Cryogenic Adiabatic Transistor Circuits (CATCs)

Erik P. DeBenedictis

Derived from JJ Workshop presentation October 21, 2019

Overview

- Thanks to Mike Frank for inventing 2LAL circa 2000
- Quantum computer scale up creates a new demand for cold, <u>scalable</u> electronics
- Driver: Cryo adiabatic transistor circuits
 - Eject waste energy to room temperature electrically
- Applies to quantum computer control
 - Provides a memory to complement JJs
 - Narrow applicability; won't apply to Exascale
 - Applies to transmons, quantum dot, ion traps
 - Should work at 4 K today; will it work at mK?

Competitive research

• Paper (TAS early access)

Design and demonstration of an adiabatic-quantum-flux-parametron field-programmable gate array using Josephson-CMOS hybrid memories

Yukihiro Okuma, Naoki Takeuchi, Yuki Yamanashi, Member, IEEE and Nobuyuki Yoshikawa, Senior Member, IEEE

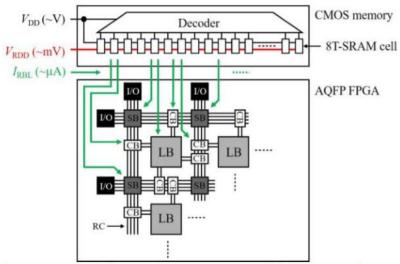
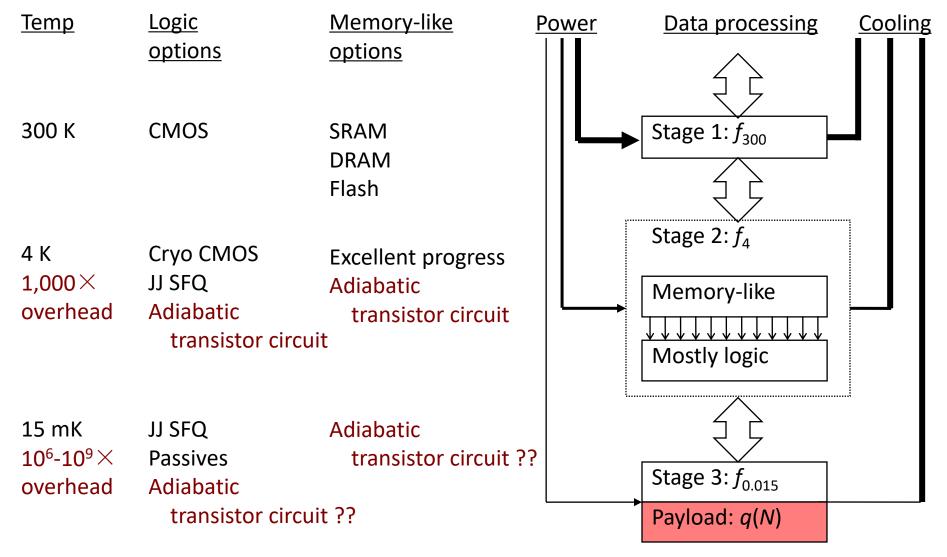


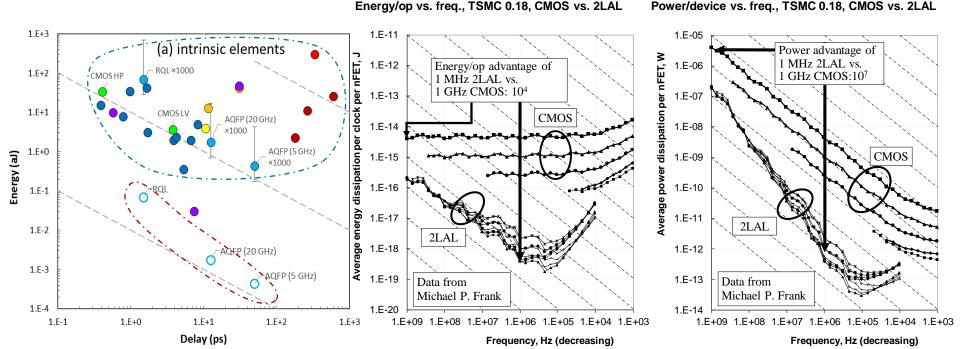
Fig. 1 Conceptual diagram of an AQFP-CMOS hybrid FPGA using a Josephson-CMOS hybrid memory.

• This approach 30,000× more efficient for trans


TABLE II

Junction number, circuit area, memory cell number, power consumption of AQFP-CMOS hybrid FPGAs with two-by-two and 32-by-32 logic cells

Cens	ö.	
	2×2 logic cell system	32×32 logic cell system
Junction number of AQFP FPGA circuits	1680	313220
Area of AQFP FPGA circuits [µm ²]	1960×3350	36085×44600
Number of CMOS memory cells	68	12548
Power consumption of AQFP FPGA circuits [nW]	12.4	2348
Power consumption of CMOS memories [µW]	1.02	188


	JJ	Transistor
Devices	313,220	75,288
Power	2.35E-06	1.88E-04
Power/Dev	7.50E-12	2.50E-09
Power Ratio	1.00	333.11
CATC-JJ	100	1
Advantage	33,311	

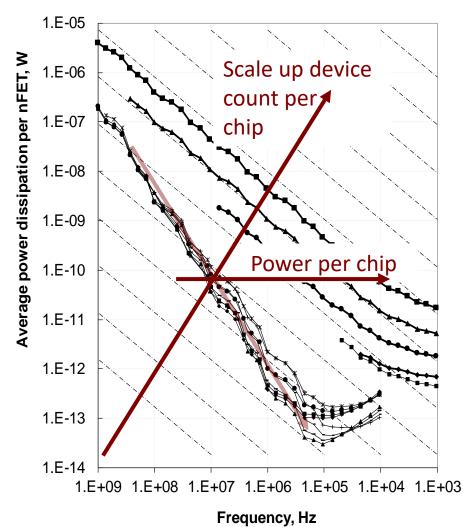
Scalable $(f_{300} \circ f_4 \circ f_{0.015} \circ q)(N)$

Cryo CMOS vs. CATC I

- All transistor circuits have ½CV² signal energy
- Adiabatic 2LAL dissipates less in the chip
- How is that possible given conservation of energy?

Cryo CMOS vs. CATC II DC supply Waveform generator $\phi_3 = -\phi_1$ $\frac{1}{2}CV^{2}(1-2RC/t)$ $\phi_2 = -\phi_0$ $\setminus \phi_1$ ϕ_0 300 K Cryo $\begin{array}{c} \phi_0\\ \phi_1 \end{array}$ $\phi_1 \\ \phi_2$ V <u>OUT</u> -OUT <u>IN</u> -IN ½CV² 2RC/t ϕ_2 $\phi_3 \\ \phi_0$ ϕ_3

Backup: Transistor changes


- Transistors used to experience carrier freeze out and 'kinks,' but these effects are no longer a problem due to the natural evolution of transistors
- Some DRAMs and some FPGAs work at 4 K now
 - See for example, FPGA Design Techniques for Stable Cryogenic Operation, arXiv:1709.04190
- This validates that cryo CMOS can work at 4 K
 - Except for imposing a refrigeration load
- New transistor lines for IoT are on the right path
 - Intel 22FFL, GF 22FDX, TSMC 22ULP, or ST 28 FDSOI

Backup: Basic physics of cooling

- Electric energy is happy to flow through a wire that crosses a temperature gradient in either direction
- Heat flows to a lower temperature unassisted, but needs energy to move to a higher temperature
- Reversible and adiabatic computing tried to recycle energy with in a single-temperature system, but the necessary energy-recycling power supply has not been found after decades of looking
- Cryogenic adiabatic transistor circuits move waste across the temperature gradient as energy <u>before</u> turning it into heat, not <u>after</u>

Adiabatic scaling

Power/device vs. freq., TSMC 0.18, CMOS vs. 2LAL

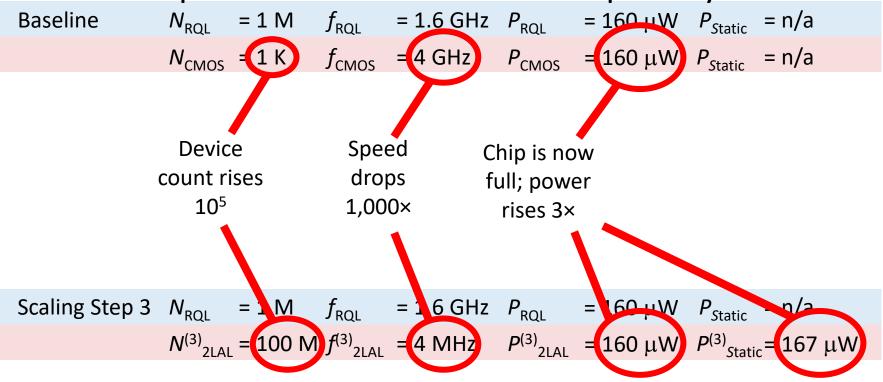


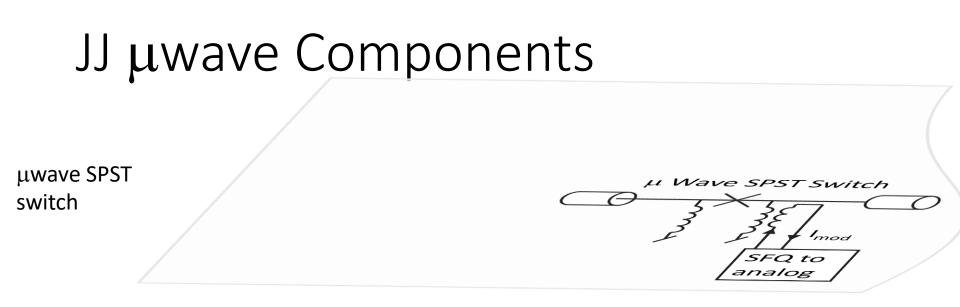
- Scale up clock period –
 i. e. slow the clock
- Per-gate dissipation drops quadratically
- But add quadratically more devices at same total power
- No free lunch
 - Supply current rises
 - Transistor leakage
 - Run out of chip space

Question of the hour

- Can cryogenic adiabatic transistor circuits become the memory counterpart for JJ/SFQ?
- If we follow adiabatic scaling, will ...
 - device count rise enough to comprise a "memory"
 - before speed makes it unusably slow?

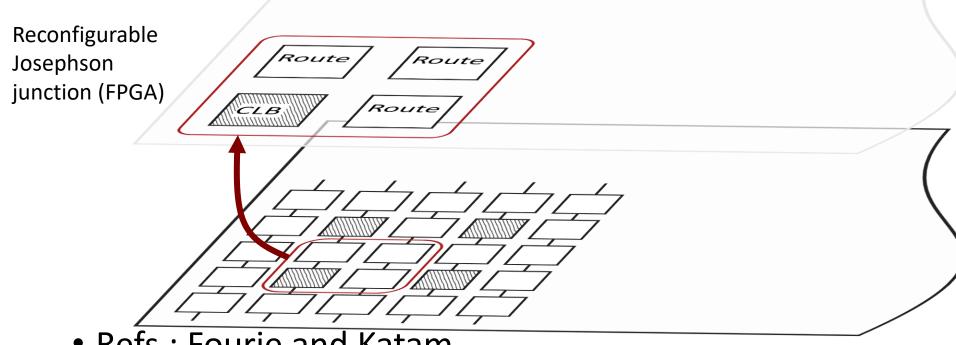
Hybrid technology model


Backup: JJ-2LAL scaling steps I


- Each step: 100× gates; 1/10 clock rate; same chip power; static leakage rises with device count
- First step CMOS \rightarrow 2LAL 10× device penalty

Baseline	N _{RQL}	= 1 M	$f_{ m RQL}$	= 1.6 GHz	P _{RQL}	= 160 μW	P _{Static} = n/a
	N _{CMOS}	= 1 K	$f_{\rm CMOS}$	= 4 GHz	P _{CMOS}	= 160 µW	P _{Static} = n/a
Scaling Step 1	N _{RQL}	= 1 M	$f_{ m RQL}$	= 1.6 GHz	P _{RQL}	= 160 μW	P _{Static} = n/a
	N ⁽¹⁾ _{2LAL}	= 10 K	<i>f</i> ⁽¹⁾ _{2LAL}	= 400 MHz	P ⁽¹⁾ _{2LAL}	= 160 µW	<i>P</i> ⁽¹⁾ _{Static} = 16.7 nW
Scaling Step 2	N _{RQL}	= 1 M	$f_{ m RQL}$	= 1.6 GHz	P _{RQL}	= 160 µW	P _{Static} = n/a
	N ⁽²⁾ _{2LAL}	= 1 M	$f^{(2)}_{2LAL}$	= 40 MHz	P ⁽²⁾ _{2LAL}	= 160 µW	$P^{(2)}_{Static}$ = 1.67 μ W
Scaling Step 3	N _{RQL}	= 1 M	$f_{ m RQL}$	= 1.6 GHz	P _{RQL}	= 160 µW	$P_{Static} = n/a$
	N ⁽³⁾ 2LAL	= 100 M	<i>f</i> ⁽³⁾ _{2LAL}	= 4 MHz	P ⁽³⁾ _{2LAL}	= 160 µW	<i>P</i> ⁽³⁾ _{Static} = 167 μW

Backup: JJ-2LAL scaling steps II


- Each step: 100× gates; 1/10 clock rate; same chip power; static leakage rises with device count
- First step CMOS \rightarrow 2LAL 10× device penalty

- There is a need to control microwaves at cryo
 - Northrop-Grumman, Google (Naaman)
 - Transmon quantum computers, etc.
- However, all current options require control signals from room temperature, limiting scalability


JJ FPGAs proposed

- Refs.: Fourie and Katam
- However, the configuration logic is via JJs, so the result is not very dense

Hybrid 2LAL-JJ controller

Reconfigurable Josephson Route Route Route Spst Switch
junction (FPGA)
Controlled layer
Configuration
Adiabatic shiftConfiguration shift register storageAdiabatic waveform storageAdiabatic shift ϕ_1 ϕ_2 ϕ_3 ϕ_0 register $\frac{\phi_1}{\mu}$ ϕ_2 ϕ_3 ϕ_0 register $\frac{1}{\mu}$ $\frac{1}{\mu}$ $\frac{1}{\mu}$ memory ϕ_0 ϕ_1 ϕ_2 ϕ_3

Conclusions

- Paper <u>http://www.zettaflops.org/CATC</u>
- Pre quantum supremacy brings attention to <u>scalable</u> control systems for quantum computes
- Cryogenic adiabatic transistor circuits are helpful due to a principle related to temperature
 - "dissipate the heat at 300 K"
- System designers expect a suite of technologies
 - Smartphones need CMOS + DRAM + Flash
 - Cryo systems need JJs + Cryo adiabatic transistor circuits
- Further work:
 - Test hybrid of JJ + 22FFL, 22FDX, 22ULP, or ST 28 FDSOI
 - Test architectures applicable to quantum computer control
 - Rebalance transistors

IEEE Transactions on Quantum Engineering

Status: Proposed for approval November 2019, first issue January 2020 **Call to action**: Precollecting manuscripts now for peer review. If interested, talk to anybody on this slide.

Open access charge subsidized for manuscripts submitted by December 31, 2019 (IEEE CSC)

Pub. model: Continuously published <u>Gold Open Access</u>, format same as "IEEE Access"

Erik DeBenedictis, proposed and acting EIC, **Oleg Mukhanov**, assoc. editor, **Britton Plourde**, reviewer, **Adriana E. Lita** and **Ryan Cam**acho, photonics. *Seeking additional associate editors*

 Sponsors: IEEE CSC, Magnetics, Microwave, Photonics, and Signal Proc. Societies
 Scope: TQE covers quantum engineering within IEEE's scope of electrical and electronic engineering.

Backup

Backup: Transistor properties

- Based on Spice simulations, 4 K quantum computer controllers need to scale 50-72 qubits to the next step should work with Intel 22FFL, GF 22FDX, TSMC 22ULP, ST 28 FDSOI "out of box"
- Custom transistors would help, may not be that different
 - Need ultra-low leakage, i. e. high I_{on}/I_{off} ratio
 - Quantum computer performance comes from the qubits, so the traditional CMOS metrics don't hol
 - Natural steepening of subthreshold slope give maneuvering room; need thicker oxide and threshold adjustment at some point

Backup: Architectural issues

(Cryogenic Adiabatic Transistor Circuit = CATC)

- The CATC advantage is narrow
 - CATCs are slow; need to be a hybrid with something fast to be useful. Fortunately, a CATC-JJ hybrid is natural
 - Memory needs to be dense. Fortunately, CATCs are nearly as dense as transistors, far denser than JJs
 - CATCs are not fast enough to be the addressing logic for RAM, but CATCs work for memory-like structures like shift registers
- FPGAs and buffers
 - Quantum computer controllers are halfway between signal processors and general purpose computers

Backup Cold, scalable controller

- Hybrid FPGA
 - Configured logic: JJs, configuration logic: transistors
 - Problem: JJs are huge
 - Solution: FPGA "timeshares" JJs by on-the-fly reconfiguration
- All-cold SFQ microwave components
 - There is a suite of switches, modulators, etc. available, but they require waveforms piped in from 300 K
 - While we don't know how to make a random access cryo memory, waveforms are accessed as a stream, making the shift register in previous slides sufficient