3
Earth

Sun

= rocket to

refine on

26

3.5 Effect of Spacecraft Energy

The amount of energy a spacecraft has determines the size of the Lyapunov orbit and shape of the

heteroclinic connection. Below is a picture of several heteroclinic connections with the same shape and at

the same time, but with different amounts of energy. This slight energy change results in a difference in

the size of the Lyapunov orbit.

Larger changes in energy can result in changes in the shape of the heteroclinic connections that

may be achieved. Too little energy may result in an inability to achieve a maintainable L2 Lyapunov

orbit.

Figure 19: Energy Changes Heteroclinic Connection Shape

Synodic, CM system. Moon-centric with L1 on left.

Both pictures are simulations taking place at the same time index.

The left picture shows a simulation that has too much velocity energy. The spacecraft do not need to

gain the available energy from the Moon.

The picture at right shows a simulation that does not have enough energy: here rocket B skimmed the

Moon’s surface but yet was not able to complete a halo orbit around L2, falling back into the system.

A
B

Moon Moon

L1
L1 L2

L2

Earth Earth

Figure 18: Heteroclinic Connections with Slightly Different Energy

Synodic, CM system. Moon-centric with L1 on left.

This shows multiple heteroclinic connections that have slightly

different energy. As the energy decreases, the Lyapunov orbits on the

sides become smaller and the Moon fly-by becomes increasingly

asymmetrical.

L1 L2
Moon

Earth

27

Since the velocity is set off of the Jacobi integral, which does not take into account the gravity of

the sun, the initial energy must be adjusted either up or down. After the Sun’s gravity is accounted for, it

can lower the energy requirement for the spacecraft even below the system’s Jacobi integral constant for

L2. The simulations achieve the lowest energy possible when they are lined up so that the sun helps pull

them out of the Earth Moon system.

There are other heteroclinic boundary patterns that could be used, but they require more energy.

For example, Figure 20 shows and alternate boundary pattern, where the spacecraft do not fully circle the

moon.

 Although this is a path out of the system, it requires more energy because the spacecraft do have as

much assistance from the moon. This simulation also shows the dynamic nature of the program, as it can

be applied to various different orbit patterns.

Figure 20: Higher Energy Boundary Pattern

Synodic, CM system. Moon-centric with L1 on left.

Spacecraft A is has left the system after only a half pass by the moon.

A
L1 L2

Moon

Earth

28

4. Computation Structure Analysis

4.1 Program Structure

The program is written in C++ to give full access to the capabilities of multithreaded optimization

for this compute intensive problem. The “DOS screen” approach seperates compute from interface, which

minimizes load imbalance of cores. The following will act as a summary of the basic program functions

and as a guide to the code itself. Function and variable names have been emphasized to allow the reader

to better compare with the code, which may be found in the appendix.

The program is separated into several parts. The major sections are as follows: setting the

positions of the planets, initializing the rockets, moving the rockets and planets, analyzing the positions of

the rockets, and displaying data. Figure 19 shows a flowchart of the program, and each of these major

functions will be described below.

All functions of the program act on three major data structures; body, which describes the

planets, rocket, which describes the spacecraft, and Lagrange, which describes Lagrange points. All

three contain position (pos) and velocity (v or vr for rockets) data. Planets and rockets also have synodic

positions in some cases. Rockets also carry data such as which Lagrange point they were launched from,

the color they are printed in, if they have crashed into a planet, which Lagrange point they are currently

closest to, their original launch position and velocity, and if they have used their rocket boosters.

• The planet position calculator uses an actual date to set the parameters for the ellipse function, some

of which change over time, such as mean anomaly. niweam is called to re-set these parameters for

each planet according to the day, and then CalcPlanetPos uses these parameters to calculate the

position on an ellipse. Because of the later use of inter-timestep positions in the Runge-Kutta 4

calculation, pos[1]-pos[3] are set for each planet. At the start of the program some of the planets are

set a few extra times to discover their velocities, allowing the Lagrange points to be calculated with

the CalcL12Point and CalcL45Point functions.

• Setting the initial positions of the rockets is perhaps the most complex action of the program.

LAUNCHLOOKUP, defined at the beginning of the program, describes the method of launch. For a

launch around Earth, LAUNCHLOOKUP is less than 1, and the rockets are set tangent to a 200 km

parking orbit. For finding a heteroclinic connection, the rockets are set in a Lyapunov orbit around the

Lagrange points. This method brings to bear the energy-dependent math that this report has discussed.

The planet’s positions are converted to synodic coordinates with BodyLgConvertSynodic and the

function lghalolaunch sets the rockets in a Lyapunov orbit around both Lagrange points. To get

this Lyapunov orbit, the program runs several times, refining the initial guess of position for the

rocket to go around the most times. The nature of a Lyapunov orbit is that it passes perpendicular to

the line between the Lagrange point and the moon. The program picks a base distance away from the

moon (hsd.synodiccpl1 &2) and a distance between each rocket (hsd.changedistl1 &2) and

sets the rockets on the line between the Lagrange point and the Moon (hsd stands for halo set data). It

calls the function jacobiveloofpos, which uses the Jacobi integral to find the appropriate velocity

for that point with the constant set for being zero at L2. All of these energy-dependent calculations

have been done in synodic coordinates, and they are converted back into sun-centered rectangular

coordinates with RocketConvertRec. If LAUNCHLOOKUP is more than 5, the program loads the

saved positions and velocities of previously used rocket, which will be explained later. If it is 6, it

reloads positions from some intermediary point into a new iteration through datasave, also to be

explained later.

29

Print file with initial spacecraft positions

Set initial positions of

planets, Lagrange

points, and spacecraft

If time < endtime

time=time+timestep

Move planets on ellipse, Lagrange

points from planet data, and

spacecraft with Runge-Kutta

Check if spacecraft have collided with

planet, or other ‘death’ condition. If so,

remove from spacecraft list.

Check if spacecraft has intersected

Poincare map or boundaries

Write pictures

yes
no

Automatically

creating orbit?

Analyze spacecraft

positions. Finished?

yes

Assemble Poincare map (if exact)

Print pictures to browser

no

yes

Adjust spacecraft’s

initial positions

no

Figure 21: Program Structure

This flowchart shows the general structure of the program. Depending on how the

program is being used at the time, actions such as setting the spacecraft’s initial

positions and analyzing their final positions may be changed according to the current

goal of the program.

30

• The rockets are moved using a Runge-Kutta algorithm (page 14) and the planets are re-calculates

using the same method for each timestep. The timestep itself is varied depending on how close the

rockets are to planets; the closer they are, the more resolution the program provides by decreasing the

timestep.

• The program prints out the date, the timestep, and general information into command prompt every

few simulated days. The function drawpic draws pictures with a variety of options: synodic or not,

centered or de-rotated to any planet, with variable magnification. These pictures are saved using

GifImageStoreAdd and printed in a html page. The interface between the browser and the program

is largely contained in Osim.cpp, and not relevant to the functioning of the simulation. The program

also converts the final positions of the rockets into synodic coordinates and prints them to a file. The

rocket number, position, velocity, launchlookup, and time are printed within curly brackets. This

file can be used to pick a simulation up where if left off, as readfilerock can take the file and

restore the positions, velocities, and time of the simulation to those described by the file. This allows

the program to separate an longer orbit into pieces which are easier for the computer to identify and

design without human intervention.

4.1.1 Region Method Program Structure

One major function of the program is to automatically adjust the original parameters so as to get a

better rocket configuration. This is done in two ways. The system, uses hsd, contains the information

needed to set the rockets, and the program modifies it after each run automatically.

After all the timesteps have been calculated, PoincareFind compiles PoincareData to create

a Poincare map. resethaloparam analyzes the rockets final positions to decide where to set them for

the next run if the program is dynamically creating an orbit with specified itinerary. In the case of looking

for a Lyapunov orbit, the program analyzes which gravitational section the rocket ended up in. It looks for

the place where the rockets diverged, some going into one gravitational region and the others to a

different one, as shown in Figure 20. halofate keeps track of this. If it has already exhibited itself in the

moon region, this parameter is already set, otherwise its distance from the earth is analyzed. If the rocket

is closer to the earth than is L1, then it is in the moon region. If farther than L2 it is in the sun region. The

function then goes through the halofates of all the rockets, in order of how they were set on the line. It

finds the mid-point between the two desired rockets, sets hsd.synodiccpl1to this desired new center

point, and decreases hsd.changedistl1. This makes the launch area closer to a Lyapunov orbit that

orbits several times. The program repeats until hsd.changedistl1 is less than a desired amount, or

that the rockets are set so close to each other.

Figure 22: Automatic Lyapunov orbits- Region Method

Synodic, CM system. Moon-centric with L1 on left. Here the computer has completed a few iterations and

is trying to find a Lyapunov orbit. The green, blue, and yellow show general gravitational regions.

Crashes into moon,

halofate=moon

Intersects Poincare,

halofate=moon

Correct one

will be here

Back into system,

halofate=earth

Out of system,

halofate=sun

Moon

Earth

31

PoincareMap checks to see if a rocket has crossed the boundary line that is perpendicular to the

line between the moon and the earth at the moon. If so, it records the position and velocity of the rocket

when it passed in PoincareData, to be used later to construct the Poincare map. Depending on the

function of the program, it may check the rocket’s position in relation to some target position or if it is

straying too far from the moon. It checks to see if it is within the radius of a planet, and if so sets the

rocket’s deadbit so it is no longer calculated. In the case of finding a Lyapunov orbit, the program sets

the rocket’s halofate to the moon if it crashes into the moon or passes the midline.

Although this system is automatic, it does not provide the computer with enough information to

successfully pick the correct spacecraft. For example, when trying to find an orbit around L1 (Figure 21)

the method would fail to identify the best spacecraft if some went around the moon and then continued to

Earth because only final positions are analyzed.

The following method solves this problem by focusing on where the spacecraft paths have gone

rather than where they end.

4.1.2 Itinerary Method Program Structure

The second method of automatic optimization involves checking to see if spacecraft have crossed

boundaries and then analyzing the order of boundaries they have crossed.

Boundaries are defined in terms of their relationship to planets, and are stored as a line1

bound#, which describes their position on that timesetp in the form Ax+By=C. Each rocket has an array

that stores the ‘side’ (as in 1 or -1) of the boundary it’s on. Boundarysidefunc is called on each

timestp, and checks to see if the rocket has changed sides, or passed over, any of the boundaries. If the

rocket has passed over a boundary it sets its setcrossdata with the boundary crossed, position,

velocity, and time.

Resethaloparam2 initially refines the hsd structure in the same way that the region method

does, but because the boundary method requires twice as long a simulation time it must reload the

spacecraft’s positions halfway through the simulation to preserve accuracy. Thus, halfway through the

Figure 23: Region Method Error

Synodic, CM system. Moon-centric with L1 on left. Although

the correct point for a spacecraft to pass through to get to a

Lyapunov orbit is at point A, the region method would

optimize toward point C because of the spacecraft at point B.

B

A

C

Moon

L1

Earth

32

simulation it uses datasave to record the positions of the spacecraft from some intermediary point, and

then optimizations are executed by moving the spacraft closer to the best rocket. In resethaloparam2

the boundary crossings of all rockets are analyzed in order- all the first crossings, the second crossings,

and so on. The best rocket is defined as the first rocket that triggers the most of a specified pattern of

boundaries in order.

This wide variety of tools creates a powerful program which can dynamically find a variety of

orbit patterns.

4.2 Parallel Code Analysis

In order to simulate more complex and accurate maneuvers the program has been adapted for use

on multi-core processors. Unfortunately, this program is relatively difficult to parallelize because the 10

bodies must move between each calculation of the movement of the spacecraft. Also, movement of

spacecraft and refinements on their initial positions are cumulative, each depending on the previous steps.

Both of these restrain the parallel section of the code to be the movement and force calculations of each

rocket with all the planets, reducing the amount of parallel steps available.

For presentation and debugging purposes, the program writes the positions of the spacecraft on

pictures each timestep, taking up a significant amount on non-parallelizable time. If this was adapted for

standard use, data would be exported in some other less compute intensive form for later analysis.

Therefore the performance analysis was done without writing as many pictures.

However, despite these constraints, the program still spends a large portion of its time calculating

the movement of the spacecraft and planets, so any speedup in this area is much needed and shows an

effect on the runtime of the model. In the parallel model, the planets’ positions are calculated on separate

processors, the program synchronizes, and then the spacecraft are calculated on separate processors. From

1 to 4 cores, the speedup is about 3. However, this changes with the area being simulated for several

reasons.

1. The lower the timestep the more often the program must re-calculate the positions of the

planets and then synchronize, which results in wastes cycles. One possible method to largely

remove this bottleneck would be calculate planetary positions for many timesteps ahead of

time. However, this would mean that the timestep would have to mesh with the available

planet positions. Some compromise between the two might result in higher speedup.

2. For some simulations, such as trying to find Lyapunov orbits, many of the spacecraft crash

into the moon. This results in a lowered computer time for the processor that is responsible

for the movement of these spacecraft. By dynamically creating lists of spacecraft names, this

problem could be avoided.

Despite these bottlenecks, running the program on four cores results in increased performance. If

these issued were addressed, the program would show further speedup with more cores.

4.3 Algorithm Analysis

This section examines the effectiveness of the algorithm, which is dependent on the specifics of

the problem being calculated.

The basic principle behind the itinerary based algorithm is that spacecraft at different positions

will experience divergence in their positions over time because of the differences in gravitational forces

acting upon them. The algorithm projects the divergence of many spacecraft, and then selects the

spacecraft whose path was most correct in terms of satisfying the sought itinerary. The more divergence

associated with the region of space an object is traveling through, the more opportunity for low-energy

maneuvers, and the more ‘work’ the computer must perform to correct for and exploit this divergence.

For two spacecraft with the same velocity vector but different initial positions, 1T�U;VU<WU 	E���D?DXYD��X���X$B�C>Z�A�>XZ
E���D?DXYD��X��X�A�$B�C>Z�A�>XZ, over some time period. Since divergence is caused by a difference in force

acting on an object, it is logical to assume that when these forces are high, as they are near planets, the

33

divergence will also be high. This was experimentally tested by setting spacecraft along the Earth-Moon

line with the same velocity and measuring their divergence.

As shown, when distance from the Moon increases, the divergence decreases. The trendline

shows that this seems to happen at a d
2
 rate in terms of distance from the planet.

The time a specific itinerary takes to calculate is primarily dependent on two things:

1. As spacecraft travel closer to planets, the program decreases the timestep in order to maintain

accuracy, causing each iteration to be more compute intensive and take longer to calculate.

2. Traveling through divergent regions makes the program require more iterations, also taking

up more compute time.

This means that going near planets results in iterations that are more numerous and compute

intensive. Ironically, low-energy paths thrive in exactly these areas, perhaps explaining why they are so

difficult to calculate.

What does this say about the performance of the program? Since the paths of spacecraft are

described by itineraries, the entire route must be dependent on the divergence in the areas around the

itinerary points. For example, requiring spacecraft to pass over a boundary part way to Jupiter in

interplanetary space presumably will not add much compute load to a fixed-time simulation. Conversely

passing a few kilometers over the surface of Jupiter, where forces are high, would be very compute

intensive. Of course, most of the boundaries are very near the Moon, and therefore in divergent space, and

it is not known before hand which part of the boundary will be crossed. However, in theory, it should be

possible to create a ‘worst-case scenario’ for how long the program would run given the itinerary

specified. This would be based off the product of the spacing between two itinerary points and the highest

divergence possible to satisfy both points.

1.002

1.0025

1.003

1.0035

1.004

1.0045

1.005

1.0055

22000000 25000000 28000000

F
in
a
l
D
is
t/
In
it
ia
l
D
is
t

Initial Distance From Moon (m)

Divergence After 1 Hour

Divergence After 1 Hour Degree 2 Trendline

34

5. Conclusion

An algorithm for automatically finding gravity-assist spacecraft paths has been developed and

used in conjunction with a solar system model that takes into account all of the planets. This novel

itinerary-based algorithm optimizes spacecraft launch conditions to achieve effective gravity-assist

trajectories. It has successfully simulated Lypanov orbits, heteroclinic connections, and moon gravity

assists, escaping the Earth’s orbit with no burns. The program utilizes multi-core processors for optimal

performance.

35

6. Acknowledgements

I would like to thank my mom, for helping me show the excitement of science to everyone.

My dad has always been patient enough to help me develop my programming skills. You’re

amazing Dad!

My teachers, especially Mr. Carrie, Mrs. McKernan, Mrs. Sena, and Mr. Carry, have been an

amazing support to my continuing interest in science.

To my school, Saint Pius X High School, in general, for being so great!

36

7. Bibliography

Contopoulos, G. (2004). Order and Chaos in Dynamical Astronomy. New York: Springer.

Cordwell, K., DeBenedictis, E., & Lott, B. (2007, April 4). Optimization of Trajectories.

Retrieved May 1, 2007, from Supercomputing Challenge: http://www.challenge.nm.org/archive/06-

07/finalreports/38.pdf

Courant, E., Olbert, S., Bennett, W., Herget, P., Whipple, F., Ehricke, K., et al. (1959). Orbit

Theory: Proceedings of Symposia in Applied Mathematics. Amerian Mathematical Society .

Grayzeck, D. E. (2008, April 2). NASA- NSSDC- Spacecraft Details. Retrieved May 8, 2008,

from NASA: http://nssdc.gsfc.nasa.gov/nmc/masterCatalog.do?sc=1990-007A

Hut, P., Makino, J., & Heggie, D. (2007, September 14). Integration Algorithms: Exploring the

Runge-Kutta Landscape. Retrieved January 8, 2008, from The Art of Computational Science:

http://www.artcompsci.org/kali/vol/runge_kutta/title.html

Koon, W., Lo, M., Marsden, J., & Ross, S. (2000). Dynamical Systems, the Three-Body Problem

and Space Mission Design. Control and Dynamic Systems (pp. 1167-1181). Pasedena: World Scientific.

Koon, W., Lo, M., Marsden, J., & Ross, S. (2001). Low Energy Transfer to the Moon. Celestial

Mechanics and Dynamical Astronomy , 63-73.

Koon, W., Lo, M., Marsden, J., & Ross, S. (1999). The Genesis Trajectory and Heteroclinic

Connections. Astrodynamics , Vol. 103, Part III, 2327-2343.

Lo, M. (2008, May 1). Interview With Martin Lo. (E. DeBenedictis, Interviewer)

Lo, M. (2002). The InterPlanetary Superhighway and the Origins Program. Aerospace

Conference Proceedings (pp. 7-3543- 7-3562 vol.7). Pasadena: IEEE.

Olds, A., Kluever, C., & Cupples, M. (2007). Interplanetary Mission Design Using Differential

Evolution. Journal of Spacecraft and Rockets , 1060-1070.

Schlyter, P. (n.d.). Computing Planetary Positions. Retrieved 11 10, 2007, from Paul Schlyters:

http://stjarnhimlen.se/comp/ppcomp.html

Szebehely, V. (1967). Theory of Orbits. New York/London: Academic Press.

37

8. Appendices

8.1 Mathematica Equations

“Potential Energy” and “Lagrange Points”:

Plot3D[[(()N\N])�^_��

���+���,��\^^^^�� N\N])�^_��

((�+���,��\^^^^�� \`) a���b) H+��,�� Jc, {x, -120, 120}, {y, -
120, 120}, PlotPoints -> 110, ColorFunction -> Hue, Lighting-> True, ViewPoint-> {-40, -120, 80},

ImageSize -> 700]

“Lowest Potential Energy Depressions”:

Plot3D[Min[[(()N\N])�^_��

���+���,��\^^^^�� N\N])�^_��

((�+���,��\^^^^�� \`) a���b) H+��,�� Jc, 2.6*a����], {x, -
120, 120}, {y, -120, 120}, PlotPoints -> 110, ColorFunction -> Hue, Lighting-> True, ViewPoint-> {-

150, 40, -50}, ImageSize -> 700]

“Gravity Wells in a 2-Body System”:

Plot3D[-5*[(()N\N])�^_��

���+���,��\^^^^�� N\N])�^_��

((�+���,��\^^^^�� \`) a���b) H+��,�� Jc, {x, -120, 120}, {y, -
120, 120}, PlotPoints -> 110, ColorFunction -> Hue, Lighting-> True, ViewPoint-> {-40, -120, 80},

ImageSize -> 700]

“Moon’s Effect on Decreased Energy to Leave System”:

Plot3D[Max[-5*[(()N\N])�^_��

���+���,��\^^^^�� N\N])�^_��

((�+���,��\^^^^�� \`) a���b) H+��,�� Jc,��a\4�)
a����], {x, -120, 120}, {y, -120, 120}, PlotPoints -> 110, ColorFunction -> Hue, Lighting-> True,
ViewPoint-> {90, 30, 70}, ImageSize -> 700]

“Energy Contour Plot”:

CountourPlot[Min[[((

���+���,��\^^^^�� �

((�+���,��\^^^^�� �) a��N) H+��,�� Jc, �\d) a���],
{x, -140, 140}, {y, -140, 140}, PlotPoints-> 100, ColorFunction -> Hue, ImageSize -> 500]

	1. Executive Summary
	1.1 Introduction
	1.2 Problem Statement
	1.3 Novel Method
	1.4 Results

	2. Research
	2.1 Astrophysics
	2.1.1 Elastic Collisions
	2.1.2 Frames of Reference
	2.1.3 Two Massive Body System
	2.1.4 Lagrange Points
	2.1.5 L1, L2, and L3
	2.1.6 L4 and L5
	2.1.7 Forbidden Region for a Specified Energy

	2.2 Mathematical Elements
	2.2.1 Jacobi Integral
	2.2.2 N-Body Problem
	2.2.3 Lagrange Points Move Chaotically
	2.2.4 Computing Accurate Planet Positions on an Ellipse
	2.2.5 Integration Methods
	2.2.6 Simulation Accuracy

	2.3 Existing Methods
	2.3.1 Invariant manifolds
	2.3.2 Heteroclinic Connections
	2.3.3 Finding Heteroclinic Connections
	2.3.4 Using a Poincare Map to Find the Intersection of Invariant Manifolds
	2.3.5 Applications of Low-Energy Paths

	3. Novel Method for Finding Spacecraft Trajectories
	3.1 Itinerary-Based Optimization
	3.2 Part I- Launch From Earth to a L1 Lyapunov Orbit
	3.3 Part II- Finding Heteroclinic Connections
	3.3.1 Using Jacobi Integral to Set Lyapunov Orbit
	3.3.2 Using Itineraries to find Heteroclinic Connections

	3.4 Part III- Transfer From L2 Lyapunov Orbit to Planet
	3.5 Effect of Spacecraft Energy

	4. Computation Structure Analysis
	4.1 Program Structure
	4.1.1 Region Method Program Structure
	4.1.2 Itinerary Method Program Structure

	4.2 Parallel Code Analysis
	4.3 Algorithm Analysis

	5. Conclusion
	6. Acknowledgements
	7. Bibliography
	8. Appendices
	8.1 Mathematica Equations

