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Abstract—This note discusses an energy efficient adiabatic 
memory based on several new design principles, further 
discussing the implications of those principles. Adiabatic 
transistor circuits, such as SCRL,1 2LAL,2 and S2LAL3 have 
been touted for low-energy logic circuits.4 They have also been 
proposed for cryogenic logic, such as the classical control system 
of a quantum computer.5 This note elaborates on a novel design 
concept used in cryogenic waveform storage. The design 
principles include using a ladder of multiple clock rates to exploit 
the variable energy efficiency of adiabatic circuits as a function 
of clock rate—yet also accounting for the cost of the clock change 
circuitry. In addition to providing a useful memory, the design 
principles may lead to a fairer method of comparing CMOS and 
adiabatic transistor circuits in general. 

Keywords—SCRL, 2LAL, S2LAL, CMOS, cryo CMOS, 
reversible computing, adiabatic computing  

I. INTRODUCTION 

Fig. 1 shows a storage subsystem for a digitized 
waveform,5 which is a sequential access memory. The example 
shows the bits stored in a series of large but slow shift registers 
whose outputs are combined into a smaller number of faster 
streams. 

Fig. 2 shows CMOS and adiabatic circuit characteristics on 
lines of constant energy-delay product, with the lower left 
being the preferred corner. CMOS does best on the metric only 
at the highest clock rates, but adiabatic circuits can trade speed 
for energy efficiency over a wide range. While slow computer 
systems are not advantageous, fast computer systems include a 
modest number of fast components and 
many other that are slower—such as 
memory. 

The example addressed by this note 
is a shift register that is as fast as CMOS 
because the external interface 
components run on the left side of the 
purple line in fig. 2 while most of the 
bits are held in much lower power 
adiabatic circuits that run on the right of 
the purple line. The shift register is thus 
both fast and big. 

The generalization of the shift 
register is a design technique that 
allocates fast adiabatic circuits to the 
critical path of a circuit while allowing 
memory and other high-complexity but 
low-speed functions to served by slow 
adiabatic circuits—thereby saving 

energy in a way not available when using CMOS. 

The logarithmic dissipation shift register that is the topic of 
this note has advantages, but the complete example in ref. 5 
also includes a second, Josephson junction technology for even 
higher speed. The hybrid technology is out of the scope of this 
note and the reader is referred to ref. 5. 

This note introduces several new adiabatic design 
principles: 

• To the best of the author’s knowledge, there are no 
adiabatic circuits in the literature that include multiple clocks at 
different speeds. 

• This note further describes how to use a ladder of 
different speed vs. energy efficiency tradeoffs as a design 
technique for adiabatic transistor circuits. 

• The logarithmic dissipation shift register illustrates 
how to use adiabatic transistor circuits designed for logic to 
create a memory that should be superior to CMOS for certain 
applications. 

• The shift register can be compared to a CMOS 
register of the same length based on chip area, speed, and 
energy dissipation, which is a more comprehensive comparison 
than has been possible in the past. 

• This document includes an appendix with ngspice 
simulation code. 
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Fig. 1. Hybrid subsystem for sequential storage. The adiabatic transistors are physically small but muse 
be slowed down to increase energy efficiency. However, the multiplexers speed up the data rate. The 
Josephson junctions on the right are physically large and hence a poor choice for storage, but they are 
fast and energy efficiency, making them suitable for the final multiplexing step.  
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II. LOGARITHMIC SHIFT REGISTER 

In lieu of the clock period steps of 250 ns, 25 ns, and 2.5 ns 
in fig. 1, let us consider a homogeneous n-level structure. For 
simplicity, let us assume the clock rate change is 2× between 
each pair of levels. 

Fig. 3a illustrates a 2× clock rate changer for data in shift 
registers. Its operation is based on a point in the clocking of all 
adiabatic transistorized shift registers (that the author is aware 
of) where the data is entirely contained in one stage. At this 
point, all the inputs, outputs, and clocks are at a voltage 
independent of the stored data. It is possible to logically move 
the shift register stage and the information it holds using pass 
gates. Since the voltages are independent of stored data, the 
relocation can be performed without any voltages changing and 
therefore without dissipation. If the relocation is implemented 
as the swapping of two shift register stages, including their 
data, the resulting system will naturally obey higher level 
properties required for reversible and adiabatic logic design. 
The diagram illustrates a binary tree with a 2× clock rate 
change per stage, but it should be clear how to extend the 
fanout to other values. 

Fig. 3b uses the clock rate changer to create a hierarchical 
shift register. Each of the circles is a 3-bit cyclic shift register, 
with each colored square being one adiabatic shift register 
stage, holding one bit, and clocked at the rate shown in the 
legend. 

In the absence of any bit exchanges by the circuit in fig. 3a, 
the entire system in fig. 3b would be a series of independent 3-
bit cyclic shift registers clocked at the rates shown in the 
legend. 

Fig. 2. (purple) Lines of constant energy (vertical) vs. delay (right) 
product become straight lines sloping downward at 45 on a log-log 
scale. (blue) CMOS and adiabatic circuits are fairly close in energy-
delay product at high speeds. (red) However, 2LAL and other adiabatic 
circuits maintain the energy-delay product along the purple line. This 
give greater design flexibility to adiabatic circuits, specifically using 
high speed logic only where necessary and saving energy elsewhere. 
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Fig. 3. The utility of clock speed shifting. (a) The clock-rate/parallelism changing circuit. (b) Imagine the green blocks comprise a cyclic shift register. The 
shift register would become longer if in every other clock cycle two adjacent bits were swapped with a red block in one of two additional cyclic shift 
registers, which are clocked at ½ the speed. This could repeat for blue blocks that are part of four cyclic shift registers, which are clocked at ¼ the speed, 
etc. (c) A 2D layout of the structure with four levels. (d) The energy efficiency will be better than CMOS in some cases. Each level of the hierarchy has 
more bits than the previous but higher energy efficiency, so dissipation per level is the same. This would lead to energy per shift being logarithmic in the 
total number of bits. 
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Now consider each cyclic shift register exchanging one bit 
with the register above it between each shift. Furthermore, after 
every second shift, two adjacent bits are exchanged with the 
two cyclic shift registers below. Thus, the bits originally in the 
green squares will no longer complete a cycle in three shifts, 
but each bit will go down either the left or right subtree until 
reaching a leaf node and then climb back up. Since both the left 
and right subtrees have the same structure, each pair of bits 
shifted from green to red will return at the same time—thus 
preserving the order of bits. 

From the perspective of the green register at the top of the 
tree, the entire structure below it simply serves to make the 
register longer. If the tree has n levels of fanout k, meaning the 
cyclic registers are of length k+1, the effective length of the 
register would be (k+1)(kn1). 

Fig. 3c shows a more intelligent 2D layout. It should be 
noted that the number of bits is exponential in the number of 
levels, so beyond a point, there will not be enough room in the 
2D plane to accommodate the tree without long wires to 
connect shift register stages. 

Fig. 3d computes the number of bits stored in an n-level 
structure and the energy per shift. The key point is that the 
number of cyclic registers at each level is the same as the 
energy efficiency increase due to the slower clock, so the total 
energy of each level is the same. Thus, for a register of length 
N, the dissipation per shift is O(log N). By comparison, a 
standard CMOS register has dissipation O(N) and a 2D array 
structure such as a DRAM or SRAM would be O(N). 

III. TEST CIRCUIT 

The top two levels of the circuit in 
fig. 3a have been coded in ngspice based 
on S2LAL, with the code appearing in 
the appendix. The output traces are 
illustrated in fig. 4. 

The S2LAL circuits are powered by 
a 2× clock in green and a 1× clock in 
purple, with the lower traces labeled 
“swap” causing an interchange of the bit 
values. In this circuit, bits in the blue 
and yellow traces are swapped so they 
appear in serial in the red trace. The 
circuit is the top two levels of fig. 3b, 
which have a total of eight stored bits, 
so the data pattern in the red trace would 
be expected to repeat with a period of 
eight (which it does). 

IV. CONCLUSIONS 

Is a logarithmic dissipation shift 
register better or worse than a CMOS 
one? Claims of superiority of reversible 
logic normally come from circuits such 
as multiplier array. A reversible 
multiplier array becomes more energy 
efficient as the clock slows down, but 
this causes the throughput to go down as 

well. While a CMOS multiplier is a specific circuit that will 
have a specific speed and energy dissipation, the reversible 
counterpart is a tradeoff space, making comparisons 
incomplete. Even after a comparison is performed, a human 
intent on proving one is better that the other can pick a point in 
the tradeoff space that makes their claim correct. 

The approach in this note may yield more satisfying results. 
According to fig. 2, the logarithmic dissipation shift register 
can be as fast as CMOS (both circuits operate at 1 GHz), so it 
makes sense to make the comparison at CMOS’s natural 
external interface speed. This note introduces the concept of a 
ladder of adiabatic clock frequencies that enable the adiabatic 
shift register to have internal components running at the low 
frequencies where adiabatic circuits yield their benefit. Thus, 
the approach in this note allows the adiabatic circuit to be as 
fast as CMOS and as energy efficient as the advocates of 
adiabatic circuitry claim it could be. However, this note 
includes the “clock rate converter” so a correct comparison 
must include the cost of that converter, hence yielding correct 
conclusions for all points in the trade space. 

The author makes no claim to have made a conclusive 
comparison. As mentioned, according to a standard adiabatic 
energy model, an N-bit adiabatic shift register has O(log N) 
dissipation compared to O(N) for a CMOS memory. This 
favors the adiabatic circuit. However, both the adiabatic circuit 
and CMOS would have overheads. More information and 
analysis would be required to tell which overhead would be 
greater. 

This note is also based on a subset of the ideas in ref. 5. 

Fig. 4. Simulation of clock rate change circuit. Fast clock, slow clock, and swap lines are labeled. The 
red top data trace at rate 2× is synthesized from blue and yellow data traces at rate 1×. The diagram 
shows two parallel bits of data at rate 1× swapping into two serial bits of data at rate 2×, 
demonstrating the key step in this note. 

Fast 
Clock 

Slow 
clock 

Swap 



 

4 
 

That document replaces the last, fastest, and least energy 
efficient multiplexer with a circuit based on Josephson 
junctions. Josephson junctions are not good for everything, but 
they are quite energy efficient for simple, fast logic. 
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A. Appendix: ngspice files 

The ngspice simulation code is intended to match the top two levels or fig. 3b and is shown in fig. 5 using the same color scheme. 
 

 
s2lal.cir (ratex.cir) 
    Ratex 
* S2LAL initial test setup. Demonstrates a 2x rate change. 
* S2LAL circuit from: 
* Frank, Michael P., et al. "Reversible Computing with Fast, Fully Static, Fully Adiabatic CMOS." arXiv preprint arXiv:2009.00448 (2020). 
* Contains Athas's adiabatic amplifier from: 
* Athas, W. C., et al. "Low-power digital systems based on adiabatic-switching principles." IEEE Transactions on VLSI Systems 2.4 (1994): 398-407 
* Tested with ngspice-30 (creation date Dec 28, 2018, from ngspice-30_64.zip 8,687,648 bytes) 
* (NOT TESTED RECENTLY) Also works with WRSPICE, except that the .control block is different for the two and has to be switched back and forth 
* For tutorial docs: no tabs; comments start column 61; 169 character maximum line length 
 
.param WRSPICE_PROGRAM=0                                    $ From WRspice manual: This enables users to include WRspice-specific input in SPICE files... 
.if (WRSPICE_PROGRAM=1)                                     $ WRspice builtin 
.MODEL p1 pmos(LEVEL=49 version=3.3.0) 
.MODEL n1 nmos(LEVEL=49 version=3.3.0) 
.endif 
.if (WRSPICE_PROGRAM=0)                                     $ ngspice builtin 
.MODEL p1 pmos(LEVEL=49 version=3.3.0) 
.MODEL n1 nmos(LEVEL=49 version=3.3.0) 
.endif 
 
.param CLAMP=1                                              $ clamp transistor of Athas's adiabatic amplifier, set to 0 to disable 
.param FULLPASS=0                                           $ other transistor to make the clamp a full pass gate 
.param ACAP=2e-12                                           $ capacitive load on the data line 
.param QQCAP=0e-12                                          $ capacitive load on the internal QQ node 
.param MUXCAP=1e-12                                         $ capacitive load on the MUX output 
 
*** SUBCIRCUIT DEFINITIONS 
* Figure 4 in arXiv:2009.00448, Athas's adiabatic amplifier but with complementary voltages on the two halves 
.SUBCKT AAMP AT AC T C piT piC GND PWR nsub psub ini='gg'   $ Athas's adiabatic amplifier. Args: AT/C T/C clockT/C substrate supplies 
.ic V(T)='ini' V(C)='vv-ini'                                $ .ic V(a)={gg} V(a2)=ini 
M0 piT AT T nsub n1                                         $ pass gate 
M1 piT AC T psub p1 
M2 piC AT C nsub n1                                         $ pass gate 
M3 piC AC C psub p1 
.if (CLAMP=1) 
M4 GND AC T nsub n1                                         $ clamp 
M5 PWR AT C psub p1 
.endif 
.if (FULLPASS=1) 
M6 GND AT T psub p1 
M7 PWR AC C nsub n1 
.endif 
.ENDS AAMP 
 
* Figure 5 in arXiv:2009.00448 
.SUBCKT LATCH AT AC QT QC piT piC pjT pjC GND PWR           $ One phase of the 2LAL shift register. Args: AT/C QT/C clock0T/C clock1T/C 
+ nsub psub tap0 tap1 tap2 tap3 ini='gg'                    $ substrate supplies 
R0 tap5 QT 1                                                $ circuit taps for debugging 
X1 AT AC T C piT piC GND PWR nsub psub AAMP ini='ini' 
M1 T pjT QT nsub n1                                         $ Frank's latch 
M2 T pjC QT psub p1 
M3 C pjT QC nsub n1                                         $ Frank's latch 
M4 C pjC QC psub p1 
C1 AT 0 ACAP 
C2 AC 0 ACAP 

X0 ratex 2× clock and swap 

X0.X1 (fast clock) 

X0.X5 (slow clock) 

X1 (slow clock) 

X5 (slow clock) 

X2 ratex 2× clock and swap 

X2.X1 (fast clock) 

X2.X5 (slow clock) 

X3 (slow clock) 

X4 (slow clock) 

Fig. 5. Diagram of simulated circuit. It is very nearly the top two levels of fig. 3b. Shown here 
with corresponding colors. 
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C3 T 0 QQCAP 
C4 C 0 QQCAP 
.ENDS LATCH 
 
* Figure 6 in arXiv:2009.00448, except this is just the first stage; shift clocks for subsequent stages 
.SUBCKT PHASE S0T S0C S1T S1C                               $ One stage of the 2LAL shift register. Args: AT/C QT/C 
+ p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub         $ 4x{ phi<n>T/C } DC Supply substrate supplies 
+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 ini='gg' 
X0  S0T S0C S1T S1C p1T p1C p0T p0C GND PWR nsub psub tap0 tap1 tap2 tap3 LATCH ini=ini 
X10 S1T S1C S0T S0C p2T p2C p3T p3C GND PWR nsub psub tap4 tap5 tap6 tap7 LATCH ini=ini 
.ends PHASE 
 
* Figure 6 in arXiv:2009.00448, except this is all 8 stages 
.SUBCKT SDELAY S0T S0C S8T S8C                              $ Four phases that just delay. Args: 2*{ data<n>T/C } 
+ p0T p0C p1T p1C p2T p2C p3T p3C                           $ clocks/power supplies 
+ p4T p4C p5T p5C p6T p6C p7T p7C 
+ GND PWR nsub psub                                         $ DC Supply substrate supplies 
+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 tap8 tap9 tapA tapB tapC tapD tapE tapF ini='gg' 
R0 tap0 S0T 1                                               $ circuit taps for debugging 
R1 tap1 S0C 1 
R2 tap2 S1T 1 
R3 tap3 S1C 1 
R4 tap4 S2T 1 
R5 tap5 S2C 1 
R6 tap6 S3T 1 
R7 tap7 S3C 1 
R8 tap8 S4T 1 
R9 tap9 S4C 1 
RA tapA S5T 1 
RB tapB S5C 1 
RC tapC S6T 1 
RD tapD S6C 1 
RE tapE S7T 1 
RF tapF S7C 1 
X0  S0T S0C S1T S1C p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub t100 t101 t102 t103 t200 t201 t202 t203 PHASE ini=gg 
X1  S1T S1C S2T S2C p1T p1C p2T p2C p3T p3C P4T P4C GND PWR nsub psub t110 t111 t112 t113 t210 t211 t212 t213 PHASE ini=ini 
X2  S2T S2C S3T S3C p2T p2C p3T p3C P4T P4C P5T P5C GND PWR nsub psub t120 t121 t122 t123 t220 t221 t222 t223 PHASE ini=ini 
X3  S3T S3C S4T S4C p3T p3C P4T P4C P5T P5C P6T P6C GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 PHASE ini=ini 
X4  S4T S4C S5T S5C P4T P4C P5T P5C P6T P6C P7T P7C GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 PHASE ini=ini 
X5  S5T S5C S6T S6C P5T P5C P6T P6C P7T P7C P0T P0C GND PWR nsub psub t150 t151 t152 t153 t250 t251 t252 t253 PHASE ini=ini 
X6  S6T S6C S7T S7C P6T P6C P7T P7C P0T P0C P1T P1C GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 PHASE ini=gg 
X7  S7T S7C S8T S8C P7T P7C P0T P0C P1T P1C P2T P2C GND PWR nsub psub t170 t171 t172 t173 t270 t271 t272 t273 PHASE ini=gg 
.ENDS SDELAY 
 
$ 2-input bi-directional MUX built with 2-rail address and pass gates 
.SUBCKT STR in0 in1 adrT adrC out0 out1 nsub psub           $ inputs in0 in1 adrT/C out; connect in[adr] to out 
M1 in0 adrT out0 psub p1                                    $ adr = 0 --> in0 connects to out 
.if (0) 
R1 in0 out0 1 
R2 in1 out1 1 
.else 
M2 in0 adrC out0 nsub n1                                    $ adr = 0 --> in0 connects to out 
M3 in1 adrC out0 psub p1                                    $ adr = 1 --> in1 connects to out 
M4 in1 adrT out0 nsub n1                                    $ adr = 1 --> in1 connects to out 
M5 in1 adrT out1 psub p1                                    $ adr = 0 --> in0 connects to out 
M6 in1 adrC out1 nsub n1                                    $ adr = 0 --> in0 connects to out 
M7 in0 adrC out1 psub p1                                    $ adr = 1 --> in1 connects to out 
M8 in0 adrT out1 nsub n1                                    $ adr = 1 --> in1 connects to out 
.endif 
C1 out0 0 MUXCAP 
C2 out1 0 MUXCAP 
.ENDS STR 
 
* Two stages with clock rate swap. Actually, it's the data that swaps 
.SUBCKT RATEX ATi ACi BTi BCi p0Ti p0Ci p1Ti p1Ci p2Ti p2Ci p3Ti p3Ci p4Ti p4Ci p5Ti p5Ci p6Ti p6Ci p7Ti p7Ci  
+             CTi CCi DTi DCi q0Ti q0Ci q1Ti q1Ci q2Ti q2Ci q3Ti q3Ci q4Ti q4Ci q5Ti q5Ci q6Ti q6Ci q7Ti q7Ci 
+ G1 G2 GND PWR nsub psub iniA=0 iniB=0                     $ DCi Supply substrate supplies 
X1 ATo ACo BTo BCo p0To p0Co p1To p1Co p2To p2Co p3To p3Co p4To p4Co p5To p5Co p6To p6Co p7To p7Co GND PWR nsub psub t300 t301 t302 t303 t304 t305 t306 t307 t308 t309 t30A 
t30B t30Ci t30D t30E t30F SDELAY ini=iniA 
X5 CTo CCo DTo DCo q0To q0Co q1To q1Co q2To q2Co q3To q3Co q4To q4Co q5To q5Co q6To q6Co q7To q7Co GND PWR nsub psub u300 u301 u302 u303 u304 u305 u306 u307 u308 u309 u30A 
u30B u30Ci u30D u30E u30F SDELAY ini=iniB 
X10 ATi CTi G1 G2 ATo CTo nsub psum STR                     $ inputs in0 in1 adrT/Ci out0 out1; optionally swap ins and outs 
X11 ACi CCi G1 G2 ACo CCo nsub psum STR 
X12 BTi DTi G1 G2 BTo DTo nsub psum STR 
X13 BCi DCi G1 G2 BCo DCo nsub psum STR 
X14 p0Ti q0Ti G1 G2 p0To q0To nsub psum STR 
X15 p0Ci q0Ci G1 G2 p0Co q0Co nsub psum STR 
X16 p1Ti q1Ti G1 G2 p1To q1To nsub psum STR 
X17 p1Ci q1Ci G1 G2 p1Co q1Co nsub psum STR 
X18 p2Ti q2Ti G1 G2 p2To q2To nsub psum STR 
X19 p2Ci q2Ci G1 G2 p2Co q2Co nsub psum STR 
X20 p3Ti q3Ti G1 G2 p3To q3To nsub psum STR 
X21 p3Ci q3Ci G1 G2 p3Co q3Co nsub psum STR 
X22 p4Ti q4Ti G1 G2 p4To q4To nsub psum STR 
X23 p4Ci q4Ci G1 G2 p4Co q4Co nsub psum STR 
X24 p5Ti q5Ti G1 G2 p5To q5To nsub psum STR 
X25 p5Ci q5Ci G1 G2 p5Co q5Co nsub psum STR 
X26 p6Ti q6Ti G1 G2 p6To q6To nsub psum STR 
X27 p6Ci q6Ci G1 G2 p6Co q6Co nsub psum STR 
X28 p7Ti q7Ti G1 G2 p7To q7To nsub psum STR 
X29 p7Ci q7Ci G1 G2 p7Co q7Co nsub psum STR 
.ENDS RATEX 
 
*** POWER-CLOCKS 
.param gg= 0V 
.param vv= 9.99V 
 
.param ticks=199                                            $ number of ticks in the simulation 
.param tick=1000NS                                          $ time of a tick 
.param tstep=24NS                                           $ time of a simulation step, so number of steps is tick*ticks/tstep 
.param ttn=18000ns                                          $ integration time for energy 
 
*** CLOCKS -- Original 4 clock phases and inverses (total four unique signal), but with Sw and fast phase 1's (total six unique signals) 
 
.param Ramp=0.80*tick 
.param PPT=0.10*tick                                       $ one PPT at beginning and end of sequence, two of these PPTs between ramps 
$ Extra delay to split phi0 into a fast and slow clock; if Fast=0, the clocks become the same 
$ See Saed G. Younis. Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic. No. AI-TR-1500. MIT AI Laboratory, 1994. 
.param Fast=PPT+Ramp+PPT 
 
$ The clocks comprise a series transistions (separated by PPTs). Starting at the beginning of the three-phase cycle, the clock are computed by repeatedly 
$ incrementing the time by the length of a transition and a PPT. 
.param f0uS=PPT 
.param f0uF=f0uS+Fast 
.param f1up=f0uF+Ramp+2*PPT 
.param f2up=f1up+Ramp+2*PPT 
.param f3up=f2up+Ramp+2*PPT 
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.param f0dn=f3up+Ramp+2*PPT 

.param f1dn=f0dn+Ramp+2*PPT 

.param f2dF=f1dn+Ramp+2*PPT 

.param f2dS=f2dF+Fast 

.param f3dn=f2dS+Ramp+2*PPT 

.param epoc=f3dn+Ramp+PPT 
 
Vphi0P 110 0 PWL('0' 'gg'                                 'f0uS' 'gg' 'f0uS+Ramp' 'vv'     'f0dn' 'vv' 'f0dn+Ramp' 'gg'     'epoc' 'gg' r='0') 
Vphi0f 510 0 PWL('0' 'gg'                                 'f0uF' 'gg' 'f0uF+Ramp' 'vv'     'f0dn' 'vv' 'f0dn+Ramp' 'gg'     'epoc' 'gg' r='0') 
Vphi1P 111 0 PWL('0' 'gg'                                 'f1up' 'gg' 'f1up+Ramp' 'vv'     'f1dn' 'vv' 'f1dn+Ramp' 'gg'     'epoc' 'gg' r='0') 
Vphi2P 112 0 PWL('0' 'gg'                                 'f2up' 'gg' 'f2up+Ramp' 'vv'     'f2dS' 'vv' 'f2dS+Ramp' 'gg'     'epoc' 'gg' r='0') 
Vphi2f 512 0 PWL('0' 'gg'                                 'f2up' 'gg' 'f2up+Ramp' 'vv'     'f2dF' 'vv' 'f2dF+Ramp' 'gg'     'epoc' 'gg' r='0') 
Vphi3P 113 0 PWL('0' 'gg'                                 'f3up' 'gg' 'f3up+Ramp' 'vv'     'f3dn' 'vv' 'f3dn+Ramp' 'gg'     'epoc' 'gg' r='0') 
Vphi4f 514 0 PWL('0' 'vv'                                 'f0uF' 'vv' 'f0uF+Ramp' 'gg'     'f0dn' 'gg' 'f0dn+Ramp' 'vv'     'epoc' 'vv' r='0') 
Vphi4P 114 0 PWL('0' 'vv'                                 'f0uS' 'vv' 'f0uS+Ramp' 'gg'     'f0dn' 'gg' 'f0dn+Ramp' 'vv'     'epoc' 'vv' r='0') 
Vphi5P 115 0 PWL('0' 'vv'                                 'f1up' 'vv' 'f1up+Ramp' 'gg'     'f1dn' 'gg' 'f1dn+Ramp' 'vv'     'epoc' 'vv' r='0') 
Vphi6f 516 0 PWL('0' 'vv'                                 'f2up' 'vv' 'f2up+Ramp' 'gg'     'f2dF' 'gg' 'f2dF+Ramp' 'vv'     'epoc' 'vv' r='0') 
Vphi6P 116 0 PWL('0' 'vv'                                 'f2up' 'vv' 'f2up+Ramp' 'gg'     'f2dS' 'gg' 'f2dS+Ramp' 'vv'     'epoc' 'vv' r='0') 
Vphi7P 117 0 PWL('0' 'vv'                                 'f3up' 'vv' 'f3up+Ramp' 'gg'     'f3dn' 'gg' 'f3dn+Ramp' 'vv'     'epoc' 'vv' r='0') 
 
ViiP   118 0 PWL('0' 'gg'                                 'f0uS' 'gg' 'f0uS+Ramp' 'vv'     'f2dS' 'vv' 'f2dS+Ramp' 'gg'     'epoc' 'gg' r='0') 
ViiN   119 0 PWL('0' 'vv'                                 'f0uS' 'vv' 'f0uS+Ramp' 'gg'     'f2dS' 'gg' 'f2dS+Ramp' 'vv'     'epoc' 'vv' r='0') 
 
.param g0uS=2*PPT 
.param g0uF=g0uS+2*Fast 
.param g1up=g0uF+2*Ramp+4*PPT 
.param g2up=g1up+2*Ramp+4*PPT 
.param g3up=g2up+2*Ramp+4*PPT 
.param g0dn=g3up+2*Ramp+4*PPT 
.param g1dn=g0dn+2*Ramp+4*PPT 
.param g2dF=g1dn+2*Ramp+4*PPT 
.param g2dS=g2dF+2*Fast 
.param g3dn=g2dS+2*Ramp+4*PPT 
.param gpoc=g3dn+2*Ramp+2*PPT 
 
Vphj0P 810 0 PWL('0' 'gg'                                 'g0uS' 'gg' 'g0uS+Ramp' 'vv'     'g0dn' 'vv' 'g0dn+Ramp' 'gg'     'gpoc' 'gg' r='0') 
Vphj0f 910 0 PWL('0' 'gg'                                 'g0uF' 'gg' 'g0uF+Ramp' 'vv'     'g0dn' 'vv' 'g0dn+Ramp' 'gg'     'gpoc' 'gg' r='0') 
Vphj1P 811 0 PWL('0' 'gg'                                 'g1up' 'gg' 'g1up+Ramp' 'vv'     'g1dn' 'vv' 'g1dn+Ramp' 'gg'     'gpoc' 'gg' r='0') 
Vphj2P 812 0 PWL('0' 'gg'                                 'g2up' 'gg' 'g2up+Ramp' 'vv'     'g2dS' 'vv' 'g2dS+Ramp' 'gg'     'gpoc' 'gg' r='0') 
Vphj2f 912 0 PWL('0' 'gg'                                 'g2up' 'gg' 'g2up+Ramp' 'vv'     'g2dF' 'vv' 'g2dF+Ramp' 'gg'     'gpoc' 'gg' r='0') 
Vphj3P 813 0 PWL('0' 'gg'                                 'g3up' 'gg' 'g3up+Ramp' 'vv'     'g3dn' 'vv' 'g3dn+Ramp' 'gg'     'gpoc' 'gg' r='0') 
Vphj4f 914 0 PWL('0' 'vv'                                 'g0uF' 'vv' 'g0uF+Ramp' 'gg'     'g0dn' 'gg' 'g0dn+Ramp' 'vv'     'gpoc' 'vv' r='0') 
Vphj4P 814 0 PWL('0' 'vv'                                 'g0uS' 'vv' 'g0uS+Ramp' 'gg'     'g0dn' 'gg' 'g0dn+Ramp' 'vv'     'gpoc' 'vv' r='0') 
Vphj5P 815 0 PWL('0' 'vv'                                 'g1up' 'vv' 'g1up+Ramp' 'gg'     'g1dn' 'gg' 'g1dn+Ramp' 'vv'     'gpoc' 'vv' r='0') 
Vphj6f 916 0 PWL('0' 'vv'                                 'g2up' 'vv' 'g2up+Ramp' 'gg'     'g2dF' 'gg' 'g2dF+Ramp' 'vv'     'gpoc' 'vv' r='0') 
Vphj6P 816 0 PWL('0' 'vv'                                 'g2up' 'vv' 'g2up+Ramp' 'gg'     'g2dS' 'gg' 'g2dS+Ramp' 'vv'     'gpoc' 'vv' r='0') 
Vphj7P 817 0 PWL('0' 'vv'                                 'g3up' 'vv' 'g3up+Ramp' 'gg'     'g3dn' 'gg' 'g3dn+Ramp' 'vv'     'gpoc' 'vv' r='0') 
 
Vg1    PPC 0 PWL('0' 'vv'                             'gpoc-PPT' 'vv' 'gpoc'      'gg'                '2*gpoc-PPT' 'gg'   '2*gpoc' 'vv' r='0') 
Vg2    PPT 0 PWL('0' 'gg'                             'gpoc-PPT' 'gg' 'gpoc'      'vv'                '2*gpoc-PPT' 'vv'   '2*gpoc' 'gg' r='0') 
 
VGND   200 0 DC 'gg' 
VPWR   201 0 DC 'vv' 
 
*** TOP-LEVEL CIRCUIT 
X0 FAT FAC BAT BAC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 
+  SAT SAC SBT SBC 810 814 811 815 812 816 813 817 814 810 815 811 816 812 817 813 PPC PPT 200 201 200 201 RATEX iniA=vv iniB=gg 
X1 SBT SBC SCT SCC 810 814 811 815 812 816 813 817 814 810 815 811 816 812 817 813 200 201 200 201 u320 u321 u322 u323 u324 u325 u326 u327 u328 u329 u32A u32B u32C u32D u32E 
u32F SDELAY ini=gg 
X5 SCT SCC SAT SAC 810 814 811 815 812 816 813 817 814 810 815 811 816 812 817 813 200 201 200 201 x320 x321 x322 x323 x324 x325 x326 x327 x328 x329 x32A x32B x32C x32D x32E 
x32F SDELAY ini=gg 
 
X2 BAT BAC FAT FAC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 
+  SXT SXC SYT SYC 810 814 811 815 812 816 813 817 814 810 815 811 816 812 817 813 PPC PPT 200 201 200 201 RATEX iniA=vv iniB=vv 
X3 SYT SYC SZT SZC 810 814 811 815 812 816 813 817 814 810 815 811 816 812 817 813 200 201 200 201 v320 v321 v322 v323 v324 v325 v326 v327 v328 v329 v32A v32B v32C v32D v32E 
v32F SDELAY ini=gg 
X4 SZT SZC SXT SXC 810 814 811 815 812 816 813 817 814 810 815 811 816 812 817 813 200 201 200 201 w320 w321 w322 w323 w324 w325 w326 w327 w328 w329 w32A w32B w32C w32D w32E 
w32F SDELAY ini=gg 
 
* power and energy calculation 
.if (WRSPICE_PROGRAM=0)                                     $ ngspice builtin 
B4 0 16 V=0 
+ +I(vphi0P)*v(110)+I(vphi1P)*v(111)+I(vphi2P)*v(112)+I(vphi3P)*v(113)+I(vphi4P)*v(114)+I(vphi5P)*v(115)+I(vphi6P)*v(116)+I(vphi7P)*v(117) 
+ +I(ViiP)*v(118)+I(viiN)*v(119) 
+ +I(VGND)*v(200)+I(VPWR)*v(201) 
A1 16 17 power_tally 
.model power_tally int(in_offset=0.0 gain=1.0 out_lower_limit=-1e12 out_upper_limit=1e12 limit_range=1e-9 out_ic=0.0) 
.endif 
 
.option noinit acct 
 
*************************************************************************************************** 
$ NGSPICE CONTROL AREA 
.TRAN 'tstep' 'ticks*tick' 
.control 
pre_set strict_errorhandling 
unset ngdebug 
run 
 
set color0=white 
set xbrushwidth=3 
set xgridwidth=1 
 
* measure power consumption 
meas tran Energy1us INTEG v(16) from=0 to=5us 
meas tran EnergyLev INTEG v(16) 'from=5us to=ttn' 
echo -------------------Results $&Energy1us , $&EnergyLev 
echo Results , $&Energy1us , $&EnergyLev >>scrl_s.csv 
 
plot v(16)                                                  $ plot instantaneous energy consumption 
+ ylimit -25m 25m 
plot v(17)                                                  $ plot accumulated energy dissipation 
+ ylimit 0 350n 
 
*************************************************************************************************** 
$ WRSPICE CONTROL AREA 
$ .control 
$ tran 'tstep' 'ticks*tick' 
 
*************************************************************************************************** 
$ END CONTROL AREA 
 
plot title "S2LAL clock and gated clock" ylimit 0 12 xlimit 0 200u 
$ gnuplot ylimit 0 12 xlimit 0 300u 
+ v(110)/9.99*0.9+10.55 
+ v(FAT)/9.99*0.9+ 8.55 
+ v(SAT)/9.99*0.9+ 6.55 
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+ v(SXT)/9.99*0.9+ 4.55 
+ v(810)/9.99*0.9+ 2.55 
+ v(PPT)/9.99*0.9+ 0.525 
+ v(PPC)/9.99*0.9+ 0.55 
 
$ set fn=file$&loop+x.png 
$ gnuplot gp/$fn v(a)-1 v(24)/2 v(25)/2 v(26)/2+.5 v(27)/2+.5 v(b2)+1.5 v(22)/2+2.5 v(23)/2+2.5 v(18)/2+3 v(19)/2+3 v(b1)+4 v(20)/2+5 v(21)/2+5 v(16)/2+5.5 v(17)/2+5.5 
v(b)+6.5 v(24)/2+7.5 v(25)/2+7.5 v(14)/2+8 v(15)/2+8 v(a2)+9 v(22)/2+10 v(23)/2+10 v(12)/2+10.5 v(13)/2+10.5 v(a1)+11.5 v(20)/2+12.5 v(21)/2+12.5 v(10)/2+13 v(11)/2+13 
v(a)+14 
$ * + v(i1)-2 v(i2)-3 v(j1)-4 v(j2)-5 10000000*v(42)-6 10000000*v(40)-7 10000000*v(41)-8  
$ + title "Curves: $&Stick s tick, $&Sticks ticks, $&Sttn s total, $&SloadC F ld, wid x $&Swidx, $&Svv V/2" ylimit -9 15 
$ *gnuplot gp/$fn v(a)-1 v(24)/2 v(25)/2 v(26)/2+.5 v(27)/2+.5 v(b2)+1.5 v(22)/2+2.5 v(23)/2+2.5 v(18)/2+3 v(19)/2+3 v(b1)+4 v(20)/2+5 v(21)/2+5 v(16)/2+5.5 v(17)/2+5.5 
v(b)+6.5 v(24)/2+7.5 v(25)/2+7.5 v(14)/2+8 v(15)/2+8 v(a2)+9 v(22)/2+10 v(23)/2+10 v(12)/2+10.5 v(13)/2+10.5 v(a1)+11.5 v(20)/2+12.5 v(21)/2+12.5 v(10)/2+13 v(11)/2+13 
v(a)+14 v(i1)-2 v(i2)-3 v(j1)-4 v(j2)-5 10000000*v(42)-6 10000000*v(40)-7 10000000*v(41)-8 title "step=$&Sstep s Ptick=$&Stick s time=$&Sttn s Pticks=$&Sticks split v=$&Svv 
V" ylimit -9 15 
 
 
.endc 
 
.END 
 


