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1. Introduction

Until recently computer aided design of digital systems has Involved various

programs, each of which solves Its own particular problem. When these programs

were written they were intended to be optimal at finding solutions to one person's

interpreta tion of a particular design task, without concern for compatibility with

other programs, or expansion of capabilities as design needs change. When a.

particular user designs using these programs he will typically operate In cycles. The

cycles Involve manually making input to a program, running the program, and

analyzing the output in preparation for the next cycle. Out of a space of all

possible design tasks these programs can be represented as points, with the user

connecting these points, and the Input and output states, by his own Intelligence. If

a design system could be developed whose functions are both compatible with each

others' Inputs and outputs, eliminating the need for translating by hand, and

intersect the space of design functions in exactly the way each user wants,

computer aided design would be more efficient. An Ideal computer aided design

system would be one that completely fills a portion of the design task space, rather

than being just a point. What is presented here is a discussion of how these

considerations' can be applied to define a system with these desirable prop~rtles.

Such a system solves the compatibility problem by serving as a database for

Information about the design in its various forms. The system Is also organized In

such a way that the user can, and Is encouraged to, define functions to solve his

own problems.

To give some Idea of why this is useful consider some functions that cannot now

be performed, but that an Ideal system should be able to perform: There are

essentially two types of simulators, gate level[8, 2], and behavioral level[7, 1].

Previously this meant that there were two programs, one for each type of simulation.

All simulations had to be done with devices described entirely at one level.

Unfortunately the user's problem often cannot be solved directly In this way. The

user will usually want to know how one part of the design will respond In an
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environment with the other parts. The user should be able to simulate a part of the
~

./ design at some level with the rest of the design at a more abstract level. This

capability is not In simple simulators. The user instead has to abstract by hand the

behavior into the Input format of the simulator and Interpret the results. An Ideal

system would allow the different simulators to be run simultaneously on a design

partially defined to each one. Consider now the documentation of a design. Say the

user wants a schematic drawing of his design. Since this Information has been used

by perhaps the simulator and the wire-list generator there should be no reason that

the user should have to provide this information again. Using separate design

programs, however there would be two different descriptions for the simulator and

the wire-list generator, neither of which can be used to produce a schematic. In

fact It Is difficult to verify that the simulator's description Is the same as the

wire-lister's. For an Ideal system, where the descriptions are 811 compatible, and

organized by their structural features, this task Is trivial. As a final example, It

should be pointed out that there are some programs In existence that do several of

the tasks outlined above, like gate level simulation, wire-lists, and schematics[3, 5].

These programs are generally very large and complex, they probably took a team of

programmers years to develop. The documentation for these systems describes

only how to use those features supplied by the factory. If the user wants an

additional feature he may either rewrite the program himself, or ask the factory for

the additional feature. An important aspect of an Ideal system Is that It would be

designed with expansion and changes in mind. There would be a formalism the user

could follow to make small or major changes at even the most basic levels.

Our approach Is to make a system, called the interconnect system, that serves as

a binder for all the various design functions. Each of the design functions would be

written to run under the control of the Interconnect system. The interconnect

system would provide information about the design from a database, would provide

system procedures to the design functions for manipulating the database, and would

provide utility procedures. By having one interconnection system to run all the

design functions we solve the compatibility problem. In fact, there Is no fundamental

reason why several design functions cannot be performed simultaneously In the

, --



same program.

3

This supports a solution to the multileveL simulation problem

, -

mentioned. Further, providing a description of the interface between the

interconnect system and the design functions allows the user to define his own

design functions, somewhat solVing the expansion problem.

This paper discusses the design, Implementation, and results of such a system.

We do this by discussing the interconnection system first, and the issues involved In

making It support as many different design functions as possible. To show that we

have been at least partially successful we discuss a multilevel simulator that was

designed and implemented under the proposed interconnection system. Test runs

"made on actual implementations of the interconnection system and the" simulator did

describe and simUlate designs as they were predicted to do, the results of which

are discussed.
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2. Interconnect System

The interconnect system has been presented as a totally new concept. While In

some respects it is new, in many respects it draws upon concepts from existing, but

totally unrelated systems. The only really new Idea in the interconnect system Is to

draw together these particular ideas into a single CAD system. To begin this

discussion of interconnect systems we should mention these systems, and their

attributes that are used in the interconnect system. A familiarity with these

systems will convey much of the philosophy of the Interconnect system.

As a start, almost all CAD programs take some Input which describes an

Interconnection. Circuit simulators use connections of transistors and resistors,

etc., wire-listers use connections of Integrated circuits, display programs use

connections of graphical modules, and so on[2, 8]. This system combines many of

the interconnection forms of other CAD programs. Since conceptually all

Interconnection forms are very similar, the combination, although more complex, Is

different only in the details. Retrospective analysis of the Implementation of the

Interconnect system allows us to propose a feature derived from the macro facilities

of conventional CAD programs, but significantly more powerful.

Secondly this system will need to use its own Interconnection structure to

connect the proper elements for a particular task, and return the output after the

task has been performed. This is just the function of a database manager. A

portion of this system Is a database manager. The database contains the

interconnection Information and the primitive elements of the Interconnection[4].

Finally, some of the attributes of this system related to Its capacity for expansion

are drawn from the LISP system. LISP has two noteworthy qualities In this context,

It allows the user to add lines of code to his program while running, and the user can

define parts of programs over a very wide range of levels. The system Is

structured so the user can almost always add to a program at both the high and low

ends. These qualities are why the largest programs In existence can be made and

maintained In LISP. It is hoped that by copying some of these characteristics of
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LISP this system will also be expandable. LISP has a serious drawback concerning..
'----' efficiency, however. To overcome this drawback this system is designed with some

of the philosophy of the· programming language BLISS in mind. This language

provides the user with many high level features, yet is very careful not to restrict

the user with respect to what is not well supported. We incorporate these Ideas

Into this system by providing system procedures of great power, but also allow the

user to bypass most of these features If they become a hindrance.

The rest of this chapter will discuss the Interconnection system by building it from

of the various unrelated systems from which it borrows ideas. The outline will be

along the lines of the last paragraph, it will start with those attributes most

applicable to CAD and will progress to supporting systems. First there will be a

discussion of the form of the data structure used to represent general

interconnection. This is followed by a section on the Issues concerned with

managing a da tabase for the interconnection Information, and how this can be used

to gain additional features. Finally a short discussion of a supporting software

system is given. Although the supporting systems may be totally unrelated to CAD,

they are crucial to the success of this system, and were developed especially for

It. We do, however refrain from discussion here of the actual design functions. The

following chapter is devoted to simulation, and what additional capabilities are

possible when a simulator Is implemented with this Interconnection system.

2.1 Interconnection Structure

The most application specific part of the interconnection system Is how

Information ahout a design Is represented. Naturally some of this Is totally specific

to an application, but as much information as possible should be kept in a common

form. As shown previously the information required by any particular function can be

abstracted as an interconnection of more primitive application specific data. By

primative we mean information about the design after all the Interconnection

Information Is removed. The simulation behavior of a register transfer element Is an

example. The behavior is the same regardless of how the element Is connected.
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We can now develop most of the concepts of the Interconnection structure. In

\ "'---' providing a system which combines the different functions we run into the

multi-level problem. This problem is that while all CAD functions use Interconnections

of primitives, a primitive of one function may be equivalent to a whole

Interconnection of primitives of another function. A typical example of this Is circuit

level and gate level representation of designs: each gate is an entire connection of

circuit elements. The solution to this is normally accomplished by a macro facility.

We propose for this system a feature that includes the capabilities if a macro

facility. We achive greater power in our implementation by allowing a macro part to

be on every element.

2.1.1 The Element

The fundamental data structure in the Interconnect system is called the element.

Each of the application required primitives is associated with an element data

structure. The association is realized by a pointer in the element that points to the

primitive to be connected. A pointer, a fundamental concept in programming

systems, is a word in storage with the address of a data structure. Interconnection

is represented by pointers in the elements, pointing to other elements. Connections

are not necessarily as simple as pointers, a connection normally Involves two

pointers and has other data associated with it. Elements· also have labels, to·

uniquely identify them,· and names, to tell what kind they are. Pointers to inferior

and superior elements, and parameters, are present, but are more obscure. All of

this will be discussed in turn.

All previous design programs have interconnection elements that may each h·ave

several independent connections. For example, a transistor will have four

connections, a two input gate three. We formalize this concept by giving each

element a number of ports, and allow the ports to be connected together. A port Is

an association of pointers and other data on an element that can be identified. A

connection therefore is a pointer to an element and some data identifying the

selected port. Port connections must be somewhat bi-directlonal, I.e. both elements
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must be able to determine what other elements they are connected to. This Is for

o many reasons. Consider simulation, where electrical signals may travel across

connections in both directions. It is also very desirable to have bl-directlonal

pointer sets for storage allocation purposes.

As an example of a connection consider an adder and latch from an Integrated

circuit design. Each will be shaped like a rectangle whose tops and bottoms will be

studded with input and output connections. Through the sides will come power and

control, like clock and carry signals. Within are transistors. The example Is to

·.

describe the connection of the latch to the adder. Visually this would be

accomplished by joining the two rectangles along a common side. Since on an

Integrated circuit only two solids may meet at a line we can use a connection that Is

only for connecting two elements together. The simplest way to do this Is to take

the two ports corresponding to the matching sides and direct their connections at

each other. This most basic connection is called a direct connection. Another

example of when a direct connection Is used Is when a functional simulation element

connects to one of its subdevices. These examples have the property that they

make sense when two elements connect, but not when three or more do. This Is

just as well because three or more pointers cannot each point at all the others.

Figure 2-1 depicts a direct connection.

Ports are indicated by : 0

other pointers

element

pointers

element

Figure 2-1: Example of Pointer Structure In a Direct Connection.
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2.1.2 Wires

..
\....,- There are many cases where more than two elements need to connect. The best

--

example of this Is connection by wire. Consider wire wrapping computer

backplanes, where groups of pins, typically an output and a number of inputs, are

connected together. The number will be variable In that an arbitrary number of pins

can be wired together. Connection by wire is done by making the wire an element

Itself. One way to implement such a connection would be to put however many ports

are necessary on the wire, giving each port a direct connection to the selected port

on one of the other elements. Another implementation Is to have the selected ports

on the other elements point to the wire. A second pointer can then be added to

each element and the Wire, and these pointers connected Into a ring. Now, In both

cases, the requirement that connections be bi-directional Is satisfied, since each

element can find all of the devices connected to it by following pointers. In the first

case the connections are the simple, direct, ones, but there are a variable number

of ports on the wire. In the second case the pointers are more complex, but there

Is exactly one connection to a wire. In an actual system only one method will be

used for implementing wires, but we present the details of both methods to make

clear what the properties of this type of connection are. Figure 2-2 shows an

example of a wire connection.

2.1.3 Interpretation of Interconnect

We have seen a way of representing interconnection. Since the discussion

refered repeatedly to pointers, the user might think these are details of

Implementation, and that there is some written way of representing interconnection

that is the definition of interconnection. This is common in other design programs,

but is not done here. Data structures in a computer connected by pointers form a

simple and extremely powerful concept, but trying to make a language to describe

such potentially random interconnections is cumbersome. We therefore define our

interconnection structure to be the Internal computer representation. There is also

a written form of the Interconnection structure, that can be thought of as an
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Ring pointer option.

Ports are indicated by : 0
element element element

other ports

regular pointers

('---.....f-------:,~~----J; ~
wirering pointers

Separate port option.

element element element
other ports

f
All ports on the wire
are the same.

wire
generic connections

Figure 2-2: Example of Pointer Structure In a Wire Connection.

afterthought. Such a language Is necessary if for no other reason than to allow the

linked core structures to be stored In files and regenerated later. Usually the user

will visualize an interconnection graphically, using shapes for the elements and lines

to represent interconnections. The shapes and lines map directly to the internal

representation, and not well to a written representation. Even In a graphical

representation some of the features of a written language, If present, would be

used, however. For example, designs will often assign words to various wires and
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elements as a mnemonic for remembering what they are. A written representation Is..
. \....-,- not only a necessary evil, as previously mentioned, but may be a source of useful

concepts to aid our understanding of an actual Interconnection. We therefore

develop a written representation, from which we will later take what Is useful from,

but will seldom use it in its entirety.

2.1.4 Written Representation

The first step in developing a written representation is to find a way of

describing interconnections. To do this we need a way of uniquely Identifying each

element, and the ports on the element. The first is solved by associating with each

element a label, or Ii word unique to the element in a particular context. A direct

connection, in addition, needs a way of identifying a particular port on a particular

element. The simplest way to do this is to number the ports, and describe a port by

both its element's label and the port number. This is adequate, although a system

can be made nicer by allowing mnemonic words instead of numbers to describe the

ports. Since a wire has only one type of connection, it Is in one sense simpler. If

we know that a connection is of type wire there should be no need to specify which

port. We unify this ~oncept by allowing one port in the element to be a special, or

default port. A wire connection could be made by specifying the label of the wire,

omitting the port. The default port would be used. This Is eqUivalent to saying that

connection by wire is several elements connecting to a wire directly, rather than to

any port.

Now that we can identify the ports involved in an interconnection we can show

how the connections of an element are described. At this level in the language we

view connections from the elements. The language will show how ports on a

particular element connect to other ports in the design. This The connection

information for each element will be a list associating each of its ports with a port

on other elements. means each connection will appear twice, once from each end.

There Is an opposing view, however where the description Is ordered by connection,

and the elements associated with a connection are listed. Making wires like other
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elements means we can both look at one element and see the wires it connects to,

~ as well as look at a wire and see what elements it connects to. We therefore

effectively support both views of connections.

The next level of the language involves representing a design as a m;mber of

connected primitives. The design is the entire specification for some system being

constructed, or perhaps a portion of a larger system. For now our design will be a

closed system, all connections are between two ports both In the same design.

Later, when macros are introduced, we show subdesigns, each like a complete

design itself, incorporated into a larger design. These subdesigns may not be

closed, in a sense connections outside a particular design will be possible. We have

shown already how to represent the connections of each particular element, and we

must now further identify each element, and show how they are connected into a

design. We have Introduced labels to identify elements uniquely, but we should

have a way of identifying elements of the same type. For instance, we have

refered to elements of type wire being used for wire connections, but as yet have

no way of telling a wire from some other element. This problem is solved by having

another word associated with each element, called its name. Examples of names

could be "wire", "NandGate", and "CPU". The second problem is solved by allowing

Individual element's connection descriptions to follow each other, separated by lines

or special characters. A design will be represented be a series of lines, each

specifying a label, name and haVing a list of connections for one element.

2.1.5 Examples of Interconnections

We can now give an example of a simple interconnection. Consider two elements

connected by a wire. The elements may be any primitive, circuits oriented readers

may think of transistors, the elements could also be gates, or a processor and

memory module. The elements may have other ports. We represent an

unreferenced port by the symbol "-" Figure 2-3 shows a wire connection,

,abbreviating the pointer structure to where only the port connections are shown. In

practice the pointer structure below the connection level will largely be trar.:;;:arent.

·-
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Figure 2-4 shows an example of the written representation of this interconnection.

Similarly figure 2-5 shows the direct connection of our previous example of a

register and adder on an integrated circuit.

representation.

Figure 2-6 Is the !sl1guage

, other ports

label:EIII label:Elt2 label:Elt3
name:Namel name:Name /

(»ort:One
name:name port:Two ( ~

portAwo por~rooq port;.Q,ne

y 'I
label:WirMme
name:wlre

other ports /
----_/

Figure 2-3: Core Structure Using Wires.

Numblilred Ports:
Elt1 :Name1
Elt2:Name2
Elt3:Name3

- Wirename ;
Wlrename;
Wlrename - ;

Ports are In positional order.
The wire Is automatically
generated and need not appear
In the written description.

Named Ports:

Elt1 :Name1
Elt2:Name2

Elt3:Name3

Wlrename:wlre

One=- Two=Wirename ;

Frooq=Wirename ;
One=Wirename Two=- ;

-=Elt1.Two -=Elt2.Frooq -=Elt2.0ne ;

Figure 2-4: Written Representation of Figure 2-3
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ground

ground

clock

outputs to rest of design

input B

output

input

output

label:xAdder
name:ICadder

input A

label:xLalch
name:ICIalch

power

carry

power

Figure 2-5: Core Structure Using Direct Connections.

xLatch: IClatch
xAdder:ICadder

input=xAdder.output output=- clock=- power=- ground=- ;
InputA=- InputB=- output=xLatch.lnput carry=- power=

ground=- ;

Figure 2-6: Written Representation of Figure 2-5

2.1.6 Macros

The macro concept leads to a simple extension of what we have previously been

calling the design. The proposed facility, that has the same function as a

conventional macro facility, will be developed first dS a conventional macro facility.

It will then be shown to be more powerful due to the manner in which the whole

facility can be incorporated into this system. We previously viewed the entire

design as being a single Interconnection of elements. In some sense this Is an

adequate way to view any design. For example a supercomputer will be composed

of a few hundred thousand transistors and resistors. It Is straightforward to model

this as a few hundred thousand connected elements. A feature of most real designs

Is that It Is possible to choose subsets of the elements such that the number of
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Interconnections to elements out of the set is small compared with the number inside

( "'---' It. The supercomputer example was probably made of integrated circuits, each

having sixteen interconnections through its pins and hundreds within Itself. Being

able to divide a design down this way makes it significantly more understandable.

The macro is a way of dividing a design down in this way.

Initially we can view the macro as being a dotted line surrounding a group of

elements. The dotted line is routed so that the fewest number of connections pass

through it, most will be entirely on one side or the other. The macro is strictly the

dotted line only, and the elements within are the m<lcro's inferior alements. If such

a division were made in most designs it would be found that many of the dotted lines

enclosed groups of elements connected in identical ways, the only difference being

where the whole groups are situated in the design. This leads to giving e(lch of

these dotted lines a name, which identifies Its contents. It would be most desirable

to be able to have only one definition of each similar macro, rather than having to

specify each instance. With the interconnection structure so far developed this is

not possible, as a particular port within the dotted line would be connected to a

different port in each instance of the macro. We solve this problem by actually

putting ports on the macro. The elements Inside can connect to their enclosing

macro as though the port were inside the dotted line, whereas elements outside the

macro connect as though they were outside. Now the interconnections within similar

macros are identical. The part of the design outside the macro can connect to the

macro through its ports, just as though it were any other element. In fact, the

dotted line enclosing elements is an element itself. We now generalize elements to

have Inferior elements. Our notion of a dotted line Is replaced with the solid line

notation of elements, where there can be other elements Inside.

Previously when we had developed only the concept of the design, how the

Individual elements connected together was not too Important. There was only one

design and every element belonged to it. We now need to formalize a way of

associating elements into groups, both to implement macros and the main design.

The simplest way to make groups of elements is to give each element a pointer and
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have each element point to the next member of its group, In a riog. If the group Is a
.<

\......- macro then the element which actually Implements the macro, I.e. the line around the

group, needs to have a pointer to the group, or at least a first element. Similarly

there needs to be a pointer to point to the first element of the whole design. Every

element Is given a pointer to inferior elements, from which it can find the rest by

following the ring. There is similarly a global Inferior element pointer, which points to

an element, as though that element were an inferior element in some more global

element. This concept is extended one step further to say that there is no global

design, but there is a top level element. That is, there Is a name for the entire

design, and there may be ports at the outermost level, like the ports visible from the

Inside of a macro.

Combining the basic elements and macros allows us to make an extension to the

familiar concept of the macro. We allow an element to have both inferior elements,

for which It serves as an enclosure, and primitive characteristics of Its own. The

most direct application of this is to functional descriptive languages. A typical

description will have a main part and some number of subparts. The subparts may

further have subparts. The representation of such a description will be an element

with the characteristics of the main part, with inferior elements, each with the

characteristics of the subparts. Figure 2-7 demonstrates some of the pointer

structure within an element With the macro facility.

2.1.7 Written Representation of Macros

We now need to extend the written representation to accommodate the macro

facility. We first need to consider how to represent connections from Inside an

element to the ports on the macro. We do this naming ports outside the immediate

enclosure by the name of the macro and the port name, or the name of the macro

and the label of one of its Inferior elements and that element's port name. Notice of

the use of both names and labels. This gives us considerably more capability than

needed just to connect to the ports of the immediately enclosing superior element.

In fact this gives us access to all ports at a lower level of macro nesting, in 8
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-----------------------r,,,

elt ,
1_<;;--'-'-- inferior element

lot ally interior
connection

ell

"dolled line" view -----0>' J '
of a macro I I, :

, I

I I
--------------------------------

ring of inferior elements

Figure 2-7: Example of Inferior Element Pointer Structure.

manner similar to variable accessing rules In ALGOL like programming languages. To

show how this is used, a port of the immediate macro Is accessed as though the

macro were in the present group with its name being its label. If there were a

nesting of several macros within macros it would be like each of those macros were

In the present group, with names being their labels. If It were desired to connect

directly from within a macro to a port outside, it could be done by replacing the port

name of one of these virtual elements with the label and port name of one of Its

subelements.

We can now give some rules for naming and finding ports. These rules are with

respect to the element they are being named from. The name Is like a map of how

to go from one element to some port. Firstly the ports of the reference element are

scanned to see If their port name matches the element's name, If so then that port

Is named. Otherwise the labels of the other elements at the same level are

scanned. If there is a match then the second part of the name Identifies the port on

that element. Otherwise the names of the chain of elements representing outer

macro levels are scanned. If there is a match then the two following parts of the

name are the label and port name of one of its inferior elements. Not all ports can
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be named from every element. This means that some connections, like from an

element to an outer macro level, will be named only once, rather than twice as are

normal connections. The way In which whole macros are manipulated by the system

Is a subject if the next section.

2.1.8 Parameters

We now digress and discuss a feature that has been passed over. It is

sometimes desirable to have elements that are the same in many respects but have

different parameters. For example a propagation delay might be a parameter for a

gate, an initialization file name a parameter for a memory, etc. To provide this we

allow elements to have parameters. Parameters may be numbers, or identifiers. or

whatever the user wants to implement. Parameters are grouped Into parameter

sets, each of which has a set name. Each element can have an arbitrary number of

parameter sets. Parameters have no real conceptual significance, but they make

the system easier to use.

2.2 Database Facilities

A sufficient and convenient technique for storing all the information about our

Interconnections is a database organized by the names of elements. Under each

name are entries for primitive descriptions and descriptions in terms of Inferior

elements. For a little more flexibility these entries are grouped together under

option names, and there may be several options for each element name. Since the

system treats the whole design as though it were an element, the whole design will

be stored under its name. A main design's entry would likely have no primitive

description. Its Inferior element description would contain only the immediately

inferior elements. if the inferior elements had inferior elements themselves they

would have an entry in the database with a non-empty inferior element part. At

some level there would be entries for devices with no Inferior element part but a

primitives part.

Consider the assembly of an interconnect structure from the database. The user
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will provide a name for the top level element. The databas.e is then called to

~ provide primitives to the system, and to setup the Inferior elements of the top

element. At this point there are elements which are partially represented, Le. they

are connected to elements on the same level but have no description. The user will

then instruct the system to build upon these incomplete elements by getting their

descriptions from the database. The user will be supplying options to the system so

the proper definition of each element is used. If the design Is something realizable

then eventually all the elements will be complete. It is possible, however to make

recursive definitions of elements that cannot be built. At any stage the user can

stop the building process and do editing of the structure or invoke design functions.

It is also possible to return the structure to the database without losing any

Information. This is possible because we defined the interconnection structure as

being the internal representation, rather than the written one. By definition,

therefore we can get all the information known about an element from the

Interconnection structure. When applied to macros this becomes a significant

extension to the common macro concept. Here macros are defined In terms of their

Instance. We run in to an interesting issue here due to the existence of multiple

copies, and hence multiple definitions of an element. If there are several instances

of the same element in a structure, and one of them is changed, then whether the

change becomes permanent depends on the order they are returne·d to the

database. This is an unacceptable situation. To find a solution to this we must

consider the different ways in which a change might be made to the interconnection

structure. The first case is that there Is one instance of an element and the user

wants to change it. There is no problem here as long as the database is updated

properly. A second case is when a user wants to change one instance of an

element while leaVing the others the same. To accomplish this the user needs to

rename the one element so there is no conflict of definitions. The database then

needs to have a copy of this new, but similar element. A third case is if the user

wants to change all Instances of an element in the structure. This could be

accomplished by finding all instances of that element and changing them

simultaneously. A better way might be to rename, perhaps automatically, one
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Instance, change it, then instruct the system to rename back the element and fix
\ ..
'---' the other instances. Any system should have all three capabilities. FI9ure 2-8

shows an example of the database.

Z80
Functional option:

Simulation description:

{Reloeatable simulation code.}
Graphic description:

{Nothing, since this is a simulation entry.}
Inferior element description:

{Part1 :l801F
Part2:l80RD

Part3:l80WR
Physical option:

Simulation description:

{Dummy code to echo simulation messages through
tile element.}

Graphic description:

{Nothing again.}
Inferior element description:

{Gate1:Nandgate

Gate2: Norgate
... and so on ... }

The first option is for a functional description. The description has a
main part and three subdevices corresponding to Instruction fetching,
reading and writing. The second option is a pure macro description,
describing the l80 as an interconnection of gates.

Figure 2-8: Example of a database entry for a l80 processor.

2.2.1 Interconnection Editor

We have been discussing changes to the interconnection structure without telling

how they might come about. One of the functions of the interconnection system Is

to provide an interactive editor for the interconnection structure. A design task will

typically start with an empty database. The user will build the system by adding
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and deleting subelements from the various elements, including the top level element.
, ..
'- These changes will be done by the editor. Naturally, the more powerful and easy to

use the editor Is, the more useful the system will be. There are, however very few

guidelines which need to be presented for the editor. Essentially the only

requirement for the editor is that it not produce Interconnections which are either

illegal, or cannot be stored in the written form. One additional function of the editor

is that it must be able to manipulate the primitive descriptions, It must at least be

able to enter them into the database.

2.3 Software Support System

At present no single programming system has sufficient capabilities to support the

Interconnection syster,l. The key reason for this Is that the primitive descriptions

for simulation will be executable machine code, and the system should be able to

incorporate this code Into itself automatically. The ability to define code while

running partitions programming systems, the ones that can do this are often

worthless otherwise and the ones that can't are worthless for that reason. What is

suggested Is that a software system with the necessary capabilities be written

especially for the interconnection system.

Such a software system will be built around a storage allocator. The unusual

feature of the storage allocation system is that a code data structure will be

supported. Other, more mundane, data types will also be supported. The code data

type will be associated with the relocatable files of the compl.!ting system, that is a

relocatable file can be read to make a code data record. The relocation information

will be permanently retained with the record in case storage compaction would

occur, or the record should be written out, or edited. By the nature of addresses In

code, code records can only be moved by the Inefficient process of garbage

collection. To be more efficient in the storage allocation of better conditioned data

structures, ring type pointers will be supported. This will allow incremental storage

allocation of the data structures which are commonly used. In the process of

further discussing these Issues we will formalize the concept of a data record, and
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describe Its three types, code, relocation record, and other.

2.3.1 Data Record

The storage allocation system will do its allocation In a single contiguous core

vector. This vector will be divided Into records. The records will form a doubly

linked list, an action requiring two words, the first and last, of each record. Records

are allocated by finding an empty record which is long enough and marking It as

non-empty. It Is split Into two parts If It is too long, the second part remaining

empty. Records are de-allocated by marking a record as empty, possibly joining It

with empty records at each end. In this way reasonably efficient storage allocation

will occur in most· cases. It is possible, however that a great many empty records

would accumulate which are too short to be used. In this case a method of storage

compaction Is desirable. Since a garbage collector will be present for other

reasons, we can use It to move all used records Into a contiguous part of the core

vector, leaVing a single large empty record.

2.3.2 Code Records and Relocation Records

The contents of a code record will be executable machine code and data areas.

Such a record may contain Instructions which have an address within the record, or

within another record of the proper type. The relocation record will identify which

words of a code record are addresses and which are not. Most machines have

addresses in different forms, such as displacements and absolute addresses, left

and right halves. Tllis information will also be In the relocation record for each

address. All of this Is contained in relocatable files.

In addition, r,alocatable files contain information as to entry points and symbols.

These are easily Implemented within the already developed structure. The start of

a code record could contain a list of symbol names and address words, the symbol

names being unrelocatable, and the addresses being relocatable. When the entire

record Is moved the symbols will remain valid.
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The reader should notice that retaining relocation information makes it possible to

add or delete words or instructions from inside a code record.

2.3.3 Other Records and Storage Allocation Routines

The records called other records are generalizations of the code record. They

may contain addresses of types not found in instructions, and they do not

necessarily require a relocation record. It is necessary that there be a way of

Identifying which words are addresses, what they actually point to, and changing

them so that they are valid after a storage shuffle. The way this is implemented Is

for a word in each record, say the second since the first is already used, to point to

an address in a code record that is the entry point of the marking coroutine for that

record. It may be desirable for there to be additional data, so the third word will

point to a record of unrelocatable data. The code and relocation records are now

special cases, a code record would have the entry for the system's code marking

coroutine in its second word and its third word would contain the address of the

relocation record. Groups of identical data structures would have the same

addresses in their second and third words. That is, they would share the same

marking routine and relocation record. If a set of data structures were similar In

gross features but different in details, a common marking routine could be written

and each different data structure would have a different relocation record. This Is

now as efficient with storage space as common programming language ;;ystems, but

significantly more flexible.

2.3.4 Moving Records

There are two types of records with respect to the amount of effort required In

moving them. One is typified by the code record. Such a record may be refered to

by pointers loca ted in any other record. The only way to find all of these pointers Is

to examine the entire storage pool. Another type of record can be made with only

ring pointers pointing to it and from it. This means that every pointer to it can be

found by following only a few pointers contained in the particular record. If a record
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of the first type needs to be moved, an entire garbage collection must be

performed, whereas the second can be moved by simple Incremental techniques.

Both types of records are supported. This is because it is realized that records that

require frequent moving can be made with just ring pointers with a little effort,

whereas records known to be stationary can be allowed to take the simpler form.

Figure 2-9 depicts the core structure.

system core

absolute system
routines

code marking
coroutine

~

~ _T~~,,:a~<:'. ~':.K____ f--

empty record

- -reverse r,nY - --~

- ma-rKing ro-ufine- -

,--- -reroc.-record - --
------------

data record

empty

-l> relocation
record

I I
I I

------------
------------
------------

--,
dat a record's I

I
marking routine, I
type is code I

I

records:

't;J goes 10 re ocalion record

Figure 2-9, Example of record structure.
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2.3.5 Other Fe:::tures

~ Since relocation information and symbols are retained with all the code records,

the user can have the system display the ma<.hine code in almost assembly

language. This can be facilitated by including In the relocation record Information

such as whether a non-relocatable word Is an instruction or data, and what type of

data, integer. floating point, etc. It was previously pointed out that words could be

Inserted and deleted in the middle of a code record by appropriate action of the

garbage collector, therefore a complete language system could be made. The

easiest language system would be assembler language, but by Incorporating more

source information into the records, other languages could be Implemented.

This implies that the system will do interactive Input and output with the user, and

perhaps access secondary storage. The philosophy here is that the most global

system should have total control over whatever It needs, and no control over what

can be performed more locally. It would be disastrous if user programs tied up I/O

to the extent that the system could not communicate an error condition to the user.

Therefore I/O should be a global system function. In fact, we go further to suggest

that the system manage all the user dialog, that is prompt for commands, implement

a command dispatcher for system and user defined commands, process Interrupts

from the terminal, etc.
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3. Functional Simulation

In the past di9ital discrete event simulators have been of two types with respect

to how the simulation elements are viewed. One type, typically called logic

simulators, looks mainly at the outside of the elements, where It Is connected to

other elements. The elements generally are supplied by the factory, and are simple

primitives. The user can simulate complex devices by representing them as

Interconnections of many primitives. The other type of simulators, called functional

simulators, view the simulation elements only from the inside, where Its internal

manipulations are described. They allow the user to simulate complex devices by

segmenting them into subprocesses and procedures, which may themselves be very

long. These two types of simulators have been mutually exclusive. This chapter

presents a way of mer9ing these two types of simulators.

Elements in this simulator are viewed from both the outside and Inside. In fact

the simulator has three fronts, or angles from which it can be viewed. One of these

is the manner In which the simulation Is controlled and monitored, and Is a front of all

simulators. The others are the external, interconnection and Internal, functional

views of the elements. The last two are present, one each, In the original types of

simulators. Large devices can now be simulated by both making elements of high

complexity, and connecting as many together as desired.

This system has an anal09Y in the operating system of a timesharing computer.

Such an operating system is intended to be used in two entirely different ways.

One is the human interaction from the terminal, the other is the support of user

programs. Such an operating system will typically have two manuals, one for user

commands, and one for operatin9 system procedures. This simulation system will

similarly have an interactive front, with commands activated by humans, and an

Internal front, where user defined computer code interacts with system procedures.

The internal part is even an extension of the internal front of the operating system

analogy, here the user can define his own system procedures. This is because It Is

recognized that some higher level applications will find sufficient and convenient the

provided set of system procedures, whereas other applications will need some
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esoteric user defined procedures in addition. At one level the system supports
l .t
'- discrete event simulation of elements that are generally like digital computer

elements. The user may define the way particular elements interact and how they

work. At a lower level the user could perhaps define a circuit simulator, and

simulate continuous systems together with discrete systems. At a higher level

system procedures are provided that are like those required by high level functional

description languages.

The lowest level of this system is a discrete event simulation scheduler. This Is a

piece of code that control Is passed to when simulation is invoked. It will start and

stop schedulable processes in accordance with simulation time. These processes

include the descriptions of simulation elements, an interactive simulation control

process, and whatever processes the user cares to define.

Above this level there is a formalism for the creating, delivering, and receiving of

messages, the external events of simulation. This formalism allows a computer,

capable of doing only do one thing at a time, to handle messages, which

fundamentally involve more than one element at a time. There are some fundamental

forms of messages which commonly appear in simulation, and these are supported as

part of the system. The user may define his own message types and delivery

mechanisms, and, with regards to compatibility, implement them. There is also a

formalism for checking message compatibility.

The highest level involves the organization of the functional descriptions that

describe the simulation elements. The purpose of functional description languages

is just this, but here we include the philosophy of how to operate in an environment

with other elements. Using these gUidelines functional descriptions of elements

normally appearing in logic simulators and elements normally described functionally

have been implemented. The user is not required to follow these guidelines, he may

Implement arbitrary message types.

This chapter is concerned strictly with the issues directly relevant to simulation,

and refrains from discussion of supporting systems. This simulation system requires
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that there be an interconnect system to generate, In core, a number of data..
"----' structures to represent the simulation elements, interconnected by pointers. In

simulation all that Is needed Is to know what connects to what, whereas a great

deal more information may be desired for non-simulation purposes. The interconnect

system will also need a facility for incorporating selected pieces of code,

representing the simulation models, Into a runnable program. It Is believed that the

material in this chapter can be applied independently of the details of any

interconnection system, or in situations where a system like the Interconnection

system previously described Is not present.

The issues of this simulator can be logically addressed by examining the features

of the logic and functional simulators from which it was developed. The

overwhelming features of logic simulators are the simulation elements, and their

connections to other elements. These are the first issues discussed. This part is

quite simple In logic simulators, and very rich in this simulator. In fact, the details

and side issues of the basic simulation elements extend through the rest of this

chapter. From logic simulators the issue of Inter-element communication can be

addressed. The message types of logic simulators are expanded upon in this portion

of the discussion. Simulation elements from functional description languages follow

fairly closely the view of simulation elements so far developed, With some additions.

These additions concern mainly the presence of subdevlces in a simulation model.

These are just software techniques for making the descriptions more structured, but

they require support from the simulation system. We then explore the issues of

actually making functional descriptions by following examples of Increasing

capability. Finally some side Issues, preViously set aside, are discussed.

3.1 The Element

The interconnection system provides its own element data structure for each

simulation model. The parts of this data structure that are relevant to simulation are

the ports and their connections to other ports on other elements, and the pointer to

the instance of the simulation model. A simulation model has an internal state part
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and a description part. The internal state part consists oJ explicitly defined
\ .<
'-./ variables, and implicitly, or system defined, variables. The explicitly defined

variables are the flags, registers, or arrays needed to conveniently describe the

function of the device. The implicit variables are the simulation time for the next

activation, address of the next machine instruction to be executed, the stack, etc.

The internal variables are not strictly internal, they can be accessed interactively

by the user, or by the element's subdevices.

The description is a sequence of machine instructions that Implement the function

of the element. A particular sequence of machine instructions need not be unique to

a particular element, but may be shared by several elements of the same type.

During simulation an element's internal state will change, and It will send a sequence

of messages out over its ports. The sequence of messages, each of which exists

only for a discrete value of simulation time, forms the external state of the device.

Since this is a discrete event simulator it is necessary th t every change in internal

or external state of some element be caused by either a pre-arranged delay

elapsing In, or a message being received on one of the ports of that element, or one

of Its subdevices. By this definition the external state and some of the internal

state can be made an arbitrary casual function of all the inputs to a device. Figure

3-1 depicts the structure of an element with a simulation model.

element dala slructure

conn

label:
elemenl inslancename:

"' simulation inslance machine cod:
( ~ description

./ poinler v variables
,....... ,....... -------

y y pc in code instructions
I I, I slack ...
I I

ections 10 blher elemenls
~..

inslances may share code

Figure 3-1 : Pointer structure of an element with a simulation model.
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3.1.1 Types of Elements

There are several different classes of elements. One of these represents the

regular simulation elements. Regular elements may be system defined primitives,

such as logic gates and arithmetic elements, or may be user defined, such as

functional descriptions of new processors. Another class Is those elements the

system has special interest in. In this class are various types of wires. In this

simulator the wire connecting several elements Is Itself an element. Each of the

ports on the several other elements connects to the wire. The wire therefore has a

simulation model, that usually is just to transparently echo the messages from one

port to all the others. Similarly, the internal state of a wire is the value on the wire.

As was mentioned previously, wires are specially known to the simulation system, I.e.

they can be automatically generated, and the simulation Implementation Is optimized

due to their simple and well known behavior.

3.2 Message System

A two phased approach is used to implement the message delivery system. The

two phased approach is used simply so that messages can be delivered In

contiguous simulation time. The phases are implemented In the description code by

the process part and the input chaining part. The process part Is responsible for

generating all the messages. The input chaining part receives all the messages.

The process part, a schedulable coroutine containing the bulk of the functional

description, has control over simulation time. All changes In external state are due

to this part. The Input chaining routine has the characteristics of a procedure,

although it may be implemented as a coroutine. This routine serves no other purpose

than to receive all the messages from the other elements and relay them, with some

processing, to the process part. This part is restricted In capabilities, all that It may

do is manipulate internal state and arrange the delay for its process. It may not

alter simulation time.

This Is sufficient to implement an arbitrary behavior. It was stated that every
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change in state is caused by either a delay elapsing, or a message being received.
, s
'-../ Changes due to delay elapsing are simply done by the process part, as it Is

activated at the proper simulation time. Since delay time is part of internal state It

may be set by either part. Changes caused by messages being received are

Implemented by the Input chaining part directly, if the change is internal. External

changes are implemented by the input chaining routine setting a zero time delay for

the process part, and the process part will then Implement the external change at

the same real time.

3.2.1 Scenario of Operation

The general scenario for the operation of the two phased system is as follows:

When a message Is delivered the input chaining routine is activated. The Internal

state will be changed as necessary to reflect that the message was received. The

input chaining part then examines the internal state to determine the earliest future

time that another change in state could occur. Then a delay for the process part Is

set. When the process part Is activated it examines the Internal state and makes

the appropriate changes to the internal and external state. The process part then

determines whether another delay is needed, and sets Its delay accordingly.

3.2.2 Third Phase of Message System

In many cases an element will have no use for the messages delivered to certain

of its ports. To improve efficiency in these cases a third phase exists. Its function

is to mask any messages to some ports. This phase consists of an array of flags,

one corresponding to each port. Whenever a message comes to the element the

proper flag is tested, and if set the input chaining routine is not activated. The total

picture of message delivery can now be summarized in a slightly different way.

When a message is sent to a port processing occurs at up to three levels,

depending on the predicted complexity of the response. If the response is simply to

ignore the message then processing stops after checking the mask flag. Some

responses require activation of the chaining routine, and responses actually
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requiring change in external state eventually activate both the chaining routine and
\ ..
~ the process part. A desirable result of this is high efficiency, the simplest and

quickest action possible is taken for each message.

A message Is delivered by a system procedure activating the input chaining

routine in an element. Information can be passed in any convenient way. Since

message delivery is not recursive the information can be left In globally accessible

locations. A message delivery system is implemented by code which follows

pointers from an element's port to connected ports, managing the additional

information, and activating the· input chaining routine. There are several message

types predefined by the simulator, and the user may Implement others.

3.2.3 Implemented Message Forms

The several types of message forms implemented by the system are believed to

be the most common. Two of these are associated with the concept of connection

by wire. The na tural function of a wire is to transparently distribute any message

from any connection to all other connections, although more complex schemes may

be implemented. The wire has an internal state, which is the value on the wire, of

which two types are recognized. One may have a value of only one or zero, I.e. a

bit, the other uses a;1 integer variable as its value. The Integer is intended to

represent a grollp of bit type wires, in number up to the word size of the computer.

The third message form does not utilize wire connection, but applies only when two

ports are connected directly to each other. Messa(;es of this type are merely flags,

and have no additional information. There are system procedures that can be called

by a process part to generate these messages. Figure 3-2 illustrates the various

message types.

Consider now some examples of message types the user may want to implement.

The wire method of connection is limited here to two types, bits and integers.

Larger numbers of bits may need to be implemented for some applications,

necessitating two integers, or possibly an array to hold the value. Interconnections

to the backplane of a computer have some characteristics of wires, but the
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Comments

The basic bit type wire.

Group of several bits, a bus.

A flag that something Is happening a t that

time.

Figure 3-2: Summary of message types

information transfered Is many bits in Irregular groups. This could be implemented by

a special wire type for a particular backplane configuration. An application has been

suggested where a tree type· priority structure needs to be simulated. Such a

structure can be viewed as an extension of a wire interconnection. A user could

implement a delivery procedure that would deliver a message presented to one part

of the structure only to selected other parts.

3.3 Subdevices

In functional simulation It is common for an element to have subdevices, and for

these subdevices to have access to the Internal and external state of the main

element. A subdevice here means a description which can be executing during

overlapping simulation time with its main element. A subdevice Is like a separate

element, except that it can manipulate the state of its main element. When

subdevices are implemented they are as separate elements connected by special,

direct, connections. The pointers of the direct connection can be followed to give

access to the state of the main element. Accessing the internal state of other

elements can be desirable, but side effects may occur if not approached with

caution. For example, if the value on a wire is arbitrarily changed without calling the

system wire change procedure then the elements connected to the wire will not

receive a message informing them of the change, and the simulation could proceed

Incorrectly. The rules for accessing are extended to allow the subdevices of an

element, of subdevices of subdevices, etc. to read or alter the internal state, or

send a message from one of the ports of a particular element. If this rule Is
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followed functional subdevlces get the desired access whereas other devices are
\ ..
'----' secure merely by not having subdevices.

3.4 Organization of Descriptions

The primitives outlined above leave the user much freedom In how he will

implement functional descriptions. In the case of large formal functional descriptions

compiled from a functional description language, the user will be well advised to use

a readable, expandable, and well structured method for implementation. It Is

realized, however that the user must have the ability to generate unstructured

elements which may be especially efficient or flexible. For this reason the system

does not restrict the user in defining arbitrary elements. There are guidelines for

how to organize functional descriptions In a' reliable way, however. In presenting

these guidelines we will start with descriptions of the simplest form and

demonstrate how more advanced features can be added.

3.4.1 Minimum Implementation

The simplest form of a functional description is just a computer prowam. This

would have no procedures, access to external states, or time dependencies. Such

a description would describe a machine that simply transforms its internal state.

The internal state can be monitored and would serve as the output. The

implementation of this is trivial, the computer program simply becomes the process

part of the desGriplioll. This part is activated automatically at zero simulation time,

and nllls to completion. Completion here refers to a call to the simulation scheduler

to indicate that it may proceed with the next schedulable process.

3.4.2 Basic Time Dependency

Time dependency can be implemented by including calls to the simulation

scheduler tha t reschedule the process part after a delay. Consider, for example an

element that changes its internal state periodically by, say, incrementing a register.

This could be implemented by writing a program, as before, but Including in it a loop
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that calls the delay procedure and increments tile register. The device could be

monitored during simulation and its register would be observed to Increment.

Calling tile delay procedure witllin tile element can be viewed as adding to the

simulation time variable, independently of tile rest of tile simulation.

3.4.3 External State

The ability to manipulate external state is fundamental to any useful simulation.

Consider first an element connected only by wires. Tile element may change the

value on the wire by calling tile system wire change procedure. It will specify the

port the wire connects to, and tile new contents. For example an oscillator Is made

by making a loop wllicll delays and outputs alternating values. Input from the wires

can be implemented by making calls to tile system wire read procedures. These

procedures return tile value on a wire given tile port it connects to. Tile oscillator

could also be implemented by making a loop tilat delays and outputs the complement

of the input from tile wire.

3.4.4 Use of the Chaining Routine

Previous examples Ilave not made use of messages received from other

elements. To do so requires tllat tile input cllaining routines be used. In functional

description languages tile primitives tllat would do this wait until a particular value

appears on a wire. A trivial implementation of tllis is for tile process part to enable

the mask flag only on tile port of Interest. The desired value for tile wire would be

left in a convenient place in tile internal state. Tile Input chaining routine would

then be activated only wilen the selected port receives a message. The routine

would be programmed to test tile value on the wire. It would activate tile process

part, with zero delay, if tile value was tile same as tile given value. Tile process

part would tllen set all tile mask flags to prevent future interference. All tllis could

be Implemented as a procedure called in tile process part. A programmer should

Immediately see tllat tllis can be extended to provide arbitrary programmed

response to inputs.
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While programmed responses are sufficient in general tQ produce arbitrary

~ behavior, they may not be convenient. An example of this is an element having one

input of more immediate interest than the others. An asynchronous reset input to an

element is illustrative. Such an input should produce an immediate response

regardless of whether the process is waiting on input or not. The reset function

could be implemented directly in the input chaining routine. The reset port would, of

course, never be masked, and the routine would do a special reset function

whenever that particular port received the reset message. This function could

Include restarting the process part. Another example is a logic element where the

processing of programmed responses to inputs would be a large part of the

description. In such (\ case It may be desirable for the Input chaining routine to

actually do processing. These methods should be used sparingly, as they make

descriptions less structured. They may also lead to problems. If the element Is

connected to itself, care must be taken that the chaining routine doesn't Interfere

with the process part.

3.4.5 Subdevices

Some functional languages[ 1, 7) allow the user to create subdevices. The

special, direct, connection allows messages to be sent to control the subdevlces,

and for the subdevices to access their main element. This system provides

procedures to send an informationless messages over these connections. The Input

chaining routines must be set up to handle this type of message, however. By

convention a message from a main element to a subdevice will start the subdevlce,

and the reverse message will be readable from a prowammed walt. Internlll access

is provided by a system procedure that returns a pointer the element directly

connected to a particular port. An important attribute of subdevices Is whether they

are running. Subdevices usually carry out some sequence actions for a time after

they are started, hut eventually terminate. They should only be started when not

running. Through a system procedure a main element can determine if a subdevice

Is running, and by convention when a subdevice changes from running to not running
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it sends a message to Its superior element. There is a system procedure, using

these, which Implements a programmed wait until a subdevlce has finished running.

Experience has indicated that while most elements can be described in any of

the ways above, one way is often vastly superior. Some elements are much more

easily implemented with a special reset function, whereas others may be satisfied

with using programmed input response. Some elements are implemented In a

structured fashion with subdevices but are difficult to Implement without. And then

some devices may require esoteric, user defined techniques.

3.5 Interaction

Since the user has much flexibility in the Implementation of simulation models, a

single method of interacting with them is inadequate. Instead, the user provides

each simulation model with a part to do the interaction for that element. This allows

an arbitrary interpretation of interaction. The interactive part of a simulation model

is a function of the input chaining routine. It is activated by a message being

received over a special port, called the interactive port. This port is usually

unconnected by the interconnection system, and hence would receive no messages

during simulation. These are instead activated by commands entered interactively

by the user. The simulation system will fake a message by activating the Input

chaining routine with the interactive port specified. The Interactive part may then

do output, or even interact with the user.

Wires hove a slightly different Interpretation of their Interactive part. The

interactive port on a wire is actually the port that other devices connect to.

Whenever the value on the wire changes this port receives the message. Since the

system wire change procedures do all the necessary processing, the input chaining

part on wires is not necessary for simulation. It usually notifies the user, by printing

a line on the terminal, that the value on the wire has changed. This is the trace

feature. The rna k flag has an effect on the interactive port. In the case of a wire,

if the port is masked then the Interactive routine is not called. There Is an

interactive command for setting and resetting this flag, which Is the user's control
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of tracing. Non-wire devices may use this flag to Indicate the user's desire for
~

~ tracing, and If set when selected internal changes occur, Inform the user of the

changes. If the internal state of a class of elements is similar, as would be of those

from a common functional language, a system procedure could be written that allows

general Interactive examination and altering of internal variables.

The simulation system's main command interpreter Is also a schedulable process

to the simulation scheduler. This process is the one that runs initially. When

simulation elements are setup they are also scheduled. To start the simulation the

user issues a command that instructs the main process to Increment simulation time,

scheduling itself for some later time. SimiJlation will occur until that time is reached

the main process is continued. Commands can then be Issued to examine the

simulation while in progress. Naturally, the main process can repeatedly start the

simulation, as desired by the user. If a condition occurs in an element which should

stop the simulation, that element can continue the main process Immediately.

3.6 Setup

The interconnection system provides an interconnection of its element data

structures, in which initially the only information about how an element will simulate

is given by names associated with the elements. These names match with names of

the descriptions. At some point It is necessary to read this name and follow the

setup instructions for the named description. The setup Instructions are a part of

the functional description written by the user, and hence there Is a great deal of

flexibility. For example, a memory is a common simulation element. In general,

however the user will want to specify the initial contents of the memory. Instead of

requiring an entirely different description for memories with different initial contents,

the setup code reads a file containing the initial contents. Another function

performed during setup is compatibility checking. An interconnection system would

allow elements to be connected that might try to use connections In different ways,

say connecting a device expecting a bit type wire to one expecting an integer wire.

There are system procedures that check connections, which should be called In the
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setup phase.

The parameter feature of the interconnection system Is also used during the

setup phase. The parameter feature allows small amounts of Information, called

parameters, to be associated with each element. The parameters are grouped Into

parameter sets, each of which has a set name. Generally there will be more sets

present than are of Interest to any particular function, hence only those with the

appropriate set names will be used. The setup phase may call system routines

which fetch parameters from specified sets. These are used, for example to set

propagation delay time, or In the case of the memory discussed above, specify a file

name for Its Initial contents.
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4. Implementation of the Interconnect System
r ..
"---" An interconnection system was implemented along the lines developed In chapter

2. Not all of the features described were implemented, but the resulting system

was able to demonstrate the usefulness of interconnect systems. Specifically,

PDP-10 SIMULA[6] was chosen as the implementation language. Since SIMULA does

not have a facility for making code data structures during run time and executing

them, not all of the features of the software support system are present. The

important capabilities of the software system are available, but In a less convenient

form. There is a preprocessor for SIMULA code that can add and delete modules

from the program, but requires that the compiler be run each time. As mentioned

previously, there was no macro facility implemented. The macro facility was defined

by examining the working implementation of the interconnect system and observing

that such a far.i1ity couid be easily implemented and would be very useful. In this

system there is a single group of elements, all at the same level, that form the

design. Interestingly the absence of a macro facility has minimal effect upon the

demonstration of design functions, since macros are Intentionally transparent to

them.

This chapter will follow the reverse of the order used earlier to develop the

interconnection system. We will discuss first the fundamental Implementation

Issues, such as the preprocessor, and how the code modules are organized. Utility

functions of the interconnect system are then discussed in the order of increasing

applicability to CAD. First such features as the I/O handling and command

dispatcher are mentioned. This leads to a discussion of the database manager. The

Interconnection editor is discussed, and the particular selection of commands Is

described. The most application specific portion of the interconnect system Is the

actual structure of the interconnect elements, which is discussed last.
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4.1 P sorter

.<
~ One of the features of the interconnect system is its modularity with respect to

the design functions. This means ideally that there should be separate files with

the code for the Interconnect system and each design function. When the system

Is run only the code modules actually needed will be In core. To Implement this we

have a program, called P. P reads files containing the SIMULA code. for the

interconnect system and the selected portions of the design functions. This

program will sort these files into a compilable SIMULA program. The program can also

supervise the compilation and loading of the complete program. The P program

divides a SIMULA program into a number of parts. The Input flies contain control

lines that specify which part code lines belong to. The lines are then sorted Into

the selected part In the order they are read. In practice parts often have a

beginning section, with BEGIN statements, declarations, etc. and an ending section

with ENDs, etc. To support this we allow the control file, which Is discussed In detail

later, to have these beginning and ending sections. We will describe the Input

format to the P program to give the reader a feeling for the source format before

discussing the actual parts of the program.

The P program reads source files that have three kinds of lines. The first of

these line types specifies which part the source lines following should be directed

to. The second type is a source line, which is sorted into the selected part. The

third type is a comment line. Comments are only valuable In the original source file,

and not in the sorted file that is input to the compiler. We allow comment lines,

therefore, that are discarded by the preprocessor. The formats of these lines Is

shown in figure 4 -1 .

Format of Une

#/fPART/f1f name

line without #

#rest of line

Type

control line

source line

comment line

Comments

The following lines go Into part name.

The line Is transfered to the proper part.

Une discarded.

Figure 4-1: Input Formats to the P Program.
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There Is a control file that specifies all of the parts for II run, the beginning

contents of each part, the files for source input, and the ending contents of each

part. The execution of the P program is simple. It sets up flies for the appropriate

parts after reading the first line of the control file. It then takes source lines from

the control file to initialize the parts. Input is then taken from each of the flies

listed in the control file, to do the bulk of the sorting. The control file becomes the

Input again to put the ends on each of the parts. The control file format Is pictured

In figure 4-2.

File Is called SECT.CMD

partname 1,partname2...•partnameN;

Part names for the run.

.../lnes ...

I~

filel,file2.flle3 ...,fIIeM;

.. .lines...

Input lines to start the parts.

To end input lines.

Source flies. No extension.

Input lines to end the parts.

To end input lines.

Figure 4-2: Control File Format.

The parts used to make the entire SIMULA program are listed In figure 4-3. Most

of these correspond to the syntactic sections of a SIMULA program.

All of the code, including the main interconnect program. is structured as allowed

by the preprocessing. Code is written with, for example, a class declaration and

initialization contiguous in the source file. There must, however be a formalism for

Including code modules and all references to It in a module, to allow modules to be

selectively added and deleted. To do this we have a special CLASS In the main

program. corresponding to part SETUP, containing the generating code for the

modules that can be added. This CLASS, used as a coroutine. compares a global

variable with the name of each added code module, and when a match occurs It

generates an Instance of the module's CLASS. The format for modules that can be
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freely included is as follows: There can be an arbitrary amount of code going Into

'-.: the various ports, but it must not be refered to by any code outside the module.

There are then :l few lines of code, which go into the SETUP part, and serve as the

reference of the rest of the program to that module.

1. CLASS. This has the CLASSes of the main program. Each entry in this
part is a complete CLASS declaration, hence there are no. order
restrictions in this part. This part has a beginning section, that
includes initial BEGIN statements, prefix CLASSes, etc.

2. SETUP. This is the CLASS used as a coroutine to generate instances
of other CLASSes that may be included in the program. Each CLASS

contributes a part of the SIMULA case statement that compares a
global variable with its name, and generates an instance if there is a
match. This class must have a few lines at the beginning and ending

besides the big case statement. These are in the control file so that
this part is order independent.

3. PROC. This part has globally accessible procedures. It Is like the
CLASS part.

4. DECL. This part has global variable declarations.

5. INIT. This part becomes the first executable statements of the main
program. These are intended to be order independent and are the first

statements executed.

6. MAIN. This part has the main program. The main program usually comes
from one contiguous source file. This is order dependent, and cannot
generally be added to.

Figure 4-3: Parts of a SIMULA program

The sorting program performs other functions. On the machine that the programs

were developed on it uses the TMPDSK facility to invoke the SIMULA complier,

delete temporary files, loads the program, and start execution. These features are

very installation dependent and will almost certainly require modification to run on

other machines.
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4.2 Utilities
r..
'-' The interconnect system has a series of procedures which do the various

functions that need to be performed centrally. The interconnect system itself uses

these system procedures, and they are also available to user programs. These

procedures generally perform the Interface between the program and some

resource, like I/O or the monitor. The functions are input/output control, including a

command dispatcher for the interactive terminal, error and debugging control, and

manipulation of the program's core.

The I/O facilities extend somewhat over the normal I/O available to a SIMULA

program. The system maintains several input and output channels, including the

terminal. It defines a selected input and selected output channel that other parts

of the program should use. By changing the selected channel from terminal to a disk

file It is possible to effectively log the terminal output, or accept terminal commands

from a disk file.

The system uses this I/O facility to implement a command dispatcher. This is a

large loop whic!, prompts for a command, and interprets it In a. giant case statement.

A feature is that the input is first run through a unique substring routine to

determine if the command is an abbreviation of a longer command. The system gets

the actual commands at initialization time from a file. The user can add commands

by inserting his command into the file, and adding another branch to the case

statement.

Some of these commands are interpreted by the system.

description of these here.

We include a

- TRACE. This toggles the trace flag on the Input parser. This Is useful

for locating errors on input.

Minus is not really a command, as there is no prompt after its
execution. It sets an invert flag so that the next command will have
its normal function reversed. For example, the PROBE command will
start tracing, but will stop tracing if preceded be a minus, e.g. -PROBE.
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- FREEZE. This command causes the entire program to be readied for a
save to a disk file. It closes terminal files, releases the high segment,
saves the accumulators, etc. This can be used, for example, to save a
large simulation while in progress.

- SIMDDT. For serious debugging the user may want to use DDT. Tills
command calls the SIMULA DDT. The user can then examine storage,
set breakpoints, etc., then continue execution.

- EXIT. Exits to the monitor. A lengthy version of tC.

4.2.1 Variable Names and Parameter Passing

To facilitate the structured expansion of the program a formalism has been

developed for the naming of global variables and routines. The object of this Is to

assure the user that a section of code included in the main program will not attempt

to use the same identifiers as another section of code. We hope to prevent

compilation errors, or worse, forming incorrect programs. The formalism developed

also aids in the readability of the code.

All sections of the main program are divided into modules. Each module may

contain one or more coroutines, procedures, or parts of the main program body. Each

of the modules is, if necessary, given a name of exactly three characters. Some

modules, however will not have any global variables, etc. and hence will not need a

name. Within these modules the user is free to define any local variables he likes.

Global variable declarations, however have to follow a particular format with respect

to the names. Every global variable, of this type, is formed from seven characters:

a three character local name, the symbol "@", and the module name. If the user

chooses a unique module name he is assured that there will be no variable clashes.

There is also a formalism for making coroutines. In SIMULA a coroutine is a CLASS

which makes use of a Detach statement. When a CLASS executes the Detach Its

state is saved in the CLASS instance and execution is continued from where the

CLASS was generated or Called. Each coroutine has a single global variable that Is
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Initialized to an instance of the CLASS. Coroutine activations are then done by
.Ie

'----' Calling the global variable. This formalism requires that there be statements in the

main program in a number of places. There is the CLASS, global variable declaration,

Initialization, and the various calls. The user is free to choose the CLASS identifier

of the coroutine. The other type of global variable name, which is the name of the

global coroutine variable, is formed by the symbol "$" followed by the CLASS

identifier. When reading the program and there Is a Call to a variable prefixed by

"$", it Is a call to a coroutine.

We have described the two ways of naming global variables. Every variable

declaration now in the main program is of one of these two types. The user is

encouraged, In the interest of program structure, to adhere to this formalism. We

further recommend that the characters "@" and "$" not be used elsewhere In the

source code.

SIMULA does not support parameter passing to coroutines. It is therefore

necessary to define a manner for doing this. Parameters are passed, and values

returned, by leaving them in globally accessible locations when the Call or Deiach Is

executed. Tlw variables are normally set by an assignment statement. When

reading a progrGm and there are a number of assignment statements to variables of

the same module followed by a coroutine call to that module, the user can expect

that parameters are being passed.

An example of the appearance of a coroutine in the source code appears In figure

4-4.

4.3 Database

The implementation of the database is considerably simplified here by the

absence of a macro feature. Here, where there is a single design, the problems of

having a multilevel structure, multiple instances of the same element, etc. disappear.

It is still necessary, however to be able to load a description from the database and

return It after changes have been made. We Implement this by having flies
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,-- Generating the coroutine.,.
##PARTIIII CLASS

CLASS example;

BEGIN

WHILE TRUE DO

BEGIN

DETACH;

...body of coroutine...

END;

END;

##PARTII# DECL

INTEGER DAT@XMP;

REF( example)$example;

##PARTIIII INIT

$example:-NEW example;

Call ing the coroutine.

DAT@XMP:-4;

CALL($example);

Figure 4-4: Example of a Coroutine

containing the descriptions of a particular design. The contents of the files Is only

the inferior element part of the description, since none of the others apply. The

database manager, such as it is, reads these disk files Into the Interconnection

structure and writes the entire design back out. The database commands are listed

below:

- GET filename. Read the written representation of an Interconnect
structure from DSK:filename.lL. This command can actually edit the
design. If it is used when a design already exists, If will join the two
interconnection structures.
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- DUMP filename. Write the written representation of the entire design
to DSK:filename.lL.

4.4 Editor

A great deal of flexibility was left in chapter 2 In the Implementation of the

interconnection editor. We have chosen a few commands which are useful in many

editing tasks. There are a couple commands for examining the existing interconnect

structure, and a very flexible command for adding to the structure.

commands and their functions are listed below:

- ALL. This displays for the user the entire written representation of the
interconnect structure.

- ELEMENTS. All of the elements are listed, giving their label and name.
This is different from a written representation as the connections are
not shown, but elements such as wires, not otherwise shown, appear.

- ADD line;. This command adds the line to the structure. It is flexible
In that the line may refer to an element that already exists. If the
element exists then undefined parts of the element will be defined by

the line. Using this the user can, for example, add parameters,
connect ports, or even add more ports to an existing element.

4.5 Parameters

These

We digress slightly to discuss the parameter feature. Parameters are

implemented just as described in chapter 2. The names of the parameter sets, and

the parameters themselves are text. The details of the pointers are not important

to the user beyond this point since there are system routines for manipulating

parameters. Specifically there is a procedure, called FETCHPARM which will get

parameters in an arbitrary way. This procedure is called specifying the name of the

parameter set desired, and the format of the parameters in that set. The procedure

will find the parameters, if they are present, and load them into the next available

positions In an array. If the procedure is called several times the array continues to
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fill up. If it is desired to have default values for the parameters, values can be
\ ..
'-.../ loaded into the array before the procedure is called, and they will remain unchanged

if the parameters don't exist. In this way numerous parameters from different

parameter sets can be accessed, with defaults for the parameters In each set.

After the parameters are obtained, and used, there is a procedure, called FINPARM,

which will reset the array back to an empty state for the next parameter fetching

session.

The format of the parameters within a set is supplied in a data word. The fields

within this word specify the number of parameters expected In that set, and the

type of each. Presently parameters may be integers, reals, text Identifiers, or don't

cares. Although the parameters are stored as text they are translated to the

expected form when fetched. If the fetching routine finds the format of the actual

set Is different from wha t was specified, an error occurs.

4.6 Syntax of the Written Representation

We include here, for reference, some details about the written representation of

the interconnect structure. A description of a design is composed of a number of

lines separated by semicolons, each describing an element. The lines, although not

restricted to fit on one line, often do. This format is used In the database flies, and

In output to the terminal. The format is illustrated in figure 4-5.

line;

line ..

••••• t

line;

Regular input line.

Long line.

Semicolon required after last line.

Figure 4-5: Format of Database Flies

Within each line there is a description of one element. This Includes Its label,

name, parameters, and connections to other elements. The general form is shown In

figure 4-6.
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label:name/set1 (parm1 ,parm2,parm3)!set2(parms) Lab1 Lab2 Lab3.5 - ;

Figure 4-6: Format of a Line

A discussion of each part is in order:

- LABEL. This part is delimited by the colon. The part is optional, but if
omitted it is hard to refer to the element later.

- NAME.. In some form this part always exists.
acceptable, which is represented by the symbol
have null names.

The null name is
"_" Wires always

- PARAMETERS. There may be an arbitrary number of parameter sets,

including zero. There may be more then one set with the same name,
but the interpretation of this Is unknown. The setname must be an
identifier, but the parameters may be identifiers, integers, or floating
point numbers.

- CONNECTIONS. The number of ports on the element will be the number
of entries in this part. Each part makes a connection to the port

corresponding to its position, starting with port one. Each entry can be
either empty, direct, or wire. Empty connections have a "_". Direct
connections have the element's label and port number, separated by a
period. Wire connections have the wire's label, connecting to port
zero by default.

- SEMICOLON. The semicolon is not part of the line, but must be present
as a delimiter.

4.7 Interconnection Structure

The implemented interconnection structure follows that described in chapter 2,

using the option where wires have a single port. We show In figure 4-7 the actual

SIMULA declara tions for CLASS element. Figure 4-8 Is a diagrammatic interpretation

of the element. Some aclditional interpretation is in order, however. In chapter 2 we

refered to an element's ports, and said that the ports connected together. The

reader will not notice any obvious ports in CLASS element. The implementation is
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slightly obscure. In chapter 2 we required that each port have two pointers, one to
\ ..
'-' the wire It connects to, and the other to the next element in the ring of elements

pointing to the same wire. We are also using integers to name the ports. This

allows all ports to be implemented as arrays, each individual port being the entries In

all the arrays with index equal to its port number. The pointer to the wire is In array

TOP. The pointer to the next port is in the two arrays POR and LNK. These two

arrays specify an element and the port number of the selected port In that element.

We refer to the two variables, one REF(element), and the other INTEGER as a

complex pointer. Both pieces of the complex pointer are required to make sense.

The ports are numbered Irom zero to pts.

REF(set)hds,tis;

END;

CLASS element(pts);

INTEGER pts;

BEGIN

INTEGER ARRAY por[O:pts);

Port number part 01 the complex pointer.

TEXT lab,nam; These are the label and name 01 the element.

REF(chain)chn; Points the the instance 01 the description.

REF(elemcnt)nex; This is the chain 01 elements in the design.

REF(element)I\RRAY Ink[O:pts),top[O:pts];

Inl< is part 01 a complex pointer, top points to wire.

These point to the parameter sets.

Figure 4-7: CLASS Element.

4.8 Support of Design Functions

The interconnection system can be run independently of any design function.

This would happen if it were only desired to edit a design. Design functions normally

associate additional information with the element data structures, and there must be

a way of generating instances of these. Since checking is performed when these

Instances are generated they should not be generated when the elements
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parameters

/
/

------1>

tis

to instance

(Ink[N),por[N)l ,---1> /
<(-------.. r--e--:l:-e-'m-e-n7""t-----,

"" top[M)
dired connection ,;:; I~~'--------:-l>

wire connection

Text label I<l-_Ia_b -! (Ink[M),por[M)l

~

Text name

chain of elements in design

nam

<{-----------'

Figure 4-8: Diagram of CLASS Element.

themselves are created, as this would prevent correction of errors. We instead

suggest that each design function have a command that sets up the models for Its

function. This simulator has such a command. This command examines each element

in the design and calls the coroutine of the SETUP part. The simulation models

included in the program have each inserted code in this CLASS which does the setup

function for that type of element. The command is listed below:

- SIMULATE. This generates a simulation model for each element in the
design that doesn't have one. This command causes checking of ports
and para,neters, hence may cause errors to be r&vealed.
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5. Implementation of a Functional Simulator

A simulator was implemented that follows closely the outline presented in chapter

3. A general discrete event simulator was implemented, as well as a number of

simulation elements ranging in complexity from a nand gate to a microprocessor,

These simulation elements are in several files, which can be included in the system

according to the formalism developed in the last chapter. In discussing this

implementation we will follow essentially the same outline used In developing the

theory of the simulator. The actual structure of the simulation element will be

discussed first. This will be a simple extension of the element data structure

described in the last chapter. Here we describe what the instance pointer called

chn actually points to. Following this will be a description of how messages are

delivered. There will be a brief description of how the system defined message

types do message delivery. Users who will implement their own message types will

find this particularly useful. We continue along this line with a description of the

various system defined message routines, and list them and their function. The

. issues called side issues in chapter 3 become very important in this chapter. The

first of these is the interactive facility, and this extends to cover. the system

commands for controlling the simulation. The final discussion Is about the setup

phase of the simulation, where the simulation models are invoked, and where various

checking functions are performed.

5.1 Structure of Simulation Elements

We present here the structured approach to making simulation models. The

description in chapter 3 of the simulation elements required that they have only a

few properties, not including the property of structure. Since this Implementation is

in SIMULA, the user can make descriptions which are extremely complex and

unstructured. Since it was shown that the structured approach is sufficient In

general we will assume that all implementations will follow the proposed structure.

Figure 5-1 shows the simple, but sufficient structure to implement a simulation

model. Figure 5-2 shows the graphical interpretation of this.
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CLASS chain; General prefix class.

BEGIN

REF(Process)pro; Pointer to the process part.

INTEGER msk; Masking flags for tllis element.

END;

chain CLASS Cmodel(mom);

This is the chain part.

REF(element)mom; mom is a pointer to the element data structure.

BEGIN

internal variables

coroutine Input chaining coroutine.

END;

Process CLASS Pmodel(sis);

This is the process part.

REF(Cmodel)sis;

INSPECT sis do

sis points to the sister chain part.

The chain part is the central part.

Loop calling passivate and hold

Figure 5-1: SIMULA Declarations for a Simulation Model.

The element is at
a higher lIevel than
the other paris,
hence mother.

process classchalll c1as5

chn REF(elemenl)

~I f::t-
REF(chain) mom t;.

f---------- pro

masK -viora - -
Kt.nl,;mOdelj f-----------

internal '--1> REF(Process)
variables sis

REF<Pmodel)
These elements are

<t-- on the same level,-l>
hence sisters.

Figure 5-2: Illustration of Simulation Model.
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5.2 Message System

.
l .<
'--' Message delivery is implemented by the process part, the chain part, and system

delivery procedures, just as proposed earlier. The input chaining routine is present

in a simulation model as the chain CLASS. This CLASS serves as both a holder for

the Internal variables of the simulation model and a coroutine. The input chaining

coroutine is activated by using the SIMULA procedure Call. A message delivery

system is a set of procedures that examine the interconnect structure and activate

the appropriate input chaining routines. The information content of the message is

usually passed in a globally accessible variable, or it is implicit from the context of

the message. Consider now a routine that delivers a message. There will be a part

that is dependent on the message type. This part will just write the message value

into the appropriate locations. There is also a connection dependent part. This part

will activate the appropriate chaining routines, dependent upon the type of the

connection. For example, if a message goes over a direct connection there is

exactly one element on the other end of the connection, hence one activation. A

wire connection would require a routine that follows the ring of pointers, activating

every chaining routine until it gets back to the original port. These routines must

test the appropriate flag in the mask word to determine if activation of the chaining

routine should be suppressed. There are procedures that do these functions, but

they are all called by other system procedures, hence they will not be further

discussed.

The actual message delivery procedures used by the simulation models are less

dependent upon the interconnection structure and more dependent upon the

message type. The procedures will optimize somewhat their own use. For example,

the wire change routines check to see if the wire's value is actually being changed,

and if not they return immediately. There are an assortment of these procedures

which are outlined below. With each delivery routine there is a corresponding

routine which accepts the message. These procedures are twins, as both utilize the

same method of transfering the information of the message.

- PBIT(dat,prt,elt). Puts boolean value dat on the wire connected to

port prt of elt.
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- GBIT(prt,elt). Returns the boolean value on the wire connected to port
prt of elt.

- PINT(dat,prt,elt). Puts the integer value dat on the wire connected to
port prt of elt.

- GINT(prt,elt). Returns the integer value on the wire connected to port
prt of elt.

- NOTIFY(prt,elt). Sends an informationless message over the direct
connection with one end at port prt of elt.

- RUNNING(prt,elt). Returns true if the simulation element connected

directly to port prt of elt is in the run state.

- WAIT(prt,elt). Passivates the calling simulation model until the element
connected directly to port prt of elt changes state. If the element is

in a non-running state the procedure returns immediately.

These procedures assume that the connection the message is to be sent over is

of the proper type. It Is the responsibility of the setup phase to verify that the

connections are of the proper types.

5.3 Intoraction

Interaction with a particular simulation model is accomplished by the system

faking a message to the interactive port on the element. This port has Index zero in

the arrays. The interaction routine will be within the chain class, and will be

activated when the class is Called with port zero specified. This routine will usually

call the system message procedure to describe its state, although the full I/O

facilities are available.

The system will generate the call to port zero by the user issuing several

commands from the terminal. One of these will do the call Immediately, the other will

merely alter thf! masking flag corresponding to port zero. After this the port will be

activated normally when messages arrive to that port. These commands, and their
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variations, are listed below:

- WHAT identifier. This does an activation of port zero on the element
whose lahel is identifier. The setting of the mask flag is not checked.

- PROBE identifier. (Positive version) This turns off the masking flag

corresponding to port zero on the element whose label is identifier. If
the element is a wire this turns on tracing for that wire.

- -PROBE identifier. (Negative version) This reverses the effect of the

PROBE command.

To start the simulation it is necessary for the main program to make a call to the

simulation scheduler to increment simulation time. The commands that do this simply

make a call on the SIMULA procedure Hold. The two variations of this command are

listed below:

- GO time. This causes simulation to proceed for the time Increment time
before terminal entry Is requested again.

- UNTIL time. This causes simulation to proceed until simulation time Is
equal to time before terminal entry is requested again.

5.4 Setup

Since simula lion models can be freely included in the compiled SIMULA program

their code modules must follow the structure outlined in the preceding chapter. This

means that the chain and process parts may not be referenced from any other

module. It also means there will be a few lines of code added to the SETUP part of

the main program that will generate the instances of the simulation model. This code

is in the form of a branch of a case statement. Within the branch these lines do

various checking functions fetch parameters, and generate the proper simulation

model. They must make the actual calls to the parameter fetching routines, as the

parameters may be necessary to set up the rest of the model. It Is also necessary

to check the ports of every element to verify that they are connected to things of

the right type. There is a system procedure which does this. It accepts a data
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word with information about the number of ports and the required type of each. The
\ ..
'- procedure examines what is connected to each port and verifies that it is correct.

In the case of a wire connection it Is possible that the wire has no simulation model.

In this case the proper wire model is automatically generated. If It is found that an

Incorrect wire model is present, or the connection is of the wrong ~ype then an error

condition occurs. This action happens during the setup phase, but the code that

does this is usually present In the beginning of the input chaining class. This Is to

prevent two elements from being generated at the same time, as would happen

when a wire is being automatically generated. Appendix I outlines the general

structure for a simulation model.

· ,
.'
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6. Results

To demonstrate that the features discussed in this report are valuable, we

described and simulated several versions of a microprocessor system. In each case

a functionally described microprocessor was in a system with a memory and input

device. In the different versions the input device was described in fundamentally

different ways. In one version the input device contained a shift register made of

flip flops. In a lower level version the flip flops were replaced with their equivalent

combinations of nand gates. At a higher level the entire input device was replaced

by a couple of functional equivalents. The microprocessor portion of the simulation

is in some respects similar to a description in a functional description language. The

microprocessor has a main part and three functional subdevices, like processes of a

functional descriptive language. However the microprocessor differs from most

functional languages in that it has connections outside of the module. These

connections are the address, data buses, and control lines. Connected to these

buses are elements of wildly varying types. There are nand gates connected to the

control lines ·to make the proper interface to the other parts of the system. There

are also high level devices connected to the buses, like the memory or functionally

described input port.

Due to the diversity of the elements in the various simulations we have

demonstra ted the incorporation of different typf!S of simulators into a single

program. The program acts as a logic simulator when it simulates the individual nand

gates that form the flip flops. When the program simulates the microprocessor It is

acting as a functional simulator. In addition the functions of both simulators are

performed simultaneously on the same design. Since functional simulation Is

fundamentally faster than logic simulation, a fact commonly believed and verified

here, we achieve a performance that is greater than could be obtained by either a

logic or functional simulator alone. A functional simulator simply cannot simulate to

the detail achieved here, and a logic simulator would have required that the entire

description be at the gate level, including the microprocessor. Due to the

complexity of the microprocessor, simulating it as gates would be an order of

magnitude slower than the slowest simulation demonstrated.
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We complete this report by describing how these microprocessor simulations

""~ exercised the capabilities of the Interconnection system and functional simulator,

and discuss the implications of this.

6.1 Representation of the Microprocessor System

Each of the designs simulated a Z80 microprocessor connected to a memory and

line receiver Input port. The memory contained a program for the Z80. The program

gets characters from the receiver and transfers them to memory. The first of the

slmula t10ns used a receiver described as a number of flip flops. This description Is

used as the reference because the flip flop shift register is the most concise way

of describing the logic structure of the input device. Briefly, there were eight flip

flops organized as a shift register and driven by a 200kHz clock. An input bit

stream was read into the first flip flop of the register. After a one was transfered

into the eighth bit, indicating a start bit, the entire contents of the register is

shifted into a latch and the register cleared. The receiver has seven data bits and

an eighth bit to indicate when new data is received. This eighth bit toggles every

time a character is received, providing a cheap but adequate way to synchronize

with Input. The simulation at a lower level replaced the flip flops in the shift register

by their nand gate equivalents, resulting in over fifty gates. The higher level

simulations replaced the input device with functional eqUivalents of different types.

Figures 6-1, 6-2, 6-3, and 6-4 show diagrams of the microprocessor part and the

different receiver parts. There were actually two versions of the functional

receiver, which will be discussed later. The reader is refered to the listings of the

program runs in appendix 1 for the written representation of these Interconnections.

There are several files containing the descriptions. The microprocessor and

memory are the same in each case, and are in one file. The input device is different

in each case. and hence a different file is used in each simulation. The complete

interconnections were made by reading two files consecutively, causing them to be

properly concatenated.
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Figure 6-4: Functional Input Part

Some issues need to be resolved. In particular, how do we interface an input port

with eight one bit outputs to a data bus with one eight bit input. The method used is

to make an eler-,ent that converts bits to buses and vice versa. In this case we use

an element with nine ports, eight one bit ports, and an eight bit one. The element

"
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simulates by changing the bus output whenever any bit input changes, and changing
\ .<
'---' the bit outputs when the bus input changes. This element does not correspond to

any physical part of the design, except perhaps a connecter, and Is put into the

description for compatibility reasons.

6.2 Simulation Models

The simulation models for the interconnected elements covered a wide range of

complexities. The description of the laO is in the flavor of a functional description.

The description involved a great deal of manipulation of internal state. The actual

code for the laO, most of which was internal state changes Is eleven pages of

code. At the other extreme is the nand gates, which have essentially no internal

state, and whose description is about a half page. We will disGl;sS briefly examples

of elements implemented and mention the significant points about their operation.

The simplest :llement used, in terms of complexity of the physical device, was the

nand gate. The simulation model was also among the simplest. The behavior of such

a physical element can be fairly complex. The naive behavior is that the output

becomes the nand function of its Inputs within a time, called the propagation delay,

after the inputs change. Complex behavior occurs when rapidly changing Inputs are

accounted for. To obtain any reasonable speed from the simulator it Is necessary to

restrict the accuracy of the simulation at some point. We arbitrarily chose to stop

at the naive behavior. We described the output as changing to the nand function of

the inputs after the inputs are stable for a set time. The nand gate has no internal

variables. It implemented its function by reading the values from the Input wires and

writing them to the output.

A more complicated physical device Is the D-type flip flop. . Although It Is

physically more complex the functional description Is no more lengthy than the nand

gate's. The idealized behavior of this device, equivalent to the implemented

behavior, Is that the input is sampled at the rising edge of the clock and becomes

the output after a propagation delay.
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We now take a big jump and describe the memory element. This device has some
\ ~

'----' of the more advanced features in it. For example, the memory will take parameters

to specify, amoilg other things, a filename for its initIal contents. The memory also

makes use' of the Interactive feature. The WHAT command can be used on a memory

to enter an interactive mode. The contents of the rr,emory can then be displayed on

command.

The most complex device was the l80 microprocessor. The functional description

of this device was sectioned into a main part and subdevices. The subdevices do

instruction fetching, read cycles, and write cycles. The l80 also Implements the

interactive feature. There Is a selected portion of its Internal state, consisting of

the contents of the general registers, that can be displayed by the WHAT command.

The PROBE command will cause the display of the same internal state after each

Instruction is executed.

It should be emphasized that the l80's functional description is, although written

In SIMULA, a copy of the l80's description in a functional description language. The

description is formed of assignment and control statements organized into blocks

and procedures. The syntax is somewhat different from that of actual functional

description languages, but the fundamental concepts are very similar. Figure 6-5 Is

an example of a portion of the l80's functional description which should illustrate

this.

Some of the advantages and disadvantages of simulations with the different

models should be immediately apparent to the reader. The simulations with flip flops

of gates will yield an extremely accurate picture of how the real device will

function. Simulations with functional elements may be of less accuracy, but will

certainly be more efficient in terms of simulation time. It was ir. fact observed that

the simulation time decreased as the design became more functionally described.

The results of this is shown in figure 6-6.

The simulations with a functional input port deserve additional discussion. One of



INTEGER PROCEDURE FETCH 1(RGS);

INTEGER RGS;

IF RGS = 6 THEN

BEGIN

WAIT( 17,MOM);

WAIT( l8,MOM);

WAIT( 19,MOM);

PINT(REG[2],2,MOM);

NOTIFY(18,MOM);

WAIT( l8,MOM);

FETCH1 :=GINT(3,MOM);

END
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This procedure does a general operand fetch.

The register field is analyzed to determine If

it specifies a general register or memory.

6 specifies memory reference. The contents

of memory addressed by an Index register Is

used.

These three statements walt until the three

memory cycling subprocesses are completed.

This outputs the index register to the address

lines.;

This starts the read cycle subprocess.

This waits until the read cycle has accesses

memory. The read cycle is not finished.

The contents of the data lines are returned.

ELSE

IF RGS = 7 THEN 7 specifies the accumulator.

FETCH 1:=SUBYTE(REG[3],15,8) .

ELSE

IF NOT BIT(RGS,O) THEN

FETCH1 :=SUBYTE(REG[SUBYTE(RGS,2, 1)],15,8)

Even registers are in the left half.

ELSE

FETCH1 :=SUBYTE(REG[SUBYTE(REG,2,1)],7,0);

Odd registers are in the right half.

Figure 6-5: Portion of the l80 Functional Description
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Simulation CPU time
"-.: ----

Nand gate receiver. 103.5

Flip flop receiver. 44.5

Functional receiver. 31.7

Functional input port. 13.7

Figure 6-6: Comparative Timings For Test Simulations

these simulations was achieved by observing the output of the receiver as a

function of time and mocking it with a functional description. This made the

simulation time for the input part very small compared to the other parts. The total

simulation time was limited because the microprocessor part was still required to

simulate a t its slow rate for the full simulation time. In fact the microprocessor was

spending most of its time in a loop waiting for the input to change. This waste of

simulation time could be partially removed. In many cases the information derived

from the simulation is only whether the system worked, not how many times It

executed a loop. We can improve on time efficiency in these cases by making a

super functional receiver. The new receiver outputs the same values as the first,

but it outputs a new value every time it is accessed. As the reader will note, this

resulted in a significant increase in the simulation time efficiency.
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7. Conclusions

The original intent of this project was merely to show that simulations could be

made more efficient by combining structural and functional descriptions; i.e. to verify

the factor of nine improvement in run time observed in the last chapter. In order to

do this, however some fundamentally different issues had to be addressed and

solved first. In particular, it was determined early on that the quality of a simulation

system would be largely dependent on the manner In which interconnection

information is handled. This led to the definition and later implementation of the

Interconnect system. After the interconnect system, as it now exists, was

Implemented a number of significant improvements became apparent. These

Improvements led to the discussion of interconnect systems presented In chapter 2.

With the interconnect system implemented It was possible to develop the

simulation system orthogonally from the' issues of the representation of

interconnection. We succeeded in implementing the joint logic and functional

simulator by essentially developing a functional description language capable of

describing both elements normally functionally descril?ed and logic elements. This

unified approach to functional descriptions, which was not anticipated in the

beginning, is much more powerful than was necessary to implement the simulator.

We have presented a way in which a wide variety of design functions can be

combined into a large, but well structured and flexible system. We have

demonstrated that there is some advantage to this by combining logic and functional

simulators to give a simulator with more capability than is present in both when

separate. This is not a complete test of the system. The real test will come when

many very different design functions are added to a system such as this. This

demonstration should show that such an effort may be indeed Justified.
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I. Test Runs

We include here the listings of the actual test runs on a PDP-10. The system Is

Intended to be Interactive, but the runs were done under the batch system. This

causes the appearance of the log output to be considerably different from what the

user would see at a terminal.

There have been columns removed from the left margin, and some lines too long

have been shortened.
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1.1 Flip Flop Receiver

BATCON version 12( 1041) running WORKS2 sequence 1661 in stream 1 for DEBEN
EDICTIS

Input from DSKBO:WORKS2.CTL[55453,113213]
Output to DSKBO:WORKS2.LOG[55453,113213]
Job parameters

Time:00:05:00 Unique:YES Restart:NO

.LOGIN 55453/113213
JOB 13 CMU1 OD 7.V2/DEC 5.06B TTY122
Other jobs same PPN

1932 08-Apr-79 Sun

••TYPE TEST.ASM

PSECT

LD HL,BUFFER
LD C,$OO

LOOP: LD A,@$1000

LD B,A
XOR C
AND $80

JR Z,LOOP

LD A,B
LD C,A
AND $7F
LD @HL,A
INC HL

JR LOOP
BUFFER: BLOCK 3

..TYPE MIC.IL
IN: INPUT/SIZE(4096,4096) DATL MEN AB DB;

MICRO: Z80 PHI AB DB MREO IORO RD WR RFSH M1 RESETINT NMI WAIT HALT
BUSRO BUSAK FSUB. 1 FSUB2. 1 FSUB3. 1;
FSUB: Z80lF MICRO.17;
FSUB2: Z80RD MICRO.18;

FSUB3: Z80WR MICRO.1 9;

MEM: MEMORY/INI(MEM)/SIZE(0,64) MEN WR DB AB;
TTL 1: NAND2 RD WR MME;
TTL2: NAND2 MME MME MEN;
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~ •.TYPE REC.IL
R1: OFF INPUT CLK TRANS S1;

R2: OFF S 1 CLK TRANS S2;
R3: OFF S2 CLK TRANS S3;
R4: OFF S3 CLK TRANS S4;

R5: OFF S4 CLK TRANS S5;
R6: OFF S5 CLK TRANS S6;
R7: OFF S6 CLK TRANS S7;

R8: OFF S7 CLK TRANS TRANS;
STATFF: OFF NSTAT TRANS NIL STAT;

NAN02 STAT STAT NSTAT;
CLOCK: CLOCK/T1ME(0.000005) CLK;

FUNCTION/TIME(0.000001 )/INI(FUN) INPUT;
AOAPT OATA S1 S2 S3 S4 S5 S6 S7 STAT;

LAT: LATCH CLK TRANS OATA OATL;

•.TYPE MEM.INI

:100000002116000E003A001047A9E68028F7784F25
:06001000E67F772318EFE4
:00000001 FF

•.TYPE FUN.INI
32.5 1

37.5 1

42.5 0

47.5 0
52.5 1
57.5 0

62.5 0
67.5 0
72.5 0
77.5 1

82.5 1
87.5 0

92.5 0
97.5 1

102.5 0
107.5 0

112.5 1
117.5 0

122.5 1

127.5 0
132.5 1
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137.5 0
142.5 0

147.5 0

152.5 0

157.5 1
162.5 0

••RUN J
--EXIT

2 Garbage collections executed during 167 ms

End of SIMUlA program execution.
CPU time: -25:-34.1) Elapsed time: 4:46.15

••START
xXGET REC

--GET MIC

--ALL

R 1: OFF INPUT ClK TRANS Sl;

R2: OFF Sl ClK TRANS S2;
R3: DFF S2 ClK TRANS S3;
R4: DFF S3 ClK TRANS S4;
R5: DFF S4 ClK TRANS S5;
R6: OFF S5 ClK TRANS S6;

R7: DFF S6 ClK TRANS S7;
R8: OFF S7 ClK TRANS TRANS;

STATFF: DFF NSTAT TRANS Nil STAT;
NAN02 STAT STAT NSTAT;

CLOCK: ClOCK/TIME(O.000005) ClK;
FUNCTION/TIME:(O.OOOOOl )/INI(FUN) INPUT;
ADAPT DATA Sl S2 S3 S4 S5 S6 S7 STAT;

lAT: lATCH ClK TRANS DATA DATl;
IN: INPUT/SIZE(4096,4096) DATl MEN AB DB;

MICRO: Z80 PHI AB DB MREO IORO RD WR RFSH M1 RESET INT NMI WAIT HALT
BUSRO BUSAK FSUB. 1 FSUB2. 1 FSUB3. 1;
FSUB: Z80lF MICRO.1 7;
FSUB2: Z80RD MICRO.18;
FSUB3: Z80WR MICRO.19;
MEM: MEMORY/lNI(MEM)/SIZE(O,64) MEN WR DB AB;
TTL 1: NAND2 RD WR MME;
TTl2: NAND2 MME MME MEN;
xXSIMU

--WHAT MEM
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--) O.OOus MEMORY 0: 64

OUTPUT CONTENTS? 'Y
0000 is 21
0001 is 16

0003 is OE

0005 is 3A
0007 is 10
0008 is 47
0009 is A9

OOOA is E6

OOOB is 80
OOOC is 28

0000 is F7

OOOE is 78
OOOF is 4F
0010isE6
0011 is 7F
0012 is 77
0013 is 23
0014 is 18

0015 is EF
"PROBE MICRO
"PROBE OATL
"UN .0001

--) 2.75us A:OO F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0003
--) 4.50us A:OO F:OO [lC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 7.7511s A:OO F:OO [lC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 8.7511s A:OO F:OO [lC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 9.7511s A:OO F:40 [lC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 11.501ls A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 13.2511s A:OO F:40 [lC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 16.501ls A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 17.501ls A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 18.501ls A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA

--) 20.2511s A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 22.001ls A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005

--) 25.25us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 26.25us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 27.25us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 29.00us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 30.7511s A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005

--) 34.001ls A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 35.001ls A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 36.001ls A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
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--) 37.75us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 39.50us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 42.75us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 43.75us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 44.75us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA

--) 46.50us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 48.25us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 51.50us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 52.50us 1\:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 53.50us 1\:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOIl

--) 55.25us 11:00 F:40 IK:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 57.00us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 60.25us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 61.25us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 62.25us 11:00 F:40 13C:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOIl
--) 64.00us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 65.75us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 69.00us 11:00 F:.IIO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 70.00us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 71 .00us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOIl

--) 72.75us 11:00 F:40 BC.:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 74.50u 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 75.02us DIITL 200.

--) 77.75us II:C8 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 78.75us II:C8 F:40 BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 79.75us II:C8 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOIl
--) 81.50us A:80 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 83.25us 1\:80 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOE

--) 84.25us I\:C8 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOF
--) 85.25us I\:C8 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:001 0

--) 87.00us 1\:48 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0012
--) 88.75us 1\:.118 F:OO 13C:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0013
--) 89.75us 1\:.118 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0014
--) 91.50us 1\:48 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0005
--) 94.75us A:C8 F:OO 13C:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0008
--) 95.75us I\:C8 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0009
--) 96.75us 11:00 F:40 BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOA

--) 98.50us 1\:00 F:40 BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOC
--) 100.00us

"WHAT MEM
--) 100.00us MEMORY 0: 64
OUTPUT CONTENTS? 'Y
0000 Is 21

0001 Is 16
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0: 64

73.
161.

0003 is OE
0005 is 3A
0007is10
0008 is 47
0009 is A9
OOOA is E6

OOOB is 80
OOOC is 28

0000 is F7

OOOE is 78
OOOF is 4F
0010 is E6

0011 is 7F
0012 is 77
0013 is 23

0014 is 18
0015 is EF
0016 is 48
U_PR MICRO
~~UN .0002

--) 1 20.0211s OATL
--) 165.0211s OATL
--) 200.001ls
~~WHAT MEM

--) 200.001ls MEMORY

OUTPUT CONTENTS? 'Y
0000 is 21
0001 is 16

0003 is OE
0005 is 3A

0007 is 10

0008 is 47
0009 is A9

OOOA is E6
OOOB is 80
OOOC is 28

0000 is F7
OOOE is 78

OOOF is 4F
0010 is E6

0011 is 7F
0012is77
0013 is 23

0014 is 18
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0015 is EF
0016 is 48
0017 is 49
0018 is 21
~~EXIT

12 Garbage collections executed during 7669 ms

End of SIMULA program execution.

CPU time: 44.47 Elapsed time: 2:27.12

.KJOB DSKBO:WORKS2.LOG=/W/B/Z:4/VR: 1O/VS: 1661/VL:200/VP: 1O/VD:P
Other jobs same PPN

%WLDAFR All files rejected by conditions DSKBO:WORKS2.LOG[55453,113213]
Job 13, User [X330EDOJ] Logged off TTY122 1935 8-Apr-79

Another job still logged in under [X330EDOJ]

Runtime 49.02 sec: Kilocore sec: 1834
Total of 303 disk blocks read, 10 written
Connect time 0 hr, 2 min, 55 sec: Total charge: $4.11
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1.2 Functional Receiver

BATCON version 12( 1041) running WORKS4 sequence 1662 in stream 1 for DEBEN
EDICTIS
Input from DSKB1 :WORKS3.CTL[55453,113213]
Output to DSKB1 :WORKS4.LOG[55453,113213]
Job parameters

Time:00:05:00 Unique:YES Restart:NO

.LOGIN 55453/113213

JOB 13 CMU 100 7.V2/OEC 5.0613 TTY122
Other jobs same PPN
1935 08-Apr-79 Sun

••TYPE TEST.ASM
PSECT

LD HL.BUFFER
LD C,$OO

LOOP: . LD A,@$1000

LD B,A
XOR C
AND $80

JR Z,LOOP
LD A,B
LD C,A
AND $7F
LD @HL,A

INC HL

JR LOOP
BUFFER: BLOCK 3

•.TYPE MIC.IL

IN: INPUT /SIZE(4096,4096) DATL MEN AB DB;

MICRO: Z80 PHI AI3 DB MREO IORO RD WR RFSH M1 RESET INT NMI WAIT HALT
BUSRO BUSAK FSUB. 1 FSUB2. 1 FSUB3. 1;
FSUB: Z80lF MICRO.17;
FSUB2: Z80RD MICRO.18;
FSUB3: Z80WR MICRO.l 9;

MEM: MEMORY/INI(MEM)/SIZE(O,64) MEN WR DB AB;
TTL 1: NAND2 RD WR MME;
TTL2: NAND2 MME MME MEN;
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,I. ••TYPE REC.lL
R1: OFF INPU-r CLK TRANS S1;

R2: OFF S 1 CLK TRANS S2;
R3: OFF S2 CLK TRANS S3;
R4: OFF S3 CLK TRANS S4;
R5: OFF S4 CLK TRANS S5;
R6: OFF S5 CLK TRANS S6;

R7: OFF S6 CLK TRANS S7;
R8: OFF S7 CLK TRANS TRANS;

STATFF: OFF NSTAT TRANS NIL STAT;

NAND2 STAT STAT NSTAT;

CLOCK: CLOCK/TIME(0.000005) CLK;
FUNCTION/TIME(0.000001 )/INI(FUN) INPUT;
AOAPT OATA S1 S2 S3 S4 S5 S6 S7 STAT;

LAT: LATCH CLK TRANS OATA OATL;

••TYPE MEM.INI

:100000002116000E003A001047A9E68028F7784F25
:06001000E67F772318EFE4

:00000001 FF

••TYPE FUNBUS.INI
75.0 200

120.0 73
165.0 161

••RUN J
uEXIT

2 Garbage collections executed during 167 ms

End of SIMULA program execution.

CPU time: -25:-34.() Elapsed time: 7:58.88

.•START
**AOD FUNBUS/TIME(0.000001 )/INI(FUNBUS) DATL;

**GET MIC
**ALL

FUNBUS/TIME(0.000001 )/INI(FUNBUS) OATL;
IN: INPUT /SIZE(4096,4096) OATL MEN AB DB;
MICRO: Z80 PHI AB OB MREQ 10RQ RD WR RFSH M1 RESET INT NMI WAIT HALT
BUSRQ BUSAK FSUB. 1 FSUB2. 1 FSUB3. 1 ;

FSUB: Z80lF MICRO.1 7;
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FSUB2: Z80RD MICRO.18;
FSUB3: Z80WR MICRO.19;

MEM: MEMORY/INI(MEM)/SIZE(O,54) MEN WR DB AB;
TTL 1: NI\ND2 RD WR MME;

TTL2: NI\ND2 MME MME MEN;
~~SIMU

~~WHI\T MEM

--) O.OOus MEMORY 0: 54

OUTPUT CONTENTS? 'Y
0000 is 21·

0001 is 16

0003 is OE

0005 is 3A
0007 is 10

0008 is 47
0009 is A9
OOOA is E6
OOOB is 80

OOOC is 28
0000 is F7
OOOE is 78
OOOF is 4F

0010isE6
0011 is 7F
0012 is 77
0013 is 23
0014 is 18
0015isEF
~~PROBE MICRO
~~PROBEDATL
~~UN .0001

--) 2.75us A:OO F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0003
--) 4.50us A:OO F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 7.75us 1\:00 F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 8.75us A:OO F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 9.75us 1\:00 F:40 BC:OOOO DE:OOOO HL:0015 IX:OOOO SP:OOOO PC:OOOA

--) 11.50us 1\:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 13.25us 1\:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 16.50us 1\:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 17.50us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 18.50us 1\:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 20.25us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 22.00us 1\:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005

--) 25.25us 1\:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
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--) 26.25us A:OO F:L10 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
~ --) 27.25us A:OO F:L10 BC:OOOO DE:OOOO HL:OO 16 IX:OOOO SP:OOOO PC:OOOA

--) 29.00us A:OO F:L10 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO pc:oace
--) 30.75us 11:00 F:1I0 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005

--) 34.00us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 35.00us A:OO F:L10 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 36.00us A:OO F:L10 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA

--) 37.75us A:OO F:L10 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 39.50us 11:00 F:L10 BC:OOOO DE:OOOO HL:OO 16 iX:OOOO SP:OOOO PC:0005
--) 42.75us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 43.75us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 44.75us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA

--) 46.50us 11:00 F:L10 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 48.25us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005

--) 51.50us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 52.50us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 53.501ls 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA

--) 55.25us 11:00 F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

~-) 57.00us 11:00 F:40 I3C:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005

--) 60.25us 11:00 F:40 I3C:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 61 .25us 11:00 F:40 I3C:OOOO DE:OOOO HL:OO 16 IX:OOOO SP:OOOO PC:0009

--) 62.25us 11:00 F:L10 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA

--) 64.00us A:OO F:40 I3C:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 65.75us A:OO F:L10 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005

--) 69.00us A:OO F:40 I3C:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 70.00us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 71.00us A:OO F:40 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA

--) 72.75us A:OO F:L10 I3C:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 74.50us A:OO F:1I0 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 75.00us DATL 200.

--) 77.75us A:C8 F:1I0 BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 78.75us A:C8 F:40 BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 79.75us A:C8 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 81.501ls A:80 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 83.25us A:80 F:OO BC:C800 DE:OOOO HL:OO 16 IX:OOOO SP:OOOO PC:OOOE

--) 84.25us II:C8 F:OO BC:C800 DE:OOOO HL:OO 16 IX:OOOO SP:OOOO PC:OOOF

--) 85.25us /I:C8 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OO 10

--) 87.00us /I:1I8 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0012

--) 88.75us /1:118 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0013

--) 89.75us 1I:L18 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0014

--) 91.50us A:48 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0005
--) 94.75us A:C8 F:OO I3C:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0008

--) 95.75us 1I:r-8 F:OO BC:C8C8 DE:OOOO HL:0017 1)<,:0000 SP:OOOO PC:0009

--) 96.75us A:OO F:40 BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOA
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--) 98.50us A:OO F:40 £3C:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOC
--) 100.00us

""WHAT MEM
--) 1OO.OOus MEMORY 0: 64

OUTPUT CONTENTS? "Y

0000 is 21

0001 is 16

0003 is OE

0005 is 3A
0007 is 10
0008 is 47
0009 is A9
OOOA is E6
0008 is 80

OOOC is 28
0000 is F7

OOOE is 78
OOOF is 4F
0010 is E6

0011 is 7F
0012is77

0013 is 23
0014 is 18
0015 is EF

0016 is 48
""-PR MICRO
""UN .0002
--) 120.0011S DATL 73.
--) 165.0011S DATL 161.
--) 200.00us

""WHAT MEM
--) 200.00us MEMORY 0: 64

OUTPUT CONTENTS? "Y
0000 is 21
0001 is 16

0003 is OE
0005 is 3A
0007 is 10

0008 is 47

0009 is A9

OOOA is E6
0008 is 80
OOOC is 28

0000 is F7
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OOOE is 78
.. OOOF is 4F

0010 is E6
0011 is 7F
0012is77
0013 is 23
0014 is 18
0015isEF

0016 is 48
0017 is 49
0018 is 21
~~EXlT

12 Garbage collections executed during 5417 ms

End of SIMULA program execution.

CPU time: 31.67 Elapsed time: 1:32.67

.KJOB DSKBl :WORKS4.LOG=/W/B/Z:4/VR: 1O/VS: 1662/VL:200/VP:1 O/VD:P
Other jobs same PPN

%WLDAFR All files rejected by conditions DSKB 1:WORKS4.LOG[55453,113213]
Job 13, User [X330EDOJ] Logged off TTY122 1937 8-Apr-79
Another job still logged in under [X330EDOJ]

Runtime 36.14 sec; Kilocore sec: 1246

Total of 542 disk blocks read, 12 written
Connect time 0 hr, 2 min, 10 sec; Total charge: $3.14
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1.3 Nand Gate Receiver

BATCON version 12(1041) running WORKS5 sequence 1664 in stream 1 for DEBEN

EDICTIS
Input from DSKBO:WORKS5.CTL[55453,l13213J
Output to DSKBO:WORKS5.LOG[55453,l13213]
Job parameters

Time:00:05:00 Unique:YES Restart:NO

.LOGIN 55453/113213

JOB 13 CMUl OD 7.V2/DEC 5.0613 TTY122
Other jobs same PPN
1941 08-Apr-79 Sun

••TYPE TEST.ASM
PSECT

LD HL,BUFFER
LD C,$OO

lOOP: LD A.@$1000

LD B,A
XOR C
AND $80

JR Z.LOOP
LD A,B

LD C,A
AND $7F
LD @HL,A
INC HL
JR LOOP

BUFFER: BLOCK 3

..TYPE MIC.IL
IN: INPUT/SIZE(4096,4096) DATL MEN AB DB;

MICRO: Z80 PHI AB DB MREO IORO RD WR RFSH Ml RESET INT NMI WAIT HALT
BUSRQ BUSAK FSUB. 1 FSUB2. 1 FSUB3. 1;
FSUB: Z80lF MICRO.17;
FSUB2: Z80RD MICRO.18;
FSUB3: Z80WR MICRO.l 9;

MEM: MEMORY /INI(MEM)/SIZE(O,64) MEN WR DB AB;
TTL 1: NAND2 RD WR MME;

TTL2: NAND2 MME MME MEN;



•.TYPE RECCC.lL
R1Nl: NAND2 Rl14 Rl12 Rlll;

R1N2: NAND2 nl11 CLK Rl12;

R1N3: NAND3 Rl12 CLK Rl14 Rl13;
R1N4: NAND3 Rl13 INPUT NC Rl14;
R1N5: NAND2 Rl12 NULl Sl;
Rl N6: NAND2 Sl Rl13 NUL 1;
R2Nl: NAND2 R2/4 R212 R2/l;
R2N2: NAND2 R21l CLK R2/2;

R2N3: NAND3 R212 CLK R2/4 R213;
R2N4: NAND3 n213 Sl NC R214;
R2N5: NAND2 R212 NUL2 S2;
R2N6: NAND2 S2 R213 NUL2;
R3Nl: NAND2 R314 R312 R31l;
R3N2: NAND2 R31l CLK R312;

R3N3: NAND3 R312 CLK R314 R313;
R3N4: NAND3 R313 S2 NC R314;
R3N5: NAND2 R312 NUL3 S3;

R3N6: NAND2 S3 R313 NUL3;

R4Nl: NAND2 R4/4 R412 R4/l;
R4N2: NAND2 R41l CLK R4/2;
R4N3: NAND3 R412 CLK R414 R413;
R4N4: NAND3 R413 S3 NC R414;
R4N5: NAND2 R412 NUL4 S4;
R4N6: NAND2 S4 R413 NUL4;

R5Nl: NAND2 R514 R512 R51l;
R5N2: NAND2 R51l CLK R512;

R5N3: NAND3 R512 CLK R514 R513;
R5N4: NAND3 R513 S4 NC R514;

R5N5: NAND2 R512 NUL5 S5;
R5N6: NAND2 S5 R513 NUL5;
R6Nl: NAND2 R614 R612 R61l;

R6N2: NAND2 n61l CLK R612;

R6N3: NAND3 R612 CLK R614 R613;

R6N4: NAND3 R613 S5 NC R614;

R6N5: NAND2 R612 NUL6 S6;
R6N6: NAND2 S6 R613 NUL6;
R7Nl: NAND2 R714 R712 R71l;
R7N2: NAND2 R71l CLK R712;
R7N3: NAND3 R712 CLK R714 R713;

R7N4: NAND3 R713 S6 NC R714;
R7N5: NAND2 R712 NUL7 S7;

R7N6: NAND2 S7 R713 NUL7;

83
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R8N1: NAND2 R814 R812 R811;
R8N2: NAND2 R811 CLK R812;
R8N3: NAND3 R812 CLK R814 R813;

R8N4: NAND3 R813 S7 NC R814;
R8N5: NAND2 R812 NUL8 TRANS;

R8N6: NAND2 TRANS R813 NUL8;
R8NV: NAND2 TRANS TRANS NC;
STATFF: DFF NSTAT TRANS NIL STAT;

NAND2 STAT STAT NSTAT;

CLOCK: CLOCK/TIME(0.000005) CLK;

FUNCTION/T1ME(O.OOOOO 1)/INI(FUN) INPUT;

ADAPT DATA S1 S2 S3 S4 S5 S6 S7 STAT;
LAT: LATCH CLK TRANS DATA DATL;

.•TYPE MEM.lNI

:100000002116000E003A001047A9E68028F7784F25
:06001000E67F772318EFE4
:00000001 FF

•.TYPE FUN.INI

32.5 1
37.5 1
42.5 0
47.5 0
52.5 1
57.5 0
62.5 0
67.5 0

72.5 0

77.5 1
82.5 1
87.5 0
92.5 0
97.5 1

102.5 0
107.5 0
112.5 1
117.5 0
122.5 1
127.5 0
132.5 1
137.5 0

142.5 0
147.5 0
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152.5 0

~ 157.5 1
162.5 0

•.RUN J
--EXIT

2 Garbage collections executed during 167 ms

End of SIMUlA program execution.
CPU time: -25:-33.' Elapsed time: 13:28.20

..START
--GET RECCC
--GET MIC

"All
R1 N1: NAND2 Rl14 Rl12 Rl11;
R.1 N2: NAND2 n111 ClK Rl12;
R1 N3: NAND3 R112 ClK Rl14 R113;

R1N4: NAND3 Rl13 INPUT NC Rl14;
R1N5: NAND2 Rl12 NUll Sl;
R1N6: NAND2 Sl Rl13 NUL1;

L R2N1: NAND2 R214 R212 R211;
R2N2: NAND2 R211 ClK R212;
R2N3: NAND3 R212 ClK R214 R213;
R2N4: NAND3 R213 Sl NC R214;
R2N5: NAND2 R212 NUl2 S2;
R2N6: NAND2 S2 R213 NUl2;
R3N1: NAND2 R314 R312 R311;

R3N2: NAND2 R311 ClK R312;
R3N3: NAND3 R312 ClK R314 R313;

R3N4: NAND3 R313 52 NC R314;
R3N5: NAND2 R312 NUl3 S3;
R3N6: NAND2 S3 R313 NUl3;
R4N1: NAND2 R414 R412 R411;

R4N2: NAND2 R411 ClK R412;
R4N3: NAND3 R412 ClK R414 R413;

R4N4: NAND3 R413 53 NC R414;

R4N5: NAND2 R412 NUL4 54;

R4N6: NAND2 S4 R413 NUl4;
R5N1: NAND2 R514 R512 R511;
R5N2: NAN02 R511 ClK R512;
R5N3: NAND3 R512 ClK R514 R513;

R5N4: NAND3 R513 54 NC R514;
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R5N5: NAND2 R512 NUL5 S5;
R5N6: NAND2 S5 R513 NUl5;
R6Nl: NAND2 R614 R612 R611;
R6N2: NAND2 R611 ClK R612;
R6N3: NAND3 R612 ClK R614 R613;
R6N4: NAND3 R613 S5 NC R614;

R6N5: NAND2 R612 NUL6 S6;
R6N6: NAND2 S6 R613 NUl6;
R7Nl: NI\ND2 R714 R712 R711;

R7N2: NAND2 R711 CLK R712;
R7N3: NAND3 R712 ClK R714 R713;
R7N4: NAND3 R713 S6 NC R714;
R7N5: NAND2 R712 NUl7 S7;

R7N6: NAND2 S7 R713 NUl7;

R8Nl: NAND2 R814 R812 R811;
R8N2: NAND2 R811 ClK R812;

R8N3: NAND3 R812 CLK R814 R813;
R8N4: NAND3 R813 S7 NC R814;
R8N5: NAND2 R812 NUl8 TRANS;
R8N6: NAN02 TRI\NS R813 NUl8;

R8NV: NAND2 TRANS TRANS NC;
STATFF: DFF NSTAT TRANS Nil STAT;

NAND2 STAT STAT NSTAT;

CLOCK: CLOCK/T1ME(0.000005) CLK;
FUNCTION/TIME(O.OOOOOl )/INI(FUN) INPUT;

ADAPT DATA Sl S2 S3 S4 S5 S6 S7 STAT;
LAT: lATCH ClK TRANS DATA DATL;
IN: INPUT/SllE(4096,4096) DATL MEN AB DB;

MICRO: l80 PHI AB DB MREO 10RO RD WR RFSH Ml RESET INT NMI WAIT HALT
BUSRO BUSAK FSUB. 1 FSUB2. 1 FSUB3. 1;
FSUB: l80lF MICRO.! 7;

FSUB2: l80RD MICRO.18;
FSUB3: l80WR MICRO.1 9;
MEM: MEMORY/INI(MEM)/SIZE(0,64) MEN WR DB AB;
TTL 1: NAND2 RD WR MME;
TTl2: NAND2 MME MME MEN;
"SIMU
"WHAT MEM
--) O.OOllS MEMORY 0: 64

OUTPUT CONTENTS? 'Y
0000 is 21
0001 is 16
0003 is OE
0005 is 3A
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0007 Is 10
0008 is 47
0009 is A9
OOOA is E6
OOOB is 80

OOOC is 28
0000 is F7

OOOE is 78

OOOF is 4F
0010 is E6

0011 Is 7F
0012 is 77
0013 is 23
0014 is 18

0015 is EF
~~PROBE MICRO

**PROBE OATl
~~PR 51

°PR 52
~~PR S3
~~PR S4
~~PR 55

~~PR 56

~~PR 57

**PR TRANS
~~PR INPUT
~~PR ClK

**UN .0001
--) O.OOus ClK TRUE.
--) O.Olus Sl TRUE.
--) 0.01usS2TRUE.
--) 0.01 us S3 TRUE.

--) O.Olus S4 TRUE.
--) 0.01 us S5 TRUE.
--) O.Olus S6 TRUE.
--) O.OlusS7TRUE.
--) O.Olus TRANS TRUE.
--) 2.50us ClK FALSE.

--) 2.75us A:OO F:OO BC:OOOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0003

--) 4.50us A:OO F:OO BC:OOOO DE:OOOO Hl:0016 IX,OOOO SP:OOOO PC:0005
--) 5.00us ClK TRUE.
--) 5.02us OATl 127.
--) 5.03us TRANS FALSE.
--) 5.03us S7 FALSE.
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--) 5.03us S6 FALSE .

.t --) 5.03us S5 FALSE.

--) 5.03us S4 FALSE.
--) 5.03us S3 FALSE.
--) 5.03us S2 FALSE.
--) 5.03us S1 FALSE.
--) 7.50us CLK FALSE.

--) 7.75us A:7F F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 8.75us A:7F F:OO BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 9.75us A:7F F:OO BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 10.00us CLK TRUE.

--) 11.50us A:OO F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 1 2.50us Cl.K FALSE.
--) 13.25us A:OO F:40 BC: 7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 15.00us ClK TRUE.

--) 16.50us A:7F F:40 BC: 7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 17.50us CLK FALSE.

--) 17.501ls A:7F F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 18.501ls A: 7F F:OO BC: 7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 20.001ls CLK TRUE.

--) 20.25us A:OO F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 22.00us A:OO F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 22.50us CLK FALSE.
--) 25.00us CLK TRUE.

--) 25.25us A:7F F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 26.2511s A:7F F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 27.25us A:7F F:OO BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 27.50us CLK FALSE.

--) .29.00us A:OO F:40 BC: 7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 30.00us CLK TRUE.

--) 30.75us A:OO F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 32.50us INPUT TRUE.

--) 32.50us CLK FALSE.

--) 34.001ls A:7F F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 35.00us CLK TRUE.

--) 35.00us A:7F F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 35.02us S1 TRUE.

--) 36.00us A:7F F:OO BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 37.50us CLK FALSE.

--) 37.75us A:OO F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC

--) 39.50us A:OO F:40 BC: 7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 40.00us CLK TRUE.
--) 40.02us S2 TRUE.
--) 42.501ls CLK FALSE.
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--) 42.50us INPUT FALSE.
--) 42.75us A:7F F:40 BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0008
--) 43.75us A:7F F:40 BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0009
--) 44.75us 1I:7F F:OO BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:OOOA
--) 45.00us ClK TRUE.
--) 45.02us S3 TRUE.
--) 45.03us S 1 FALSE.

--) 46.50us 11:00 F:40 BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:OOOC
--) 47.50us ClK FALSE.

--) 48.25us A:OO F:40 I3C: 7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0005

--) 50.00us ClK TRUE.

--) 50.02us S4 TRUE.
--) 50.03us S2 FALSE.

--) 51 .50us A: 7F F:40 BC: 7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0008
--) 52.50us ClK FALSE.
--) 52.50us INPUT TRUE.

--) 52.50us A:7F F:40 BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0009
--) 53.50us A:7F F:OO BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:OOOA
--) 55.00us ClK TRUE.

--) 55.02us S5 TRUE.
--) 55.02us S 1 TRUE.
--) 55.03us S3 FALSE.

--) 55.25us A:OO F:40 BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:OOOC

--) 57.00us 11:00 F:40 BC:7FOO DE:OOOO Hl:0016IX:0000 SP:0000PC:0005
--) 57.50us ClK FIIlSE.

--) 57.50us INPUT FALSE.

--) 60.00us ClK TRUE.
--) 60.02us S6 TRUE.

--) 60.02us S2 TRUE.
--) 60.03us S4 FIIlSE.
--) 60.03us S 1 FALSE.
--) 60.25us A: 7F F:40 BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0008
--) 61.25us A:7F F:40 BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0009
--) 62.25us A: 7F F:OO BC: 7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:OOOA
--) 62.50us CLK FALSE.
--) 64.00us A:OO F:40 I3C:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:OOOC
--) 65.00us ClK TRUE.
--) 65.02us S7 TRUE.
--) 65.02us S3 TRUE.
--) 65.03us S5 FALSE.
--) 65.03us S2 FALSE.

--) 65.75us A:OO F:40 BC: 7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0005
--) 67.50us ClK FALSE.

--) 59.00us A:7F F:40 BC:7FOO DE:OOOO Hl:0016 IX:OOOO SP:OOOO PC:0008
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--) 70.00us CLK TRUE.

--) 70.00us A:7F F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 70.02us TRANS THUE.

--) 70.02us 54 TRUE.

--) 70.03us S6 FALSE.

--) 70.03us S3 FALSE.
--) 71.00us A: 7F F:OO BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
--) 72.50us CLK FALSE.

--) 72.75us A:OO F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 74.50us A:OO F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 75.00us CLK TRUE.
--) 75.02us DATL 200.

--) 75.03us TRANS FALSE.
--) 75.03us S7 FALSE.

--) 75.03us S4 FALSE.
--) 77.50us INPUT TRUE.
--) 77.50us CLK FALSE.

--) 77.75us A:C8 F:40 BC:7FOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008
--) 78.75us A:C8 F:40 BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009

--) 79.75us A:C8 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOA
. --) 80.00us CLK TRUE.

--) 80.02us S 1 TRUE.
--) 81.50us A:80 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 82.50us CLK FALSE.
--) 83.25us A:80 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOE
--) 84.25us A:C8 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOF
--) 85.00us CLK TRUE.
--) 85.02us 52 TRUE.

--) 85.25us A:C8 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:001 0

--) 87.00us A:48 F:OO BC:C8C8 DE:OOOO HL:0016IX:0000 SP:OOOO PC:0012
--) 87.50us CLK FALSE.
--) 87.50us INPUT FALSE.

--) 88.75us A:118 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0013
--) 89.75us A:48 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0014

--) 90.00us CLK TRUE.
--) 90.02us 53 TRUE.

--) 90.03us S1 FALSE.

--) 91.50us A:48 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0005
--) 92.50us CLK FALSE.
--) 94.75us A:C8 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0008
--) 95.00us CLK TRUE.
--) 95.02us S4 TRUE.
--) 95.03us S2 FALSE.

--) 95.75us A:C8 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0009
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--) 96.75us A:OO F:40 BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOA
--) 97.50us CLK FALSE.
--) 97.50us INPUT TRUE.

--) 98.50us A:OO F:40 BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOC
--) 100.00us CLK TRUE.
--) 100.00us

""WHAT MEM
--) 100.00us MEMORY 0: 64

OUTPUT CONTENTS? "Y
0000 is 21
0001 is 16
0003 is OE

0005 is 3A

0007 is 10

0008 is 47
0009 is A9
OOOA is E6
0006 is 80

oooe is 28
0000 is F7

OOOE is 78
OOOF is 4F

0010 is E6
0011 is 7F
0012 is 77
0013 is 23

0014 is 18
0015 is EF

0016is48

""-PR MICRO

"UN .0002
--) 100.0211s S5 TRUE.
--) 100.02us S 1 TRUE.
--) 100.03us S3 FALSE.
--) 102.501ls CLK FALSE.
--) 102.501ls INPUT FI'.LSE.

--) 1 05.001ls ClK TRUE.
--) 105.02us S6 TRUE.
--) 105.02us S2 TRUE.

--) 105.03us S4 FALSE.
--) 105.03us S1 FALSE.
--) 107.50us CLK FALSE.

--) 11 O.OOus CLK TRUE.
--) 11 0.02us S7 TRUE.



--) 11 O.02us S3 TRUE.
--) 11 O.03us S5 FALSE.
--) 11 O.03us S2 FALSE.

--) 112.50us CLK FALSE.
--) 112.50us INPUT TRUE.
--) 115.00us CLK TRUE.

--) 115.02us TRANS TRUE.

--) 115.02us S4 TRUE.

--) 115.02us S 1 TRUE.
--) 115.03us S6 FALSE.
--) 115.03us S3 FALSE.
--) 117.50us CLK FALSE.
--) 11 7.50us INPUT FALSE.
--) 120.00us CLK TRUE.

--) 120.02us DATL 73.
--) 1 20.03us TRANS FALSE.

--) 120.03us S7 FALSE.
--) 1 20.03us S.I1 FALSE.
--) 120.03us S 1 FALSE.
--) 122.50us C~K FALSE.

--) 122.50us INPUT TRUE.
--) 125.00us CLK TRUE.
--) 125.02us S1 TRUE.

--) 127.50us INPUT FALSE.
--) 127.50us CLK FALSE.
--) 1 30.00us CLK TRUE.
--) 130.02us S2 TRUE.
--) 130.03us S1 FALSE.
--) 132.50us INPUT TRUE.
--) 132.50us CLK FALSE.

--) 135.00us CLK TRUE.
--) 135.02us S3 TRUE.
--) 135.02us S1 TRUE.
--) 135.03us S2 FALSE.

--) 137.50us INPUT FALSE.
--) 137.50us CLK FALSE.

--) 140.00us CLK TRUE.
--) 140.02us S4 TRUE.

--) 1 40.02us S2 TRUE.

--) 140.03us S3 FALSE.
--) 1 40.03us S 1 FALSE.
--) 142.50us CLK FALSE.
--) 145.00us CLK TRUE.
--) 145.02us S5 TRUE.
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--) 145.02us S3 TRUE.
.. --) 145.03us S4 FALSE.

--) 145.03us S2 FALSE.
--) 147.50us CLK FALSE.
--) 150.00us CLK TRUE.
--) 150.02us S6 TRUE.
--) 150.02us S4 TRUE.
--) 150.03us S5 FALSE.
--) 150.03us S3 FALSE.
--) 1 52.50us ClK FALSE.
--) 155.00us ClK TRUE.
--) 155.02us S7 TRUE.
--) 155.02us S5 TRUE.

--) 155.03us S6 FALSE.
--) 155.03us S4 FALSE.

--) 157.S0us INPUT TRUE.
--) 157.50us ClK FALSE.

--) 160.00us ClK TRUE.
--) 160.02us TRANS TRUE.
--) 160.02us S6 TRUE.
--) 160.02us S1 TRUE.
--) 160.03us S7 FALSE.

--) 1 60.03us S5 FALSE.

--) 162.S0us INPUT FALSE.

--) 162.50us ClK FALSE.
--) 1 65.00us ClK TRUE.
--) 165.02us DATl 161.
--) 165.03us TRANS FALSE.

--) 1 65.03us S6 FALSE.
--) 16S.03us S 1 FALSE.
--) 167.50us ClK FALSE.

--) 170.00us ClK TRUE.

--) 17?50us ClK FALSE.

--) 175.00us ClK TRUE.
--) 177.50us CLK FALSE.
--) 180.00us CLK TRUE.
--) 182.50us CLK FALSE.
--) 185.00us ClK TRUE.
--) 187.50us ClK FALSE.
--) 190.00us eLK TRUE.

--) 192.S0us ClK FALSE.
--) 19S.00us CLK TRUE.
--) 197.50us ClK FALSE.
--) 200.00us

93



94

··WHAT MEM

.. --) 200.00us MEMORY 0: 64

OUTPUT CONTENTS? 'Y
0000 is 21

0001 is 16
0003 is OE

0005 is 3A
0007 is 10

0008 is 47

0009 is A9

OOOA is E6
OOOB is 80
OOOC is 28
0000 is F7

OOOE is 78
OOOF is 4F

0010 is E6
0011 is 7F
0012is77

0013 is 23
0014 is 18
0015 is EF
0016 is 48
0017 is 49
0018 is 21
··EXIT

17 Garbage collections executed during 23599 ms

End of SIMULA pro9ram execution.
CPU time: 1 :43.47 Elapsed time: 3:24.75

.KJOB OSKBO:WORKS5.LOG=/W/B/Z:4/VR: 1O/VS: 1664/VL:200/VP: 1O/VO:P
Other jobs same PPN

%WLOAFR All files rejected by conditions DSKBO:WORKS5.LOG[55453,113213]
Job 13, User [X330EDOJ] Logged off TTY122 1945 8-Apr-79
Another job still logged in under [X330EDOJ]

Runtime 1 Min, 49.90 sec; Kilocore sec: 5209
Total of 550 disk blocks read, 11 written

Connect time 0 hr, 4 min, 4 sec; Total charge: $11.17
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1.4 Functional Input Port

BATCON version 12( 1041) running WORKS6 sequence 1665 In stream 1 for DEBEN
EDICTIS
Input from DSK81 :WORKS6.CTL[55453,113213]
Output to DSK81 :WORKS6.LOG[55453,l13213]
Job parameters

Time:00:05:00 Unique:YES Restart:NO

.LOGIN 55453/113213

JOB 13 CMUl OD 7.V2/DEC 5.068 TTY122
Other jobs same PPN
1945 08-Apr-79 Sun

•.TYPE TEST.ASM

PSECT
LD HL,BUFFER

LD C,$OO

LOOP: LD A,@$1000

LD B,A
XOR C
AND $80

JR Z,LOOP

LD A,B
LD C,A
AND $7F
LD @HL,A

INC HL
JR LOOP

BUFFER: BLOCK 3

•.TYPE MICC.lL
IN: INDATA/SIZE(4096,4096)/INI(INDATA) MEN AB DB;

MICRO: Z80 PHI AB DB MREO 10RO RD WR RFSH Ml RESET INT NMI WAIT HALT

BUSRO BUSAK FSLJB. 1 FSUB2. 1 FSLJB3. 1:
FSUB: Z80lF MICRO.17;
FSUB2: Z80RD MICRO.18:
FSUB3: Z80WR MICRO.l 9;

MEM: MEMORY/INI(MEM)/SIZE(O,64) MEN WR DB AS:
TTL 1: NAND2 RD WR MME:
TTL2: NAND2 MME MME MEN:
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•.TYPE MEM.lNI

:100000002116000E003A001047A9E68028F7784F25

:06001000E67F772318EFE4
:0000000 1FF

..TYPE INDATA.INI
200

73
161

.•RUN J
--EXIT

2 Garbage collections executed during 167 ms

End of SIMULA program execution.
CPU time: -25:-35.) Elapsed time: 17:26.30

.•START
--GET MICC
--ALL

IN: INDATA/SIZE(4096,4096)/INI(INDATA) MEN AB DB;
MICRO: Z80 PHI AB DB MREO 10RO RD WR RFSH M1 RESET INT NMI WAIT HALT
BUSRO BUSAK FSUB. 1 FSUB2. 1 FSUB3. 1;
FSUB: Z80lF MICRO.17;
FSUB2: Z80RD MICRO.18;
FSUB3: Z80WR MICRO.19;

MEM: MEMORY/INI(MEM)/SIZE(O,64) MEN WR DB AS;

TTL 1: NAND2 RD WR MME;
TTL2: NAND2 MME MME MEN;
~~SIMU

~~WHAT MEM

--) O.OOus MEMORY 0: 64

OUTPUT CONTENTS? 'Y
0000 is 21
0001 is 16
0003 is OE

0005 is 3A
0007 is 10
0008 is 47

0009 is A9
OOOA is E6

OOOB is 80
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OOOC is 28
.. 0000 is F7

OOOE is 78

OOOF is 4F

0010isE6
0011 is 7F

0012 is 77
0013 is 23
0014 is 18
0015 is EF
~~PROBE MICRO
~~UN .00006

--) 2.75us 1'1:00 F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0003
--) 4.501ls /\:00 F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0005
--) 7.7511s A:C8 F:OO BC:OOOO DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0008

--) 8.7511s /\:C8 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0009
--) 9.7511s A:C8 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOO/\

--) 11.501ls 1\:80 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOC
--) 13.2511s 1\:80 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOE
--) 14.2511s I\:C8 F:OO BC:C800 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOOF

--) 15.2511s I\:C8 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:OOl 0

--) 1 7.001ls 1\:48 F:OO BC:C8C8 DE:OOOO HL:0016 IX:OOOO SP:OOOO PC:0012

--) 18.7511s 1\:48 F:OO BC:C8C8 DE:OOOO HL:0016IX:OOOO SP:OOOO PC:0013
--) 1 9.7511s 1\:48 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0014
--) 21.501ls 1\:48 F:OO BC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0005
--) 24.75us 1\:49 F:OO IlC:C8C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0008
--) 25.75us 1\:49 F:OO IlC:49C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0009
--) 26.7511s 1\:81 F:OO IlC:49C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOO/\

--) 28.50us 1\:80 F:OO BC:49C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOC
--) 30.2511s 1\:80 F:OO IlC:49C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOE

--) 31.2511s 1\:49 F:OO IlC:49C8 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOOF
--) 32.2511s 1\:49 F:OO IlC:4949 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:OOl 0
--) 34.00us /\:49 F:OO IlC:4949 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0012
--) 35.7511s /\:49 F:OO BC:4949 DE:OOOO HL:0017 IX:OOOO SP:OOOO PC:0013

--) 36.7511s 1\:49 F:OO IlC:4949 DE:OOOO HL:0018 IX:OOOO SP:OOOO PC:0014
--) 38.501ls 1\:49 F:OO BC:4949 DE:OOOO HL:0018 IX:OOOO SP:OOOO PC:0005

--) 41.7511s 1\:/\1 F:OO BC:4949 DE:OOOO HL:0018 IX:OOOO SP:OOOO PC:0008

--) 42.7511s /\:/\1 F:OO BC:/\149 DE:OOOO HL:0018 IX:OOOO SP:OOOO PC:0009
--) 43.7511s /\:E8 F:OO BC:/\ 149 DE:OOOO HL:0018 IX:OOOO SP:OOOO PC:OOO/\
--) 45.50us 1\:80 F:OO BC:/\ 149 DE:OOOO HL:0018 IX:OOOO SP:OOOO PC:OOOC
--) 47.25us /\:80 F:OO BC:/\149 DE:OOOO HL:0018 IX:OOOO SP:OOOO PC:OOOE
--) 48.2511s /\:1\ 1 F:OO BC:A 149 DE:OOOO HL:0018 IX:OOOO Sp:oooo PC:OOOF
--) 49.2511s /\:/\1 F:OO IlC:/\l/\l DE:OOOO HL:0018IX:0000 SP:OOOO PC:0010
--) 51.001ls /\:21 F:OO BC:/\l/\l DE:OOOO HL:0018IX:0000 SP:OOOO PC:0012



98

--) S2.7Sus A:21 F:OO BC:A1Al DE:OOOO HL:0018IX:OOOO SP:OOOO PC:0013
o --) 53.75us A:21 F:OO BC:Al/\l DE:OOOO HL:0019 IX:OOOO sp:ooOOPC:0014

--) 55.50us /\:21 F:OO BC:/\ 1/\1 DE:OOOO HL:OOl 9 IX:OOOO SP:OOOO PC:0005

--) 58.75us /\: 10 F:OO BC:/\ 1/\1 DE:OOOO HL:OOl 9 IX:OOOO SP:OOOO PC:0008
--) S9.7Sus /\:10 F:OO BC:l0Al DE:OOOO HL:0019 IX:OOOO SP:OOOO PC:0009
--) 60.00us
~~WI-IAT MEM

--) 60.00us MEMORY 0: 64

OUTPUT CONTENTS? 'Y
0000 is 21
0001 is 16

0003 is OE
OOOS is 3/\

0007 is 10

0008 is 47

0009 is A9
OOOA is E6
0000 is 80
OOOC is 28
0000 is F7

OOOE is 78

OOOF is 4F
0010 is E6

0011 is 7F

0012is77
0013 is 23
0014is18
0015 is EF

0016 is 48
0017 is 49
0018 is 21
~~EXlT

7 Garbage collections executed during 2216 ms

End of SIMUL/\ program execution.
CPU time: 13.73 Elapsed time: 55.37

.KJOO DSKO 1 :WORKS6.LOG=/W/B/Z:4/VR: 1O/VS: 1665/vL:200/VP: 1O/VD:P
Other jobs same PPN

%WLDAFR All files rejected by conditions DSKBl :WORKS6.LOG[55453,113213]
Job 13, User [X330EDOJ] Logged off TTY122 1946 8-Apr-79
Another job still logged in under [X330EDOJ]
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Runtime 17.64 sec; Kilocore sec: 522
.. Total of 336 disk blocks read, 11 written

Connect time 0 hr, 1 min, 27 sec; Total charge: $1.45
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II. Example of a Functional Description

This appendix gives an example of a functional description. This particular

example was chosen because it demonstrates many of the features allowed In a

description.

The example is of a D-type flip flop. The flip flop has four ports, a data Input,

clock input, synchronous reset input, and output. The function of the element Is to

sample the Input when the clock goes high and transfer the Input to output after a

propogation delay. If the reset input was high then zero Is transfered to the output.

The propogation delay is obtained from a parameter. The parameter set TIME Is

searched for a real parameter which is the propogatlon delay In seconds. If no

parameter set exists, the default value of 10ns Is used.

Chain class part.

Check the ports for compatibility.
Infinite loop.

This saves the data during the delay.
These are the mask flags.

Reference to the element data structure.

Delay time parameter.

Allow setup code to finish with parameters.
Octal data specifyiing ports.

o TYPE FLIP FLOP. PORTS ARE DATA,CLOCK,RESET(SYNCHRONOUS),
Q.

If
If
If
If
IfffPARTffff CLASS
CHAIN CLASS CDFF(MOM,ACCESS);
REF(ELEMENT)MOM;
REAL ACCESS;

BEGIN
BOOLEAN DATA;
MSK: =8R 7 7 7 7 7 7 7 7 7 773;
PRO:-NEW PDFF(THIS CDFF);
DETACH;
DAT@CHK:=8R444404;
ELT@CHK:-MOM;

CALL($CHECK):
WHILE TRUE DO

BEGIN
DETACH;

. IF PRT@DCH = 2 THEN
BEGIN Ignore all but the clock.
IF GBIT(2,MOM) THEN

BEGIN If the clock went to a one state.
IF PRO =/= CURRENT THEN

REACTIVATE PRO AT TIME+ACCESS
ELSE

WARN ING("GLITCH!");
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IF GBIT(3,MOM) THEN

Check reset fine and change the output.
DATA:=FALSE

ELSE
DATA:=GBIT( 1,MOM);

END;
END;

END;
END;

##PARTII# CLASS Process part.
PROCESS CLASS PDFF(SIS);

REF(CDFF)SIS; Pointer to the corresponding chain CLASS.
INSPECT SIS DO

WHILE TRUE DO
BEGIN
PBIT(DATA,4,MOM);

Do the output.
PASSIVATE;

END;
##PART## SETUP Simulation model Inftfallzation.

IF $ELT.Ni\M = "OFF" THEN
BEGIN
ELT@PRM:-$ELT; Fetch parameters.
Ni\M@PRM:-COPY("T1ME");
REi\@PRM[1):=0.00000001;
DAT@PRM:=8R501 ;

CALL($FETCHPARM); Get the parameters.

$ELT.CHN:-NEW CDFF($ELT,REA@PRM[1»;
CALL($FINPARM); Finish the parameter fetching session.
CALL($ELT.CHN); Give control to the simulation element so It

END can check its ports.
ELSE
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III. Summary of Commands

- ADD line;. This command adds the line to the structure. It is flexible

in that the line may refer to an element that already exists. If the
element exists then undefined parts of the element will be defined by

the line. Using this the user can, for example, add parameters,

connect ports. or even add more ports to an existing element.

- ALL. This displays for the user the entire written representation of the
interconnect structure.

- DUMP filename. Write the written representation of the entire design
to DSK:filename.lL.

- ELEMENTS. All of the elements are listed. giving their label and name.
This is different from a written representation as the connections are
not shown, but elements such as wires, not otherwise shown, appear.

- EXIT. Exits to the monitor. A lengthy version of te.

- FREEZE. This command causes the entire program to be readied for a

save to a disk file. It closes terminal files, releases the high segment.
saves the accumulators, etc. This can be used, for example, to save a
large simulation while in progress.

- GET filename. Read the written representation of an interconnect
structure from DSK:filename.IL. This command can actually edit the

design. If it is used when a design already exists, if will join the two
interconnection structures.

- GO time. This causes simulation to proceed for the time Increment time
before terminal entry is requested again.

Minus is not really a command, as there is no prompt after its
execution. It sets all invert flag so that the next command will have
its normal function reversed. For example, the PROBE command will
start tracing, but will stop tracing if preceded be a minus, e.g. -PROBE.

- PROBE identifier. (Positive version) This turns off the masking flag
corresponding to port zero on the element whose label Is identifier. If
the element is a wire this turns on tracing for that wire.

- -PROBE identifier. (Negative version) This reverses the effect of the
PROBE command.
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- SIMDDT. For serious debugging the user may want to use DDT. This
command calls the SIMULA DDT. The user can then examine storage,
set breakpoints, etc., then continue execution.

- SIMULATE. This generates a simulation model for each element In the

design that doesn't have one. This command causes checking of ports
and parameters, hence may cause errors to be revealed.

- TRACE. This toggles the trace flag on the input parser. This is useful
for locating errors on input.

- UNTIL time. This causes simulation to proceed until simulation time Is
equal to time before terminal entry Is requested again.

- WHAT identifier. This does an activation of port zero on the element
whose label is Identifier. The setting of the mask flag Is not checked.
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