

1

Inversion for S2LAL
Technical note (report) ZF004 v1.02, December 15, 2020

Erik P. DeBenedictis

Zettaflops, LLC, Albuquerque, NM 87112

erikdebenedictis@zettaflops.org

Abstract

This technical note extends the recently introduced S2LAL1 reversible logic family, which is a

static version of the 2LAL family.2 I created an inversion capability for 2LAL in a previous

report,3 and I do the same here for S2LAL. For S2LAL, inversion allows dual rail instead of

quad rail, cutting the number of transistors and wires in half for a given function. This note

includes two dual-rail circuits. One variant can co-exist in a S2LAL circuit. The second variant is

not compatible with S2LAL because it changes the voltage polarity on one of the rails, but is

more effective in other ways. Simulation source code is included in this document.

S2LAL Inversion, Variant 1

For 2LAL, I created a 2-level cascade by modifying the clock waveforms. This enabling

inversion but extending the cycle from 4 to 6 ramps reduced throughput significantly. However,

S2LAL already contains an adequate 2-level cascade in the sense that 2 fits entirely within the

flat top of S1, so there is no loss of throughput. In Fig. 1, I repeat the method of using data signal

S1 in the 0 state to gate clock 2, which starts out with the same shape as a 1 signal.

During forward clocking, each stage is expected to drive its output signal (S2 or T2) when 1 is

high, making the transition from 0 to 1 (if there is to be a transition) at the same time as the 2

clock. The stage is expected to be tri-stated when 1 is low. The circuit in Fig. 1 complies, thus

creating T2 = −S2. As in [3], this type of circuit creates a new data stream, which runs backwards

naturally and can be mirrored for decomputation.

The intermediate signal Q2 is created by using S1 to select between 2 and ground. The timing

diagram shows that the 2 clock transition occurs when the S1 signal is stable, so Q2 is a low-

impedance voltage source and can deliver and recover energy.

The red circuitry in Fig. 1 is shorthand for a pair of circuits with complementary voltages. All

indices may be shifted, mod 8, allowing inversion to occur in any phase. The pass gate to a fixed

voltage can sometimes be replaced by a single transistor, as in [1].

The circuit naturally extends to support for arbitrary inverted inputs. The extension is simply to

allow Q2 and T2 to replace F2 in Fig. 1a, yet using a mirrored version of the red circuit for R2 to

decompute the function containing inversion.

In fact, the red circuitry in Fig. 1a can be replaced by the two-input gates from [1, Figs. 8-9] as

shown in Fig. 1c, yet also allowing complemented inputs.

2

The enhancement in Fig. 1 is not exactly an inverter; it takes a stream of bits and creates a

second stream with the logical complement of the bits. The circuit can likewise create a new

stream with the AND or OR of two input streams, including any combination of input inversions.

Extension to XOR and XNOR is left as a future project.

S2LAL Inversion, Variant 2

Adiabatic circuits have been developed for computer security purposes that place a few very

even load on the power supply, such as EE-SPFAL.4 For background, there is a type of computer

hardware attack called differential power analysis that attempts to figure out secret information

by measuring changes in power supply current. If 0’s consume less power than 1’s, measuring

the power supply current at a particular instant in time may yield information about a bit in a

password. Repeating the measurement many times could yield an entire password.

Q2 2

Fig. 1. S2LAL inversion. The (a) base circuit and (b) timing diagrams are copied

from ref. 1, but I add three pass gates and the timing to invert the S2 signal. The

effect is not an inverter, but to launch an inverted stream Tn = −Sn. (c) Furthermore,

the gates from [1, Figs. 8-9] will work even with inverted inputs.

1

(a) Base circuit and inversion

Q2

-S2

(b) Base timing and extension

(c) General gates

Q2 A1

B1

T2 T3

2

3

The following situation with S2LAL’s electrical signal format makes it vulnerable to differential

power analysis.

S2LAL is naturally dual-rail, meaning each logical signal is represented by a signal on each of

two wires. One signal represents a 0 by a V-to-ground pulse and the other signal represents 1

with a ground-to-V pulse. The S2LAL trace in Fig. 2a shows a sequence of three 1s followed by

three 0s. The orange trace in Fig. 5a has a resting state of ground and is called “Q hat” (Q̂, where

the accent symbol is also called a circumflex) because the positive pulse representing 1 is peaked

in the middle like a “hat.” The same signal with a resting state of V is in black and called “Q

cup” (Q̌, where the accent symbol is a caron or an inverted hat) because the voltage waveform is

low in the middle. The logical inverse of Q is −Q, but in S2LAL it must be designated as −Q̂ and

−Q̌.

Let us see if we can derive an alternative to S2LAL1 that puts a more consistent load on the

power supply. This will be a circuit that signals via two wires containing Q̂ and −Q̂. However,

the circuit will not have any cups, so the hats would not be needed to distinguish the pulse

polarity. Thus, we could describe the alternative logic family with no hats and no cups. The

circuit’s terminology could be simplified to use just Q and −Q.

The timing is illustrated in Fig. 2b. With the orange trace being Q and the black one being −Q,

the trace shows the sequence 0111000111…

(a) S2LAL signaling

(b) Alternative signaling

Fig. 2. (a) S2LAL signaling repeating sequence 111000… with Q̂ and Q̌ (b) signaling

0111000… with Q and −Q. The latter may lead to a more even load. (c) Circuit

reference.

Flip

D Q

Flop

(c) Circuit reference

Flip

D Q

Flop

Flip

D Q

Flop

4

The alternative will put S2LAL into the category of circuits that are resistant to some side

channel attacks, so the second variant circuit can be interpreted in the context of papers on that

topic.4

Fig. 3 illustrates the alternative circuit. Fig. 3a is derived from [1, Fig. 4], but expanding the pass

gate into its two transistors and labeling the input with the applicable phase. Without loss of

generality, Fig. 3b is the same circuit processing the signal −A.

The upper symbol Âi-1 in Fig. 3a enables one transistor of the pass gate that gates the clock ϕ̂i to

the output. We can replace this signal with −Âi-1 because the alternative signal is stable at the

correct level when needed to gate the clock, and is simply creating a redundant path to ground at

other times.

Fig. 3. (a) Unlatched adiabatic buffer from [1, Fig. 4], (b) same buffer for the negated

signal (but not the cup symbol), (c) however, the incoming cup signals can be

generated from the negated signals in the previous stage, provided that a helper signal

či is available. (d) The helper signal can be generated once in an entire circuit from

available clocks.

či-1

(a) from Frank [12, Fig. 4] (b) same circuit for −A

(c) replace cups; add extra clamp transistor

(d) helper signal for clamp; has no data

či

ϕ̂i ϕ̂i

ϕ̂i ϕ̂i

ϕ̂i+4

ϕî-2

ϕî-1

ϕî-1

Âi-1

Q̂i
−Âi-1

−Âi-1 −Âi-1

Âi-1
−Q̂i

Âi-1

či-1

Âi-1 −Âi-1 Ǎi-1

Ǎi-1 −Ǎi-1

−Ǎi-1

Q̂i −Q̂i

5

Likewise, the lower symbol Ǎi-1 in Fig. 3a enables the transistor that clamps the output to ground.

Replacing that signal with Âi-1 helps if the desired output is a 0, but will leave the output floating

between output pulses. This leads us add a transistor gated by the signal či-1. This signal is the

electrical inverse of the other signals for Âi-1 where Ai-1 = 1. Thus, the signal či-1 goes high during

the period where the output needs to be clamped to ground, irrespective of whether the output is

a 0 or 1.

Fig. 3d shows how to create the čk signal for stage k from four available clocks and four

transistors. There would need to be eight variants of this circuit to create čk for k = 0…7.

However, the čk’s are independent of data, so each such signal can be shared across multiple

gates.

The alternative circuit has several advantages.

The two circuits in Fig. 3c differ only by swapping A’s with −A’s. If the circuits are lain out near

each other and with a similar interconnect pattern, the overall electrical characteristics will be the

same irrespective of the data. This will smooth the load on the power supply. The code at the end

of this document simulates the shift register in Fig. 2c for both S2LAL and the second variant

circuit. The simulation output in Fig. 4 shows cumulative dissipation over time.

In variant 1, the circuit creates a new data stream with the inverted data. Strictly speaking, an

inverter would require a second, mirrored copy of the circuit to decompute the original stream.

However, inversion in variant 2 can be created just by swapping the wires. Variant 1 is less

efficient due to requiring an extra stage, which increases transistor count and delay.

Variant 2 is not simpler than variant 1, but they are closer than first appears. As described here,

each gate requires two more clamp transistors and the symbol ĉk. These extra costs are offset by

Fig.4. Both plots represent cumulative power dissipation of a 3-bit cyclic shift register

with a single inverter in the data stream. This will generate the pattern 000 100 110 111

011 001, going from all zeros to all ones and back. (a) S2LAL dissipation, showing

variance as the number of 1s changes, and (b) the circuit in Fig. 3 where the total

number of 0s and 1s does not change, so the dissipation is constant.

(a) S2LAL+inverter signaling (b) Alternative signaling

6

some simplifications: Only the clock ϕ̂k is required as a clock, although both ϕ̂k and ϕ ̌k are

required for a pass gate. If ϕ ̌k can be driven to a higher voltage without causing transistor

breakdown, the pass gates can be replaced by single pFET and nFET transistors driven by ϕ ̌k.

With appropriate design, neither additional clocks nor additional transistors would be required.

Specifically, ϕ̂k would be unchanged but ϕ ̌k would be driven to a higher voltage. The two extra

clamp transistors would be offset by removing a transistor from each of the pass gates. The

signal ĉk must be generated, but ĉk is not dependent on data. It is like a standard clock that only

goes to transistor gates. Thus, multiple ĉk’s may need to be generated, perhaps one per every 10

loads.

Conclusions

This note presents two variants on S2LAL that eliminate the need for quad-rail logic. Going from

dual to quad rail cuts the complexity of the circuitry that will fit on a chip in half and increases

power consumption. The second variant may also be of interest to the community that is

researching the use of reversible logic for resistance to side channel attacks.

References
[1] Frank, Michael P., et al. "Reversible Computing with Fast, Fully Static, Fully Adiabatic CMOS," 2020 IEEE International Conference on

Rebooting Computing, online. At the time of this writing, the conference is over but the paper is not in IEEE Xplore, but see arXiv preprint
arXiv:2009.00448 (2020).

[2] V. Anantharam, M. He, K. Natarajan, H. Xie, and M. P. Frank. “Driving fully-adiabatic logic circuits using custom high-Q MEMS resonators,”
in Proc. Int. Conf. Embedded Systems and Applications and Proc. Int. Conf VLSI (ESA/VLSI). Las Vegas, NV, pp. 5-11.

[3] E. DeBenedictis, Enhancements to Adiabatic Logic for Quantum Computer Control Electronics, technical report ZF002,
http://www.zettaflops.org/CATC.

[4] Kumar, S. Dinesh, Himanshu Thapliyal, and Azhar Mohammad. "EE-SPFAL: A Novel Energy-Efficient Secure Positive Feedback Adiabatic
Logic for DPA Resistant RFID and Smart Card," in IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2, pp. 281-293, 1 April-
June 2019, doi: 10.1109/TETC.2016.2645128.

http://www.zettaflops.org/CATC

 7

Appendix: ngspice file

The file below includes both S2LAL with an inverter and the alternative implementation.

There are two implementation of a three-bit cyclic shift register with an inverter in the data stream. This will

cause the three bits to go through the sequence 000 100 110 111 011 001 repeatedly. In other words, the

register will go from all 0s to all 1s. This would be expected to cause a change in dissipation, which is

plotted (Fig. 4).

The code uses built-in transistors models, which are based on obsolete transistors. Therefore, no absolute

performance is revealed.

The code includes an “.if (_)” control line. Changing the condition from 0 to 1 controls whether the code

simulates variant 1 or 2.

Q2LAL.cir
 Q2LAL

* Q2LAL initial test setup. S2LAL with "quiet 2LAL."

* Q2LAL is a signficant conceptual modification to S2LAL, albeit one that differs only in one transistor.

* Q2LAL transmits bits in straightforward dual-rail, which means a 1 is a pulse from ground to V. In S2LAL terminology, this is a "hat" pulse, meaning it has

* the most positive voltage in the middle. A Q2LAL 0 is a "hat" pulse on a different wire. In contrast, S2LAL sends a 1 on two wires, a hat pulse like Q2LAL but also

* an electrically inverted pulse on a different wire, i. e. a pulse from the idle V state to ground. S2LAL sends a 0 with both wires in the idle state.

*

* S2LAL references:

* Frank, Michael P., et al. "Reversible Computing with Fast, Fully Static, Fully Adiabatic CMOS." arXiv preprint arXiv:2009.00448 (2020).

* Contains Athas's adiabatic amplifier from:

* Athas, W. C., et al. "Low-power digital systems based on adiabatic-switching principles." IEEE Transactions on VLSI Systems 2.4 (1994): 398-407

*

* Tested with ngspice-30 (creation date Dec 28, 2018, from ngspice-30_64.zip 8,687,648 bytes)

*

* For tutorial docs: no tabs; comments start column 61; 169 character maximum line length

*

* Instructions:

* There is an .if statement on line 268. Set this to 0 or 1 to simulate S2LAL or Q2LAL

* There are three sets of plot commands at the end. Comment out either "plot or "gnuplot"

* If you want to change the length of a plot, ticks on line 210 and the time duration of the plot on line 334 and 335

.MODEL p1 pmos(LEVEL=49 version=3.3.0)

.MODEL n1 nmos(LEVEL=49 version=3.3.0)

.param CLAMP=1 $ clamp transistor of Athas's adiabatic amplifier, set to 0 to disable

.param ACAP=2e-12 $ capacitive load on the data line

.param QQCAP=0e-12 $ capacitive load on the internal QQ node

*** SUBCIRCUIT DEFINITIONS

* Figure 4 in arXiv:2009.00448, Athas's adiabatic amplifier but with complementary voltages on the two halves

.SUBCKT AAMP AT AC T C piT piC GND PWR nsub psub ini='gg' $ Athas's adiabatic amplifier. Args: AT/C T/C clockT/C substrate supplies

.ic V(T)='ini' V(C)='vv-ini' $.ic V(a)={gg} V(a2)=ini

M0 piT AT T nsub n1 $ pass gate

M1 piT AC T psub p1

M2 piC AT C nsub n1 $ pass gate

M3 piC AC C psub p1

.if (CLAMP=1)

M4 GND AC T nsub n1 $ clamp

M5 PWR AT C psub p1

.endif

.ENDS AAMP

* Figure 5 in arXiv:2009.00448

.SUBCKT LATCH AT AC QT QC piT piC pjT pjC GND PWR $ One phase of the 2LAL shift register. Args: AT/C QT/C clock0T/C clock1T/C

+ nsub psub tap0 tap1 tap2 tap3 ini='gg' $ substrate supplies

R0 tap5 QT 1 $ circuit taps for debugging

X1 AT AC T C piT piC GND PWR nsub psub AAMP ini='ini'

M1 T pjT QT nsub n1 $ Frank's latch

M2 T pjC QT psub p1

M3 C pjT QC nsub n1 $ Frank's latch

M4 C pjC QC psub p1

C1 AT 0 ACAP

C2 AC 0 ACAP

C3 T 0 QQCAP

C4 C 0 QQCAP

.ENDS LATCH

* Figure 6 in arXiv:2009.00448, except this is just the first stage; shift clocks for subsequent stages

.SUBCKT PHASE S0T S0C S1T S1C $ One stage of the 2LAL shift register. Args: AT/C QT/C

+ p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub $ 4x{ phi<n>T/C } DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 ini='gg'

X0 S0T S0C S1T S1C p1T p1C p0T p0C GND PWR nsub psub tap0 tap1 tap2 tap3 LATCH ini=ini

X10 S1T S1C S0T S0C p2T p2C p3T p3C GND PWR nsub psub tap4 tap5 tap6 tap7 LATCH ini=ini

.ends PHASE

* Figure 6 in arXiv:2009.00448, except this is all 8 stages

.SUBCKT SDELAY S0T S0C S8T S8C $ Four phases that just delay. Args: 2*{ data<n>T/C }

+ p0T p0C p1T p1C p2T p2C p3T p3C $ clocks/power supplies

+ p4T p4C p5T p5C p6T p6C p7T p7C

+ GND PWR nsub psub $ DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 tap8 tap9 tapA tapB ini='gg'

R0 tap0 S0T 1 $ circuit taps for debugging

R1 tap1 S0C 1

R2 tap2 S1T 1

R3 tap3 S1C 1

R4 tap4 S2T 1

R5 tap5 S2C 1

 8

R6 tap6 S3T 1

R7 tap7 S3C 1

R8 tap8 S4T 1

R9 tap9 S4C 1

RA tapA S5T 1

RB tapB S5C 1

RC tapC S6T 1

RD tapD S6C 1

RE tapE S7T 1

RF tapF S7C 1

X0 S0T S0C S1T S1C p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub t100 t101 t102 t103 t200 t201 t202 t203 PHASE ini=gg

X1 S1T S1C S2T S2C p1T p1C p2T p2C p3T p3C P4T P4C GND PWR nsub psub t110 t111 t112 t113 t210 t211 t212 t213 PHASE ini=ini

X2 S2T S2C S3T S3C p2T p2C p3T p3C P4T P4C P5T P5C GND PWR nsub psub t120 t121 t122 t123 t220 t221 t222 t223 PHASE ini=ini

X3 S3T S3C S4T S4C p3T p3C P4T P4C P5T P5C P6T P6C GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 PHASE ini=ini

X4 S4T S4C S5T S5C P4T P4C P5T P5C P6T P6C P7T P7C GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 PHASE ini=ini

X5 S5T S5C S6T S6C P5T P5C P6T P6C P7T P7C P0T P0C GND PWR nsub psub t150 t151 t152 t153 t250 t251 t252 t253 PHASE ini=ini

X6 S6T S6C S7T S7C P6T P6C P7T P7C P0T P0C P1T P1C GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 PHASE ini=gg

X7 S7T S7C S8T S8C P7T P7C P0T P0C P1T P1C P2T P2C GND PWR nsub psub t170 t171 t172 t173 t270 t271 t272 t273 PHASE ini=gg

.ENDS SDELAY

* This is an inverting version of the phase circuit. It simply reverses the input wires.

.SUBCKT PHASEv S0T S0C S1T S1C $ One stage of the 2LAL shift register. Args: AT/C QT/C

+ p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub $ 4x{ phi<n>T/C } DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 ini='gg'

X0 S0C S0T S1T S1C p1T p1C p0T p0C GND PWR nsub psub tap0 tap1 tap2 tap3 LATCH ini=ini

X10 S1C S1T S0T S0C p2T p2C p3T p3C GND PWR nsub psub tap4 tap5 tap6 tap7 LATCH ini=ini

.ends PHASEv

* This is an inverting version of the delay circuit. It simply calls PHASEv at a point that doesn't interfere with initialization.

.SUBCKT SDELAYv S0T S0C S8T S8C $ Four phases that just delay. Args: 2*{ data<n>T/C }

+ p0T p0C p1T p1C p2T p2C p3T p3C $ clocks/power supplies

+ p4T p4C p5T p5C p6T p6C p7T p7C

+ GND PWR nsub psub $ DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 tap8 tap9 tapA tapB ini='gg'

R0 tap0 S0T 1 $ circuit taps for debugging

R1 tap1 S0C 1

R2 tap2 S1T 1

R3 tap3 S1C 1

R4 tap4 S2T 1

R5 tap5 S2C 1

R6 tap6 S3T 1

R7 tap7 S3C 1

R8 tap8 S4T 1

R9 tap9 S4C 1

RA tapA S5T 1

RB tapB S5C 1

RC tapC S6T 1

RD tapD S6C 1

RE tapE S7T 1

RF tapF S7C 1

X0 S0T S0C S1T S1C p0T p0C p1T p1C p2T p2C p3T p3C GND PWR nsub psub t100 t101 t102 t103 t200 t201 t202 t203 PHASE ini=gg

X1 S1T S1C S2T S2C p1T p1C p2T p2C p3T p3C P4T P4C GND PWR nsub psub t110 t111 t112 t113 t210 t211 t212 t213 PHASE ini=ini

X2 S2T S2C S3T S3C p2T p2C p3T p3C P4T P4C P5T P5C GND PWR nsub psub t120 t121 t122 t123 t220 t221 t222 t223 PHASE ini=ini

X3 S3T S3C S4T S4C p3T p3C P4T P4C P5T P5C P6T P6C GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 PHASE ini=ini

X4 S4T S4C S5T S5C P4T P4C P5T P5C P6T P6C P7T P7C GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 PHASE ini=ini

X5 S5T S5C S6T S6C P5T P5C P6T P6C P7T P7C P0T P0C GND PWR nsub psub t150 t151 t152 t153 t250 t251 t252 t253 PHASE ini=ini

X6 S6T S6C S7T S7C P6T P6C P7T P7C P0T P0C P1T P1C GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 PHASEv ini=gg

X7 S7T S7C S8T S8C P7T P7C P0T P0C P1T P1C P2T P2C GND PWR nsub psub t170 t171 t172 t173 t270 t271 t272 t273 PHASE ini=gg

.ENDS SDELAYv

* Erik's "two hat" adiabatic amplifier. In S2LAL notation, it expects data input as A-hat and -A-hat. Given this, it produces the correct output.

.SUBCKT QAAmp AT AC T C pT Cl GND nsub psub ini='gg' $ Erik's adiabatic amplifier. Args: AT/C T/C clock&clamp substrate supplies

.ic V(T)='ini' V(C)='vv-ini' $.ic V(a)={gg} V(a2)=ini

M0 pT AT T nsub n1 $ pass gate

M1 pT AC T psub p1

M2 pT AC C nsub n1 $ pass gate

M3 pT AT C psub p1

.if (CLAMP=1)

M4 GND AC T nsub n1 $ clamp

M5 GND AT C nsub n1

M6 GND Cl T nsub n1 $ clamp

M7 GND Cl C nsub n1

.endif

.ENDS QAAmp

* This is the latched version; it is just a QAAmp followed by a pass gate.

.SUBCKT qLatch AT AC QT QC piT Cli pjT pjC GND PWR $ One phase of the 2LAL shift register. Args: AT/C QT/C clockiT&clamp clockjT/C

+ nsub psub tap0 tap1 tap2 tap3 ini='gg' $ substrate supplies

r0 tap0 piT 1 $ green

r1 tap1 T 1 $ red

r2 tap2 AC 1 $ blue

r3 tap3 Cli 1 $ yellow

X1 AT AC T C piT Cli GND nsub psub QAAmp ini='ini'

M1 T pjT QT nsub n1 $ Frank's latch

M2 T pjC QT psub p1

M3 C pjT QC nsub n1 $ Frank's latch

M4 C pjC QC psub p1

C1 AT 0 ACAP

C2 AC 0 ACAP

C3 T 0 QQCAP

C4 C 0 QQCAP

.ENDS qLatch

* One phase of a Q2LAL shift register.

.SUBCKT qPhase S0T S0C S1T S1C $ One stage of the 2LAL shift register. Args: AT/C QT/C

+ p0T p0C p1T Cl1 p2T Cl2 p3T p3C GND PWR nsub psub $ two clocks T/C and two clocks T&clamp DC Supply substrate supplies

+ tap0 tap1 tap2 tap3 tap4 tap5 tap6 tap7 ini='gg'

r0 tap0 t0 1

r1 tap1 t1 1

r2 tap2 t2 1

r3 tap3 t3 1

X0 S0T S0C S1T S1C p1T Cl1 p0T p0C GND PWR nsub psub t0 t1 t2 t3 qLatch ini=ini

X10 S1T S1C S0T S0C p2T Cl2 p3T p3C GND PWR nsub psub tap4 tap5 tap6 tap7 qLatch ini=ini

.ends qPhase

* 8 phases of a Q2LAL shift register.

.SUBCKT qDelay S0T S0C S8T S8C $ Four phases that just delay. Args: 2*{ data<n>T/C }

+ p0T p0C p1T p1C p2T p2C p3T p3C $ clocks/power supplies

+ p4T p4C p5T p5C p6T p6C p7T p7C

+ GND PWR nsub psub $ DC Supply substrate supplies

+ Cl0 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 $ clamps

+ tap8 tap9 tapA tapB ini='gg' $ debugging taps and initialization

R8 tap8 t120 1

R9 tap9 t121 1

RA tapA t122 1

RB tapB t123 1

RC tapC S6T 1

 9

RD tapD S6C 1

RE tapE S7T 1

RF tapF S7C 1

X0 S0T S0C S1T S1C p0T p0C p1T Cl0 p2T Cl1 p3T p3C GND PWR nsub psub t100 t101 t102 t103 t200 t201 t202 t203 qPhase ini=gg

X1 S1T S1C S2T S2C p1T p1C p2T Cl1 p3T Cl2 P4T P4C GND PWR nsub psub t110 t111 t112 t113 t210 t211 t212 t213 qPhase ini=ini

X2 S2T S2C S3T S3C p2T p2C p3T Cl2 P4T Cl3 P5T P5C GND PWR nsub psub t120 t121 t122 t123 t220 t221 t222 t223 qPhase ini=ini

X3 S3T S3C S4T S4C p3T p3C P4T Cl3 P5T Cl4 P6T P6C GND PWR nsub psub t130 t131 t132 t133 t230 t231 t232 t233 qPhase ini=ini

X4 S4T S4C S5T S5C P4T P4C P5T Cl4 P6T Cl5 P7T P7C GND PWR nsub psub t140 t141 t142 t143 t240 t241 t242 t243 qPhase ini=ini

X5 S5T S5C S6T S6C P5T P5C P6T Cl5 P7T Cl6 P0T P0C GND PWR nsub psub t150 t151 t152 t153 t250 t251 t252 t253 qPhase ini=ini

X6 S6T S6C S7T S7C P6T P6C P7T Cl6 P0T Cl7 P1T P1C GND PWR nsub psub t160 t161 t162 t163 t260 t261 t262 t263 qPhase ini=gg

X7 S7T S7C S8T S8C P7T P7C P0T Cl7 P1T Cl0 P2T P2C GND PWR nsub psub t170 t171 t172 t173 t270 t271 t272 t273 qPhase ini=gg

.ENDS qDelay

*** POWER-CLOCKS

.param gg= 0V

.param vv= 9.99V

.param ticks=199 $ number of ticks in the simulation

$.param ticks=499 $ number of ticks in the simulation

.param tick=1000NS $ time of a tick

.param tstep=25NS $ time of a simulation step, so number of steps is tick*ticks/tstep

.param ttn=18000ns $ integration time for energy

*** CLOCKS -- Original 8 clock phases and inverses (total eight unique signals), but with slow and fast phase 1's (total 12 unique signals)

.param Ramp=0.80*tick

.param PPT=0.10*tick $ one PPT at beginning and end of sequence, two of these PPTs between ramps

$ Extra delay to split phi0 into a fast and slow clock; if Fast=0, the clocks become the same

$ See Saed G. Younis. Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic. No. AI-TR-1500. MIT AI Laboratory, 1994.

$.param Fast=0 $ PPT+Ramp+PPT

.param Fast=PPT+Ramp+PPT

$ The clocks comprise a series transistions (separated by PPTs). Starting at the beginning of the three-phase cycle, the clock are computed by repeatedly

$ incrementing the time by the length of a transition and a PPT.

.param f0uS=PPT

.param f0uF=f0uS+Fast

.param f1up=f0uF+Ramp+2*PPT

.param f2up=f1up+Ramp+2*PPT

.param f3up=f2up+Ramp+2*PPT

.param f0dn=f3up+Ramp+2*PPT

.param f1dn=f0dn+Ramp+2*PPT

.param f2dF=f1dn+Ramp+2*PPT

.param f2dS=f2dF+Fast

.param f3dn=f2dS+Ramp+2*PPT

.param epoc=f3dn+Ramp+PPT

* These are clamp waveforms. They go high for one tick to clamp signals to ground. These are not clocks.

* Each can be generated with four transistors from existing clocks. They only connect to transistor gates, so they do not need a lot of drive capability.

Vc0 710 0 DC 'vv' PWL('0' 'vv' 'f0uS' 'vv' 'f0uS+Ramp' 'gg' 'f2dS' 'gg' 'f2dS+Ramp' 'vv' 'epoc' 'vv' r='0')

Vc1 711 0 DC 'vv' PWL('0' 'vv' 'f1up' 'vv' 'f1up+Ramp' 'gg' 'f3dn' 'gg' 'f3dn+Ramp' 'vv' 'epoc' 'vv' r='0')

Vc2 712 0 DC 'gg' PWL('0' 'gg' 'f0uS' 'gg' 'f0uS+Ramp' 'vv' 'f2up' 'vv' 'f2up+Ramp' 'gg' 'epoc' 'gg' r='0')

Vc3 713 0 DC 'gg' PWL('0' 'gg' 'f1up' 'gg' 'f1up+Ramp' 'vv' 'f3up' 'vv' 'f3up+Ramp' 'gg' 'epoc' 'gg' r='0')

Vc4 714 0 DC 'gg' PWL('0' 'gg' 'f2up' 'gg' 'f2up+Ramp' 'vv' 'f0dn' 'vv' 'f0dn+Ramp' 'gg' 'epoc' 'gg' r='0')

Vc5 715 0 DC 'gg' PWL('0' 'gg' 'f3up' 'gg' 'f3up+Ramp' 'vv' 'f1dn' 'vv' 'f1dn+Ramp' 'gg' 'epoc' 'gg' r='0')

Vc6 716 0 DC 'gg' PWL('0' 'gg' 'f0dn' 'gg' 'f0dn+Ramp' 'vv' 'f2dS' 'vv' 'f2dS+Ramp' 'gg' 'epoc' 'gg' r='0')

Vc7 717 0 DC 'gg' PWL('0' 'gg' 'f1dn' 'gg' 'f1dn+Ramp' 'vv' 'f3dn' 'vv' 'f3dn+Ramp' 'gg' 'epoc' 'gg' r='0')

* These are the power clocks, including separate fast and slow clocks

Vphi0P 110 0 DC 'gg' PWL('0' 'gg' 'f0uS' 'gg' 'f0uS+Ramp' 'vv' 'f0dn' 'vv' 'f0dn+Ramp' 'gg' 'epoc' 'gg' r='0')

Vphi0f 510 0 DC 'gg' PWL('0' 'gg' 'f0uF' 'gg' 'f0uF+Ramp' 'vv' 'f0dn' 'vv' 'f0dn+Ramp' 'gg' 'epoc' 'gg' r='0')

Vphi1P 111 0 DC 'gg' PWL('0' 'gg' 'f1up' 'gg' 'f1up+Ramp' 'vv' 'f1dn' 'vv' 'f1dn+Ramp' 'gg' 'epoc' 'gg' r='0')

Vphi2P 112 0 DC 'gg' PWL('0' 'gg' 'f2up' 'gg' 'f2up+Ramp' 'vv' 'f2dS' 'vv' 'f2dS+Ramp' 'gg' 'epoc' 'gg' r='0')

Vphi2f 512 0 DC 'gg' PWL('0' 'gg' 'f2up' 'gg' 'f2up+Ramp' 'vv' 'f2dF' 'vv' 'f2dF+Ramp' 'gg' 'epoc' 'gg' r='0')

Vphi3P 113 0 DC 'gg' PWL('0' 'gg' 'f3up' 'gg' 'f3up+Ramp' 'vv' 'f3dn' 'vv' 'f3dn+Ramp' 'gg' 'epoc' 'gg' r='0')

Vphi4f 514 0 DC 'vv' PWL('0' 'vv' 'f0uF' 'vv' 'f0uF+Ramp' 'gg' 'f0dn' 'gg' 'f0dn+Ramp' 'vv' 'epoc' 'vv' r='0')

Vphi4P 114 0 DC 'vv' PWL('0' 'vv' 'f0uS' 'vv' 'f0uS+Ramp' 'gg' 'f0dn' 'gg' 'f0dn+Ramp' 'vv' 'epoc' 'vv' r='0')

Vphi5P 115 0 DC 'vv' PWL('0' 'vv' 'f1up' 'vv' 'f1up+Ramp' 'gg' 'f1dn' 'gg' 'f1dn+Ramp' 'vv' 'epoc' 'vv' r='0')

Vphi6f 516 0 DC 'vv' PWL('0' 'vv' 'f2up' 'vv' 'f2up+Ramp' 'gg' 'f2dF' 'gg' 'f2dF+Ramp' 'vv' 'epoc' 'vv' r='0')

Vphi6P 116 0 DC 'vv' PWL('0' 'vv' 'f2up' 'vv' 'f2up+Ramp' 'gg' 'f2dS' 'gg' 'f2dS+Ramp' 'vv' 'epoc' 'vv' r='0')

Vphi7P 117 0 DC 'vv' PWL('0' 'vv' 'f3up' 'vv' 'f3up+Ramp' 'gg' 'f3dn' 'gg' 'f3dn+Ramp' 'vv' 'epoc' 'vv' r='0')

VGND 200 0 DC 'gg'

VPWR 201 0 DC 'vv'

*** TOP-LEVEL CIRCUIT

* Set the flat to 0 for a test of the quiet circuit and 1 for standard 2LAL

.if (1)

X0 SAT SAC SBT SBC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 710 711 712 713 714 715 716 717 pp8 pp9 ppA ppB qDelay ini=gg

X1 SBT SBC SCT SCC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 710 711 712 713 714 715 716 717 uu8 uu9 uuA uuB qDelay ini=gg

X5 SCT SCC SAC SAT 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 710 711 712 713 714 715 716 717 xx8 xx9 xxA xxB qDelay ini=vv

X2 SXT SXC SYT SYC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 710 711 712 713 714 715 716 717 qq8 qq9 qqA qqB qDelay ini=gg

X3 SYT SYC SZT SZC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 710 711 712 713 714 715 716 717 vv8 vv9 vvA vvB qDelay ini=gg

X4 SZT SZC SXC SXT 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 710 711 712 713 714 715 716 717 ww8 ww9 wwA wwB qDelay ini=vv

.else

X0 SAT SAC SBT SBC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 pp0 pp1 pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9 ppA ppB SDELAY ini=gg

X1 SBT SBC SCT SCC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 uu0 uu1 uu2 uu3 uu4 uu5 uu6 uu7 uu8 uu9 uuA uuB SDELAY ini=gg

X5 SCT SCC SAT SAC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7 xx8 xx9 xxA xxB SDELAYv ini=gg

X2 SXT SXC SYT SYC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 qq0 qq1 qq2 qq3 qq4 qq5 qq6 qq7 qq8 qq9 qqA qqB SDELAY ini=gg

X3 SYT SYC SZT SZC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 vv0 vv1 vv2 vv3 vv4 vv5 vv6 vv7 vv8 vv9 vvA vvB SDELAY ini=gg

X4 SZT SZC SXT SXC 110 114 111 115 112 116 113 117 114 110 115 111 116 112 117 113 200 201 200 201 ww0 ww1 ww2 ww3 ww4 ww5 ww6 ww7 ww8 ww9 wwA wwB SDELAYv ini=gg

.endif

* power and energy calculation

B4 0 16 V=0

+ +I(Vc0)*v(710)+I(Vc1)*v(711)+I(Vc2)*v(712)+I(Vc3)*v(713)+I(Vc4)*v(714)+I(Vc5)*v(715)+I(Vc6)*v(716)+I(Vc7)*v(717)

+ +I(vphi0P)*v(110)+I(vphi1P)*v(111)+I(vphi2P)*v(112)+I(vphi3P)*v(113)+I(vphi4P)*v(114)+I(vphi5P)*v(115)+I(vphi6P)*v(116)+I(vphi7P)*v(117)

+ +I(vphi0f)*v(510)+I(vphi2f)*v(512)+I(vphi4f)*v(514)+I(vphi6f)*v(116)

+ +I(VGND)*v(200)+I(VPWR)*v(201)

A1 16 17 power_tally

.model power_tally int(in_offset=0.0 gain=1.0 out_lower_limit=-1e12 out_upper_limit=1e12 limit_range=1e-9 out_ic=0.0)

.option noinit acct

$ NGSPICE CONTROL AREA

.TRAN 'tstep' 'ticks*tick'

.control

pre_set strict_errorhandling

unset ngdebug

run

* measure power consumption

meas tran Energy1us INTEG v(16) from=0 to=5us

meas tran EnergyLev INTEG v(16) 'from=5us to=ttn'

echo -------------------Results $&Energy1us , $&EnergyLev

echo Results , $&Energy1us , $&EnergyLev >>scrl_s.csv

 10

* white background

set color0=white

* black grid and text (only needed with X11, automatic with MS Win)

set color1=black

* wider grid and plot lines

set xbrushwidth=1

set xgridwidth=1

set hcopypscolor=1

set hcopyscale=4

set hcopypstxcolor=2

set hcopyfontsize=3

set gnuplot_terminal=png

plot $ plot instantaneous energy consumption

$ gnuplot gp/power title "Instantaneous dissipation"

+ ylimit -25m 25m

+ v(16)

plot ylimit 0 70n $ plot accumulated energy dissipation

$ gnuplot gp/energy title "Cumulative dissipation" ylimit 0 70n

+ v(17)

plot title "3-stage Q2LAL/S2LAL inverting shift register" ylimit 0 6 xlimit 0 200u

$ gnuplot gp/traces ylimit 0 6 xlimit 0 200u title "3-stage Q2LAL/S2LAL inverting shift register"

*+ v(710)/9.99*0.9+ 8.55+.000*3

*+ v(711)/9.99*0.9+ 8.55+.025*3

*+ v(712)/9.99*0.9+ 8.55+.050*3

*+ v(713)/9.99*0.9+ 8.55+.075*3

*+ v(714)/9.99*0.9+ 8.55+.100*3

*+ v(715)/9.99*0.9+ 8.55+.125*3

*+ v(716)/9.99*0.9+ 8.55+.150*3

*+ v(717)/9.99*0.9+ 8.55+.175*3

+

*+ v(110)/9.99*0.9+6.55

+

+ v(uu8)/9.99*0.9+ 4.675 $ green

+ v(uu9)/9.99*0.9+ 4.625 $ red

+ v(uuA)/9.99*0.9+ 4.575 $ blue

+ v(uuB)/9.99*0.9+ 4.525 $ yellow

+

+ v(SAT)/9.99*0.9+ 0.55

+ v(SAC)/9.99*0.9+ 0.55+.05

+ v(SXT)/9.99*0.9+ 2.55

+ v(SXC)/9.99*0.9+ 2.55+.05

.endc

.END

