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S imul:llion mimics a physical pro­
cess to ,'c:M)' correctness. identify
errors. and generulc performance

estimates before designers fabricate a pro­
totype. Digital hardware designs. industri­
al control circuits. and aircrJrt arc usually
simulmcd cltlcnsivcly. Time-based simu­
lation techniques are efficient for pro­
cesses whose activities arc concentrated:1t
regular time intervals thaI c:m bc deter­
mined a priori.

Discrete-event simulation techniques
apply where the activities arc distributed
irregularly in lime. such as in digital
hardware. queuing networks. and banking
tnmsaclions. In discrete-event simul:llion.
a simulation model representing an entil)'
ofthc physical process remains idle exeep
when excited byastimulusutemaltoit.ln
addition. only changes in a model's responsc
are propagated 10 other models connected
to its outpul.

Figure I shows an example digital
hardware design. Each block A through G
represent.. a design component and con­
stitutes an entity of the physical process.
The propagation delays of A. H. C. I). and
Fare 5. 2. 4. 5. and 3 nanoSt."Conds. respec·
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A synthesized dataflow
network and a

computed quantity
"time of next event"

guarantee correctness
and freedom from

deadlock.

th·tly. Assuming an external stimulus at
the inputs of A and B at / :: 0 ns. the re­
sponses from A and B may be assert..xl at
ICi and ID.FI at I :: 5 ns and':: 2 ns.
respectively. A response fromeachofC. D.
and Fmay in tum be asserted at the inputs
of£andG at,=9 nS.I= 7 ns.and t =5 ns.
respectively. The activities of the physical
process are distributed irregularly in time.

so we formulate and efficiently simulate
them through discrete-e\'ent simulation.

A traditional algorithm to perfornl dis­
crcte-e\'ent simulation of digital h:ardware
on a uniprocessor proceeds as follows: An
event queue stores the events in increasing
order of their assertion times. where lhe
head of the queue refers to the event with
the smallest assertion lime. Initially the
event queue is empty. and lhe external
stimuli arc asserted at the inputs of com­
ponents A and 11. The stimuli generate ac­
tivily. namely lhe cxcr:ution of A and 11 at
, = 0 ns. shown in thee\'cnl queue in Table
I. Althis stage. the algorithm examines lhe
e\'cnt queue and selcr:ts for (xc:cution e\'Cnts
with the smallesttimc value. namely A and
B at I = 0 ns. Assume that the exc:cution of
models A and Bat I =0 ns generates output
trJnsitions at I = 5 ns and I = 2 ns. respec'
th·ely. that are asserted at the inputs of
models C. D. and "'. as shown in Figure I.
The new aclivities are expn'ssed through
(vents C:1l / = 5 ns. I) at , = 2 ns. and Fat
, 0: 2 ns in the event queue in Table I. Then
the algorithm examines lhe event queue
again. and selects the e\'ents wilh the
smallest time- namely 1) at I = 2 ns and F
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Figure I. Dlscrete-ennt simulation or an example digital hardware design.

Figure 2. nO"'chart of an algorithm for discrete-event simulation of digital
hardware.
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Assume propagation delays of 5 and 6 ns.
respectively, for models A and 8. and ini­
tial logical values of 0 at f : 0 ns at the
output pons p and q. Corresponding to the
signal transition at the primary input pon x
at f: 0 ns. the algorithm executesA. which
generates a new signal value al its OUtput p
at t: 0 +.5: 5 ns. Similarly. corresponding
to the transition attne primary input pan y
asscned simultaneously It t: 0 ns. 8 exe­
cutes and produces a new signal valueat its
OUtput pon q at t : 0 ... 6 : 6 ns. Corre­
sponding to the new signal values at p and
q. models A and 8 execute again. If the
signals at each of pons x and y are un­
changed. A and 8 execute again at t: 6 ns
and f:.5 ns to produce output signal yalucs
atponspandqlltf:6+S: II nsandl:
5 + 6: I I ns. respectively. Consequently,
for each execution of A and 8. Ihe output
signal produced may. in the future. cause
subsequent execution of A or 8.

Physical processes with cyclic circuits
include all digital hardware designs with
feedback. industrial control systems with
negatl\'e feedback. oscillators. and sets of
queui ng networks interconDC'Cled in aclosed
loop. A well-known natural process with
cyclic dependence is the food chain.

An example shows how a uniprocessor­
based discrete-cvent simulation system for
a cyclic circuit works. The digital hard­
ware design in Figure 4 consists of three
interconnected oscillaton comprising the
sels or galcs IA.8.C!. ID.E.FI. and
IG,H.JI. The propagation delay for each
galeA, 8. and Cis 100 ns: for each gate D.
E. and F. 3 ns: and for each gate G. H. and
J. 5 ns. Initially. the logical value at the
primary input ofA is 0 and the event queue
is empty. Corresponding to a signal transi­
tion 0 to I at the primary input ofA at I : 0
ns.A isaetivalcd, and thealgorithrn includes
the event in the eyent list in Table 2. The
algorithm executes component A to pro­
duce a 1-to-0 transition at its output pon at
t: 100 ns. As a result. the event queue now
contains the event at B at I : 100 ns. When
component 8 executes at t : 100 ns. it
generates an OUtput transition at its output
pon at t : 200 ns. The eyenl queue now
contains an event at C at f: 200 ns. When
C executes at t : 200 ns. it generates an
OUtput transition at itsOtJtput pan at t: 300

"'.
The eyent queue now contains three

eyents: A. D. and G. each at t : 300 ns.
Because the primary input of A is defined
up to I: 1.000 ns. A executes again at f :

300 ns and generates an output transition al
I: 400 ns. which causes an evenillt f: 400
ns in the eyent queue. Corresponding to the

lImulation

at f : 2 ns - for execution. The process
continues until the event queue is empty
and the simulation is complete. Figure 2
shows the process in a flowehan of the
traditional uniprocessor-based discrete­
e\'ent simulation algorithm.

For many physical processes. a direcled
gr.lph corresponding to the interactions
among entities may assume the form of a
cycliccircuil. Forexample. Figure 3shows
two cross-coupled Nand gates A and B
constituting an RS latch (reset·set latch).

Delay .. 3 ns

Initialize

IAny outstanding events? No

+ V..

select next event Terminale
lrom event Nst

+
Execute model
correspondng

to the event

+
Include oulpuI events

generated in events list
(Update process)

+

Time Components
Activated

1:0 A.B
I: 2 D.F
1:.5 C.G,.7 E
I: 9 E

Table I. Event queue for the simula·
tlon In Figure I.
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Nand (Delay: 5 ns)
, 0 E F

J1 Delay" 3 ns
t"O t,,1,OOOns A G H J

Delay", 5 ns

Delay", tOO ns

Q
B

'-----:::'~,.J
Nand (Delay: 6 ns)

fo'igure 3. Cross-coupled Nand latch.

,"'igure 4. Discrete-event simulation of a c)'clic circuit.

Table 2. Event queue for the simula­
tion in fo'igure 4.

must execute sequentially at / = 300 ns. in
the synchronous approach A. D. and G can
execute concurrently in three procc.~sors.

However. all three must cxecUlecompletely
hefore the algorithm simulates the subse­
quent event £ at t: 303 ns. followed by H
at t: 305 ns. Components E and H arc not
data dependent. but the synchronous al­
gorithm fails to achieve their simultaneous
execution.

Rollback mechanism. The rollback
mechanism l saves the state of the entire
system periodical Iy so the simulation system
can roll back to its previous state if an error
results from messages processed out of
order. If a model has no information about
a signal at an input pon. it assumes that the
signal value has remained unchanged and
propagates to subsequent models the resuhs
of execution based on that assumption. If
the component receives a subsequent
message that contradicts its previous as­
sumption. it propagates new results to
subsequent models in the form of an­
timessages. Limitations of the rollback
mechanism include the significant storage
required to periodically save the state of
the entire simulation and the uncertainty

executions of D and G. output transitions
are generated at the output pons at t: 303
ns and /: 305 ns. respectively. The event
queue now contai ns three evcnts- E. H, and
B - to be executed at / equals 303. 305.
and 400 ns, respectively. The simulation
continues and terminates when either the
evcnt queue is empty or the simulation
time exceeds the maximum simulation time.

The event queue in Table 2 shows that
for the simulation time t: 300 ns. the al­
gorithm ean execute the set of components
(A.D.G} simultaneously. But in a unipro­
eessor system. the eomponents must be
executed sequentially. A parallel-proces­
sor system could execute the components
in each of the sets concurrently. possibly
speeding the simulation. A parallel-pro­
cessorsystem might also speed simulation
of acyclic circuits.

No reponed parallel-processor algorithm
for circuits in which the process inter.tctions
form a cyclic graph offers a solution with
acceptable performance, freedom from
deadlock. and provable correctness. In this
anicle. we propose a method that uses a
dataflow network synthesized on the basis
of the connectivity of the circuit compo­
nents. Our algorithm computes a quantity
"time of next event" for each component.
which permits the corresponding model to
execute asynchronously as far ahead in
simulation time as possible. The network
ensures that a simulation process executing
in a distributed processing environment
will not deadlock.

Distributed discrete­
event simulation

We studied distributed techniques be­
cause of their potential to simultaneously
execute multiple entities of a complex
discrete-event simulation and thereby speed
the simulation. The synchronous. rollback.

and asynchronous approaches are current­
Iy the three pri nci pal distributed techniques.

Synchronous mechanism. In the syn­
chronous approach. I a processor designat­
ed as a centralized controller allocates all
other entities to the processors of the par­
allel-processor system and initiates their
executions. The controller also resynchro­
nizes all processors at the end of every
activity. An example of a system imple­
menting the synchronous approach is the
Zycad hardware accelerator machi ne. which
uses the synchronous algorithm for gate­
level logic simulation.

The synchronous approach permits the
concurrent execution of entities corre­
sponding 10 twO or more events at the
simulation time given by t: I!, but it has
some limitations. The processors must re­
synchronize at the end of each activity.
even in the absence of data dependency.
and message communication may not be
complete !It the end of an activity.

A synchronous distributed simulation of
the example circuit in Figure 4 illustrates
some of these problems. Assume that the
components A through J are allocated to
nine processors (one component per pro­
cessor). A 10th processor of the parallel­
processor system is the centralized con­
troller that maintai ns the global event queue.
Corresponding to the signal transitions at
the primary input pons ofA.theevent queue
contains a single entry: A at I : 0 ns. The
controller initiates the execution of A.
Except for the processor that contains the
component A, the other cight processors
are idle. Execution of A generates an out­
put transition that causes an entry in the
event queue: B at t : 100 ns. Then the
controller initiates the execution of B. and
the process continues as for a uniprocessor.
with oneexception, Unlike in a uniprocessor
system, where the components A, D, and G

Time

/:0

/: 100
/" 200
/: 300
/: 303
/: 305
/:400

Components
Activated

A
8

C
A.D.G
E
H
B
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Figure S. Asynchronous simulation or
a cyclic circuit.

resulting from propag:uing a combination
ofmcssages and amimessages throughout
the simulation system.

Asynchronous mechanism. The asyn­
chronous discrete-cvent simulation mech­
anism"'" permits every simulation model to
execute independently where there is no
explicit data dependency. giving the p0­

tential for maximum parallelism. The ex­
ample circuit shown in Figure4 permits the
following concurrent. independent execu·
tions: Component B may execute at 1:= 400
ns following execution ofA al 1:= 300 ns. £
at I=303 ns following 0 at t:= 300 ns. and
Hat t :: 305 ns following G at I :: 300 ns.

The next section reviews previous ap­
proaches to asynchronous discrete-event
simulation of cyclic circuits. Then. we
present our new approach and compare it
with the previous approaches. We also
comment on the proof of our algorithm's
correctness. implementation issues. and our
algorithm's performance.

Asynchronous
simulation of cyclic
circuits

The asynchronous approach pcrmits
every simulation model to execute inde­
pendently in the absence of data depen­
dency. Consequently. its success with a
simulation system is a function of the
computational requirement of the models
and the degre-e ofdata dependency between
the models. For a set of entities constitut­
ing a cyclic circuit. the OUtput generated as
a consequence of an entity's execution
may influence its input at a later time.
Consequently. compared with acyclic cir·
cuits. cyclic circuits require more syn·
chronization. which may diminish the ef­
fectiveness of the asynchronous approach.

Figure 5 shows anmher serious difficulty
in Ihe asynchronous approach to cyclic
circuits. The input ports of model A are pi
and p2. and the input port of B is p3. The
output of model Bconnecls top2 ofA. and
the output of A connects 10 p3 of B. The

propagation delaysofA and Bare d l and d:.
respectively. Assume distribuled asyn·
chronous discrete-c\'ent simulation of a
design where A and B are associated with
two distinct processors of a parallel pr0­

cessor. Simulation has run to termination
when all externally supplied usable signal
transitions have been used to generate OUI­

put transitions.
Assume also that initial logical valueO is

associated with ports p3 and p2 at t:= 0 ns.
For a given signal transition 0 to I at port
p I of A at / :: 0 ns. the algorithm executes
A. Assume that the logical value of I at pi
persisls up to /:: Tns. where Tis very large.
If the execution of A generales a transition
at its output port at t =0 + d l = d,. the
transition is propagated to B. causing B to
be scheduled for execution at /:: d,. If the
execution of B at / = d l generates a transi­
tion at its output port at I :: d, + d:. the
transition is propagated 10 port p2 ofA. As
a result. A may execute again. and the
process will continue as long as the algo­
rithm can correctly schedule models A and
B for execution.

If the execution of H at I :: d, does not
generate a signal transition at its output
port. no message is sent from B to A.
Consequenlly. model A is unaware that the
pon p2 is at logical 0 up to t = d, + d2 and
is unable to execute beyond / := 0 ns. The
signal value of I at port pi persists up to I

=T ns and. thertfore. the si mu lation should
execute until the transition I = T ns. But A
cannot execute without messages from B.
and B cannot execule wilhout messages
fromA. ThisconSlitutesadeadlock. caused
by the absence of information at an input
pon of a model and the lack of global
knowledge that the signal value at that port
has remained unchanged.

A method called deadlock recovery'
addresses the difficulty by letli ng the entire
simulation system execute unti Iit deadlocks.
that is. until none of the entities is sched­
uled for execution and the overall simula·
tion has progressed only partially. A dis·
tributed deadlock-detection algorithm!.!
detects the deadlock state. 1be algorithm
sylKhronouslycomputes the minimum (say
X) of all outstanding event times and the
assertion times of external signals for ev­
eryentity. Then. it lets every entityexecute
upto/::Xns.

For the example circuit in Figure 5.
deadlock recovery lets the entire simulation
system constituted by entities A and 8
execute until it results in adeadlock. Assume
that models A and 8 execute at I = 0 ns and
, =d( ns. respectively. and that the execu­
tion ofBdoes nOl generate a transition at its

output. At the instant that the deadlock­
detection algorithm detects the deadlock.
component 8 has no outslanding events to
execute. nor does it connect to an external
input signal. Also. component A has no
outstanding evenl to be executed_ but the
external signal at port pI is defined at I = T
ns. Consequently. the algorithm computes
the minimum X to be T ns and lets models
A and B execute on the assumption that the
signals at p2 and p3 have remained un­
changed up to / = T ns.

The deadlock-recovery scheme has
limitations. The scheme fails for systems
with both cyclic and acyclic circuits. that
is. systems where not all entities may result
in 3 deadlock. Moreover. issues of perfor­
mance and correctness are difficult to re­
soJ \'e because entitiesexecute intodeadlock.
Implementation· of the deadlock recovery
scheme has shown thai the simulation runs
from one deadlock to Ihe subsequent
deadlock state and that the algorithm per­
formance is nonlinear with respect to in­
creasing problem size.

A second way' to handle deadlock is to
identify and mark all entities of a simula­
tion system that constitute cyclic subcircu its
and set their execution modes to exception
mode. In exception mode. an output signal
generated when an entity executes is
propagated tosubsequent enlitiese\'en when
Ihe signal is unchanged from its previous
value. When an entity receives a message
at an input port that corresponds 10 an
unchanged signal value. the algorithm
schedules the entity for execution exactly
as for a message corresponding to a signal
transition.

In simulation of the example design in
Figure 5. first model A executes and then B
executes. The execution of 8 generates no
transition at its output. But the systcm is
operating in exception mode. soa message
correspondingtotheuochangedsignal value
at p2 atl::d, +dl is propagated toA. Then.
entity A executes again. generating an un·
changed signal at its output all:: 211, +d:.
which issubsequentJypropagated to B. The
process continues until the external signal
at p I for I = T ns is used and the OUtput
signals at ports p2 and p3 3re appropriately
determined.

This approachJ guarantees absence of
deadlock in a system with cyclic circles of
any degree of complexity. Its principal
Iimit:lIion is its inefficiency. particularly
when an external signal ofa cyclic design
that is nonoscillatory remains unchanged
for a long time. For instance. assume that
the example circuit in Figure 5 is non­
oscillatory. Messages corresponding to
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t-igure 6. Reducing a cyclic dinclm graph (a) 10 an acyclic dincted grapb (b).

unchanged signal values will propagate
from A to 8 and from 8 to A at intervals of
Cdl + d:) ns. The total number of iterations
around the cycle until simulation tenni­
nates iuppro"imately(l.OOOI(d,+dJ). The
total CPU time required for simulation is
proponionalto the number of iterations. so
when the ratio (I.OOOI(dl+dJ) is large. ef­
ficiency is low.

A new approach

We propose a new approach to avoid
deadlock called Yaddes. which stands for
"yet another asynchronous distributed
discrete-event simulation algorithm." For
a system such as adigital design. we identify
subcircuits that constitute cyclic directed
graphs and simulate only the entities of
such subcircuits using the new approach.
We simulate system entities that constitute
acyclic graphs using the exccption.mode
approachJdescribed in the previous section.
In this anicle. we prescnt the Yaddes ap­
proach for use with digital hardware. but it
applies equally well to queuing networks
and banking transactions.

O,·uvlew. Feedback loops are the
principal cause of deadlock in traditional
asynchronous distributed discrete-event
simulation systems. The simulation envi­
ronment represente.; through models con­
nected by fcedlxtck loopsc3nnot accurately
decide the precise execution of events. To
enable circuit execution in a de3dlock-frcc:
environment. the Yaddes 3ppro3Ch uses a
synthesis of an acyclic circuit of
pseudocornponents based on the origin31
simulation circuit. Unlike simulation
models 'hut require subswntial computu­
tional power. pseudocomponenl~ are purely
mathematical entities that evulu:lle func­
tions. A pseudocomponent inherits only
the input and output pons of the corre·
sponding simulation model.

To prcseT\'e the algorithm's 3synchro­
nous and concurrent nature. each
pscudocomponcnt rcpresents a decision­
making entity whose sole function is to
detennioe when the corresponding simu­
lation model can correctly execute an input
event. An e\'ent refers to a signal transition
at an input pon. Yaddes requires that each
pscudocompooent compute aquantity ·'time
ofncxt event" (\"1 at its output pon. To do
this. II p5Cudocompooent applies a minimum
operatoroverthe W'" values at its input pons
and the simulation time of the event of the
corresponding simulation model. Thus.the
pseudocomponent must access the simula-
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(0)

tion time or the event rrom the related
simullition model. This quantity is a mea­
sure of the time at which the next event is
expected at that p3th. Furthennore. the
algorithm can usc this quantity to decide
whether a model can safely execute an
event. The minimum function shows the
conservative nature or lhe Yaddes algo­
rithm.

Corresponding to each or the inputs of
the acyclic circuit that represenlthe primary
inputs. the algorithm defines the IV'value
as cqualto the asscnion time or the most
rccenttransition. The remaining inputs or
the acyclic circuit are unconnected because
they are not influenced by anyevcnts in the
circuit. 1neir IV' values are assumed to be
pcnnanently held at a very large number
expressed as_sothey cannot influence the
IV' computations ofthe pseudocomponents.

A limitation of the synthesized acyclic
circuit is the lack or connectivity between
the pscudocomponents of the respective
feedback loops that may be required in the
simulation circuit. For a given feedback
loop. the W" value at the output or the
left most pseudocomponcnt does not reflect
the simulation times of the events associ­
ated with other simuhttion modcls in the
same loop or those of other models lhat
rmLy influence the computation. As a result,
the computed IV value may be inaccurate.
In ract. the value will probably be "opti­
mistic" and imply a value greater than the
true value, rorthe rollowing reason. Because
the algorithm uses the minimum operator.
IV' \'alucs it associates with other models
imply only a lower value in the computa­
tion or the W" value for a pseudocompo­
ncnt.

To address this limitation. we synthe­
size a second identical copy of the acyclic
circuit. To distinguish between them. we
call the first and sc<:ond acyclic circuits
primed and unprimed. respectiVely. and
e)(press the quantity "time or ne"t event"
as IV ror the unprinted circuit. Each output
orthe primed circuit connects to each input
orthe unprimed circuitthrougha minimum
operator. A crossbar switch expresses the
dependency between the fcedback loops in

(b)

this interconnection network. If the activo
ities of a feedback loop do not arfect those
or another loop. the corresponding link in
the switch is considered none"istent: oth·
erwise. a link exists. An existent link has a
weight equal to the computed propagation
delay from the output of the primed
pseudocomponent X' to the input of the
unprimed pseudocomponent Y. Although
the maximum capacity of the switch is N)(
N. the actual size is defined by the circuit.
(We discuss the role of the outputs of the
unprimed circuit in a later section.) The IV
values computed by the pseudocomponents
or the unprimed circuit correctly include
the simulation times orall appropriate e\'ents
in the entire circuit. The algorithm uses
lhese values to accurately detennine when
an e\'ent can be executed by a model. We
call the primed and unprimed circuits and
theswitchcollectivclythedataflownetwork
for the circuit.

The optimistic nature or the evaluation
process in the primed circuit acts as a
window into futurc events. These future
eventS are presented 10 the unprimed circuit.
whose conservative characteristics guar·
antee simulation accuracy. The primary
cause of deadlock - the cyclic datil de­
pendence in the feedback loops - is re­
solved by a dataflow network that lacks
any cyclic dependence between its con­
stituent pseudocomponents.

Yaddes algorilhm. For a circuit con­
taining reedbac\r: loops. first .....e identify a
reedback arc setl S gi\'en by S-: lEI' E:, ....
E.I of a dircc:ted graph cOlTCSponding to a
digital design. This lets us render the graph
as acyclic afler we remove all the edges E1

through E•. The cOrTeCtoessorthe approach
is not contingcnt on identirying the mini­
mal feedback arc set. which is difficult and
time consuming to do. Howe\·er. identify­
ing the minimal feedback arc sct may im­
pro\'e performance.'

Foreach E, Vie 11.2..... nJ in the
original directed graph, we reconstruct a
new acyclic directed graph by replacing E1

with two unconnected edges El" and E,-.
Figure 6a shows a cyclic circuit consisting
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Figure 7. Datuno,," network constructed for the cyclic circuit in Figure 68.

unprimed circuits are the primed (X') and
unprimed (X) pseudocomponents. where X
refers to the corresponding simulation
model. Every input port of a pseudocom­
ponent X' that has a label of the form E,· is
permanently held at a very large number
represented by 00. An output pon of CIICry

X' that has a label of the form Er is linked
to every input port of any pseudocompo­
nent Y in the unprimed circuit that has a
label of the form Et'.

The collection of links constitutes the
crossbar switch. For a feedback arc sct of
size N. the maximum capacityofthe switch
is given by Nl. Where the actillities of the
simulation models of a feedback loop may
affect those of another loop. the corre­
sponding link in the switch exists. Other­
wise. it is nonexistent. A link connecting
the output pon Er of a pseudocomponent
X' in the primed circuit to an input port E/"
of a component Y in the unprimed circuit
merely propagates the \Vx' lIalues from X'
to Y.delayed by thc weight associated with
the link. Figure 7 shows the data now net­
work for the cyclic graph in Figure 6a.

In Figure 7, the pseudocomponents A'
and B' constitute the primed circuit where
the input pon E,"' ofA' is permancntly held
at 00. A' and B' correspond to the And and
invener gates in the simulation circuit.
Pscudocomponents A and B constitute the
unprimed acyclic circuit. The output pon
E1"'" of H' is connected Ilia thc crossbar
switch to the input port of E,'" ofA because
thc activities of models A and 8 may affect
each other. The feedback arc set has a size
of I. so the size of the crossbar switch is 17

= I. The first input pons of both A and A'
connect to the external path El . Associated
with E) are the externally applied signal
transitions. Conceptually. we can include
these transitions in the event list of modcl
A - that is. the list of outstanding input
transitions of A - and hold E) at 00. Fur­
thermore, conceptually the output port E/­
of 8 is unconnccted. Howeller. in the cur­
rent implementation of Yaddes thc output
of 8 is connected to a special entity "P,"
signifying that it is the rightmost boundary
of the dataflow nctwork. We say more
about this connection later in this section.

Figure 8 shows three cyclic subcircuits.
Figure 9 shows the datanow network cor­
responding to thcirdigital design. The dig­
ital design in Figure 8 consists of three
cyclic subcircuits K,. K1, and K)constitutcd
by the scts ofcomponents (A.8.CI.ID.EI.
and {F.G.HI respectively. K, and K) arc
oscillators wilh time periods of30,000 and
3.000 ns. respectively. and K~ is nonoscil­
lalOry. The oscillatory transitions of K, are

HGF

Delay", 1,000 ns

Delay"" 1 ns
o E

sociated with the input of A and the output
of B. respectively.

Next. we synthesized a dalunow net­
work by connecting tWO identical copies of
the acyc1 ic circu it through a crossbar switch.
The two acyclic circuits to the left of the
crossbar switch are primed and to the right.
unprimed. The entities in the datanow net­
work corresponding to the primed and

A' B' 0' B C
out

m

E
~

~

;n H' out
m p

;n
InP

P

m

Delay: 10,000 ns

taO ns
I: 100,000 ns A

Figure It A digital design with cyclic sulKircuits.

of a two-input And gllte A whose output
connects through edge Elto the input of the
inverter H. The output of the invener H
connects through edge E1 to an input of A.
The other input pon of A is edge E).

Assume that the feedback urc set for the
circuit is given by S '" (E,l. We rendered
the graph in Figure 6b acyclic by remolling
E, and replacing it with E,· and E,- as-

"'Igure 9. Datuno,," network for the digital design in Io"igure 8.
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Formal definitions

Here are lormal mathematical definitions 01 the quantities Vr- W:. and W... that
we describe WltUmvety in OIJr presentation of the Yaddes IJgoritnm.

Definition of Wi. A mathematical quantity Wi Is associated with the output
port 01 every primed pseudocomponent X in the dataflow network. We compute
It through the lunction W...•• minImum (VI(+ d. W,' + d, .... W: + d) where W,',
.... W: reler to Ihe W· values at the Input ports 1, .... n 01 X, and d ralars to tha
propagation dalay 01 model X, WI(' usually Is an optimistic and Inaccurale mea­
sure of the simulation time when tha next event wlll arrive althe output of model
X. Initially.lhe algorithm $8ts every Wi'V Xto 0, Indicating thai they are not yet
Inlluenced by any event.

DM'lnltion or u.. We associate with every simulation model X a collection 01
&Yents - that is. transitions received at Its input pons propagated from other
models as messages. The atvorittvn orders the events In increasing order oIlheir
simulation times In an event list. and ultimately they may be executed by the
model X. At any instant. V... Is squalto the simulation time 01 the &Yent at the
head 01 the list - the event with the smallest value 01 simulation lime. When the
lislls empty. the value of V.. Is considered squalto _. Initlally. every VI( V X in
the simulation circuit Is sel 10 _. For the component A In the example circuit in
FIgure B. assume signal transitloos 0 10 1 at t: 0 ns and 1 to 0 at' .. 100,000 ns
at the extemallnput 01 A. Also assume that other Input pons 01 A receive no
messages unll1than. Then V. relers 10 the transition 0 to 1 at t. 0 ns. and
V... O.

termine whether a simulation model e\'ent
can bcexecuted. ConceplUally. the Wvalues
arc accessed by the corresponding simula­
tion models in the simuilltion circuit.

As with any distributed simulator. the
algorithm stores the signal transitions re­
ceived at the inputs or a simulation model
in an event list for that model. The head of
the: list refers to the transition with the
smallest value of simulation time. We also
call this the event of the model. and repre­
sent the value of its simulation as U•. 1.0 the
Yaddes approach. evcry cvent of a model
can be accessed by the corresponding primed
and unprimed pseudocomponents.

Thc two nllljor clements of the Yaddes

DM'lntuon of WI' A mathematical quantity W.1s associated with the output
pon or every unprimed pseudocomponeot X In the dataflow nelwOf'k. Formally.
W.. 1s computed through the !unction W... : minimum (V... + d. W, + d, ...• W. + d).
Where W.. ...• W. reler to the W (or IV') values at the input ports 1..... n 01 X. and
d relers to the propagation delay 01 model X. In some cases. as with the
unprimed component Ain Rgure 9. a W value (In this case We1 may be in­
volved in the computation 01 a Wvalue (In this case W,J. W.. repfesents an accu­
rate measure 01 the simulation time when the next event will arrive at the output
01 model X_ To preserve the eo«ectness of the simulation - the proper order 01
event execution - no message with a simulation time given by'< W... can be
sent by model Xal its output port Iollowing the possible propagation 01 ames­
saoe with sImulation time ,. WI(' Initially. the algorithm sets every WI( V X to 0,
Indicating that they ere not yetlnlluenced by any avent. We consider the simula­
tion to be complete when W... and VI( 'r;f X are identical to -.

loopKI mayaffectthoseof K1, Since the W
computation involves the minimum
operator. failure to consider other events
may yield values larger than the COlTCCt
values. Morco\·er. these values are opti­
mistic because they allude 10 events e\'en
when there may be other events with pos­
sibly lower simulation times.

Associated with each ofthe pscudocom­
ponents Ye {A. B..... HI of the unprimed
circuit is a similar mathematical quantity
represented by IV,.. The Wvalue:s share the
principles ofcomputation and propagation
of W values. However. in contrast to the
W values. the Wr values are aa;:urate.
Therefore. the algorithm uses them to de·

generated corresponding to a logical value
of I at the input port of model A of K,•and
the transitions drive the models in K: and
K). The feedback arc set for the simulation
circuit is Im.n,p I. Figure 9 shows the con­
sequent :acyclic subcircuilS derived from
Kl • K:. and K) and the datanOw network.
1be input pons m". m"'. tr"'.",... and".. of
the pscudocomponcntsA'. D'. and r result
from removing the edgesm. n. and p of the:
original design. The input portS are all
pt.nnanently held at-. The output pan"'­
ofcomponent e connects to the: input ports
m'" of each of the pscudocomponentsA. D.
and F. renecting the fact that thc aClivities
of the models of K, can innuence those of
both Kl and K). The Output port {f"'" of If
connects only to thc input port p" of F.
rcnecting the fact that the activity of K)
innuences neither K, nor Kl. Similarly. the
output pon ,,- of E' connects only to the
input port "M of D. Consequently. the
crossbarswitch has only five links: e toA.
e to D. e to F.I:." to D. and H' to F.

Associated with the output pon of each
pscudocomponentX'e IA·.B'..... H'1 isa
mathematical quantity -time ofnut event"
represented by the symbol Wx'. (Sec the:
sidebar for mathematical definitions ofWr'.
Ur • and W...) Intuitively. IVx' is lhe: pre·
dicted time of the nut event at the output
ofmodel X. 1be algorithm computes it from
the Wvaluesatlheinput pons ofX' and the
simulation timeohhee\'entofmodel X. The
computation of IVx' is triggered by any
change in the values of its arguments. Any
computed IVx' is propagated to other
pscudocomponemsconnected toits fanout
when it differs from the previous value.
Moreover. the propagation is like a chain
reaction: Subsequent components that in­
terceptthe IV' values arc also executed. and
any changes in their output values are fur­
ther propagated. The chain reaction ter­
minates either when no new W' values are
generated or when it encounters the right­
most component of the network. A process
of acknowledgments detects the termina­
lion,

The W values are optimistic. In the
datanow network in Figure 9. given that
the second input pon of A' is pt.rmancndy
held at-. the value of IV,: is defined only
by the simulation time of the transition at
the first inpul pon ofA'. Weexpccl the value
of IV,: to renectthe simulation time of the
DC.\! e\'ent. yet it fails to take into account
other events at B' and C possibly with
lower simulation times than that at A',
Similarly.the computation of IV,,' fails to
consider events at £' and even A'. 8', and
C. because the activities of the feedback
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read in events at input pons - from external pons or other componenlS
update event queue and order events according 10 lime
if (new event alters U value) I

initiate pseudocomponents X and )(
wait until done signal received from X and x:
send acknowledgment to the sender of the event

I
else if (new event does not alter the U yalue) I

send acknowledgment to the sender of the event

I
read W yalues at every input pon of the simulation model X and compute thc

minimum K
if (X yalue exceeds U value) I

execute simulation model and generate output signal
if (OUlput signal does 00l. differ from previous yalue) I

remove U yalue. and update event queue to rcOea new U value
if (evenl queue is empty) set U to infinity
initiate X and}( to update IV and IV" values
wait until done signals from X and}( are received

I
else if (output signal differs from previous value) I

send output event to all models in the fanout
wait for acknowledgment from each one of them
remove U value and update event queue to reneet new U value
if (event queue is empty) set U 10 infinity
initiate X and}( to update Wand IV" values
wail unlil done signals from X and)(':ll"C received

ngure 10. Operations of u simuhtlioll model X.

read in command from simulation model X. new IV" value from left. and
acknowledgments from righl

if (command from model X is read) I
compute \V'

if (IV" value remains unaltered) I
send done signal back to model X

J
else if(W computes to a new value) I

propagate new IV" value and expect acknowledgment from the receivers
upon receiving acknowledgment. send done signal to simulation model X

I
else if (new IV" value is read) I

compute the output IV" yalue
if (IV" value is unchanged) send acknowledgment back to sender
clse if(W computes 10 a ncw value) I

propagale new IV' yalue and expect acknowledgmenl from the receivers
ulJOn receiving acknowledgment. send llcknowledgment 10 the sender on the

left

I
else if (acknowledgment rc<'eiyed from the right) I

if (acknowledgment is for itself) send done signal to simulation model X
else if (acknowledgment is not for itself) relay it toward the original requcstOf"

Figure II. Optnttions ofa pscudocomponent X' or X.
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simuhuion environment are the simulation
cireuit and the datanow network. The sim·
ulation circuit consists ofexecutable models
corresponding to each component of the
circuit. and the now ofsignals between the
models is represented by messages over
communication protocols, The models ex­
ecute signal transitions received at Ihe in­
put pons. und any output transitions gener­
ated as a consequence of eXlX:ution are
propagaled to other models connected to
the OUlput pon. Howe\'er. the constituents
ofthedatanow network generate decisions
about the precise execution of an e\'ent.
The primed and unprimed pscudocompo­
nents execute concurrently and asynchro­
nously with respect to one another and the
simulation models, (In the current imple­
mentation of Yaddes. they are executed
round-robi n by a processor,) The execution
ofa pscudocomponent is initiated either by
the corresponding model or by the propa­
gation of a new W (or \\1") yalue at an input
pan by other pscudocomponents.

Because Yaddes is a distributed approach.
the subalgorithms describing the opera·
tions of a simulalion model. a primed
pseudocomponent. and an unprimed com­
ponent apply equally 10 all other respective
entities in the system, Assume thaI a signal
lr:msition is assencd at an input pan of
simuilltion model X cither by anothersim­
ulation model or from the external world,
When the algorithm incorporales this e\'ent
in the e\'ent queue of X. the event either
alters UtOf lea"es il unchanged. When UJl
is altered as a consequence ofthe incomi ng
signal transition. model X is initiated fOf
execulion. Thesimulalion model Xinitiates
the corresponding pseudocomponents Xand
X' of the datanow network for execution
and suspends the execution of the event
until the pseudocomponent executions are
completed, X' evaluates W,'. and ifits val·
ue has not changed from its previous yalue,
)( propagates a message to the model X
signifying that}( has complcted its execu­
tion. If the new value of \VJl' is a change
from its previous value.}( initiales the chain
reaction described earlier; II propagates
the \VJl' vallie to other pseudocomponenls
connected to its output pon, When a subse·
quenl pseudocomponent executes as a
consequence of a new \V' or W value as·
sened at lin input pon and generates a new
\V' or W yalue at its output pon, it propa·
gates the new output value 10 other
pseudocomponents on the right through
the crossbar switch if necessary.

Compulalion and propagation ofnew \V'
or W values at the output ofpseudocompo­
nentS continue until either no new Wor \V'
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Figure 12. Example design for asynchronous distribuled discrete~nntsimula·
lion.

~ Delay_Sns

o "OOO~~__-----"O__--j~

values are generated or the rightmost
boundary of the datllnow network is en­
countered. Then the pseudocomponents
where the: chain reliction terminates ini­
tiate acknowledgments and propagate the:m
in the reverse direction. When other
pscudocomponents that panicipated in the:
chain reaction receh'e acknowledgments.
the:y take turns propagating the:m in the:
re\'erse direction. Eventually. X' (the pri.
mary initiator of the: chain reaction) inter­
cepls the acknowledgment and realizes that
the process of updating IV or IV values in
the dataflow network caused by a change
in IV~' has completed. hthen sends a mes­
sage to model X signifying that its exccu'
tion is complete,

A pscudocomponentcan be initialed even
by new Wor IV values asserted at its inpul
porI by Olhersuch componenlS. The behav·
ioroflhe pseudocomponcntX following its
initiation by modcl X is identical to lhat of
X'. exceptlhatthechain reaction is confined
to only the unprimed acyclic network,
Conceplually, pscudocomponenls X and X'
can be initiated concurrenlly by thc simu­
lation model X, Also. multiple simulation
models can be cXel,.·uted simultaneously as
a result of signal transitions at the:ir input
pons. Consequently. the computations of
the: IV and IV values initiated by multiple
pscudocomponents may o\·erlap. Consis­
tency and correctness are guarJnteed be·
cause the computations in\'oh'e a minimu m
operator and because lhe IV value ean
ne\'er decrease,·

When both components X and X' have
completed execution or when the signal
transition asserted:1I an input port of model
Xdoes nOl alter its U value. the simuilltion
model X sends an acknowledgment to the
model thaI propagaled the signal lransi·
tion, If the signal transition was asserted
externally, Ihe acknowledgmcnt indicales
thllt the tT'Jnsition is being processed and
requires the external world to send the
subsequent signal tr<insition tothat primary
input pon.

Nexl.lhc:simulation model Xaccesses the:
Wor IV values associaled with each of the
input pons ofthecOTTesponding unprimed
pseudocomponent and computes their
minimum K;p When UIl '#- _ - that is. an
e\'ent exists at X and K~ exceeds UIl -the:
model can execute the cvent correspond­
ing to UIl• When no new transitions are
generated at the output port of model X
following ilS execution. the algorithm de­
letes the e\'enl corresponding to UIl from the
e\'enl queue and a new Vr reflects the time
of lhe new event al the head of the evenl
queue, When lhe evenl lisl of model X is
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empty, V~ is SCt 10 oo. If a transition is
generated al an OUlput port as a conse­
qucnce of exe~'ulion of model X. il is
propagated by X to othcr models that are
connected to the output of X. Model X
suspends funherexecution until it receives
acknowledgments from each of the recip­
ients, Then lhe algorithm removes UIl from
the evenl queue and a new Ux is associated
with the evenl althe head of the queue. The
value of U is SCI to _ when the number of
outstanding transitions at X is 7.ero. The
simulation model X lhen again iniliates the
pseudocomponenls X and X' for execulion
and suspends funher activity until the
pscudocomponents ha\'e completed exe­
cution. "The process continues until all us­
able external signal transitions at the pri­
mary input pons af(' used to generate output
transitions.

Figures 10 and II present the precise
functionatities of a representative simula­
lion model and a corresponding
pseudocomponent. The description in Fig­
ure 11 applicstoboth primed and unprimed
components,

An example. Figure 12 shows how Our
asynchronous distribuled discretc-event
simulation algorithm works for an cxam­
pIe design. In Figure 12, a Nand gate con­
nects 10 an invener through a feedback
loop. The OUlput of the Nand gatc A con­
nects to the input ofthc invener 8 and lhe
output of B connects 10 the second input
pon of A. The other input port of A is pri­
mary, A transition from high to low is
assened at , : 0 ns. followed by II low-to­
high transition at I : 1.000 ns, The propa­
gation delays of boI:h A and B are 5 ns.

We assume that the initial values at the
outputs ofA and B are 0 and I. respecti\'e­
Iy. For the gi\'en signal transilion at the
pri mary input ofgate A. Ihe OUlputs of boI:h
A and Bchange and remain stable thereaf­
tcr. When simulated by a con\'entional
asynchronous distributed discrete-event
simulation algorithm.' gates A and B will
deadlock as the signal values at the output
pons do not change.

The feedback arc set for the: circuil in
Figure 12 isthearc from the OUtput of8to
the second input of A, and the datanow
network is constructed appropriately,
Figures 13a through 13h are snapshots of
the network as simulation progresses, The
first input ports of both pseudocompo­
nenlsA and A' arc connected to T, and the
sccond input port of A' is held at oo. The
output of B' connects to the second input
of A through the crossbar switch,

The rectangular box above each
pseudocomponent repf('sents the event
queue and contains the assertion time and
lransitions foreveryevent. The Vvalue(the
right-hand entry in lhe box) for a
pscudocomponent is the assertion time of
the e\'ent at the: head of the: queue. For
each ohhe snapshots, the figure alsoshows
the computations of the: IV and W values
at the output of components. Associated
....·ith each unprimed pseudocomponent in
Figures 13a through 13h is the computa­
tion of K. which is equal to the minimum
of the Wor IV' values althe input portS of
the component. The simulalion models
compute the K values. which are given in
the figure to demareale the states of lhe
simulation models as simulation
progresses,

Figure 13a describes the initial state
where UA : U.: - and W/: W.': WA :

W.: O. Assuming that the signal transi­
tions at the primary input of simulation
model A are not yet assened. the value of
KA is the minimum of IV.' and the IV value
(;: _) atlhe primary input of A. Thus, K"
computes 100, The value of K,is identical
to IVA and computes to O. In Figure I3b,
the: signal transitions are assened at the
primary input of the: simulation model A
and are represented through t.....o events­
1.000t and OJ. - of the e\'ent list of
model Aand pseudocomponentsA andA'.
The event OJ. is at the head of the: e\'enl
queue and VA;: O. Since the: VA value has
changed from - to 0, model A initiates
pseudocomponentsA andA'in Figure 13c.
Pseudocomponenls A and A' compute IVA
and IVA" respectively, Bccause they differ
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In this section. we compare: our algo­
rithm wilh the IWO other principal algo­
rithms proposed to a\'oid deadlocks.u

Comparison with
previous approaches

~ I"ooot~ ~
UB UA UB

B' B

K.._O <..'
W'S-0 WA-O W...

A' l>----jB' »--1+--1

A' »-----i

A'»------1 B' »-++----1

T

--
K.._mIn(oo, 10)_10,.,0

W A-mln(-S. _S, GtSI-5(~) WA-m1n(lGt5,6t5.)-5(chanoel
W,_mln(S+S. _S)_lO(chanoel W,_m1n(5+5. _SI_IO(ehBn;e1

UAl'I'IIy be exllCUled 10 ptOOuoe , 110 h lransllioo It I _ S " the outpUl 01 A.

-

-

SirnISaliDn model_.
trailsilioi. in T.

""""-- I..ooot~ L::ill I..ooot~ L::illA is propagated
lOS. U•• UA UB UA UBBn"
.... Initiated. - A' S' B-

K.._l0 K,_S

W.._S WA-S
W,_"*'(5-+S, 5+5)_10(110~l W.."*'(s.-5, S+5)-10(n0 cf\Inge)

(b)

«)

(.)

(d)

.'Igure 13. Snapshots of the simulation of Ihe example design In .'Igure 12.

event I.ooot can be simulaled. Although
the entire design has stabi li1.oo and generated
no new output valucS.lhedalaflow nelwork
computes updated values of Wand IV'lhat
force the oUlslanding e\'ent- the eXlernal
signal trnnsilion at t: 1.000 ns - to be
simulated.

from their previous values. a chain reac­
tion is iniliated with the consequence that
e\'ery IV and W is updated. as shown in
Figure lle. When Ihe executions of tke
components A and A' are complete. modcl
A computes KA : minimum (-.10): 10.
which exceeds the VA value of O. Conse­
quently. the event 0.1 of A is simulated.

The model A executes the transilion and
gencrntes a low-to-high transilion al r : 5
ns at its outpul. In Figure 13d. an event st
of model 8 represents the output transition
ofA. Model H iniliates pseudocomponenls
Hand 8'. Because neither W. nor w;
changes. the cxeculions of 8 and JJ' are
immediately complete. Model B sends an
acknowledgment to mooel A in Figure 13e.
Then model A removes the already simu­
lated event 0.1 from its event queue and
updlltes VA' The new value of VA is 1.000.
lind model A again illitjates pscudocompo­
nems A and A'. The values of WA' lind W..

are updated. but those of w; and W.remain
unchanged. Model 8 computes K, : mini­
mum (WA ): IS. which is largerlhan Ihe V;
valueofS. As a resuh. the e\"ent st at Bean
be simulated.

The eKccution ofthe trnnsilion by model
8 generates a high.to-Iow transition at t:
10 ns al ils OUtput. This is represented as an
e\'enl 10.1 at the input of A. as shown in
Figure 13f. Model A initiales pseudocom­
ponents A and A'. which compute a new
value for IVA" All otker Wand IV values
remain unchanged. Thus. Ihe execulions of
A and A' are completc. and modcl A sends
an acknowledgment to 8. The incoming
event 10.1 at tke second inpul of A dis­
places the event I.OOOt at Ihe head of the
event queuc and forces the new value of V..
to be 10. Model B removes the already
cxecuted event 5t and sets V. : _ in

Figure 13g. Itlliso initiates pscudocompo·
nents Hand fl'. with the result that none of
the IV or IV' values changes. In addition.
model A computes KA : minimum (W, '._)

: 20. which eKceeds the VA value of 10.
As a result. Ihe event IOJ. can be simu·
lated.

The simulation model A executes Ihe
transition but does nOi generate a new sig­
nal valueat iuoutpul. Consequently. model
A removes the CKcculed e\'cnt 10J. from its
e\'ent list. updates V¥. and Ihen initiates
pscudocomponcnls A and A'. The new
valueof VA is 1.000. Thequantities W/ and
IVA are computed to yield new values. and
I chain reaClion is iniliatcd. The result is
that W. and W,' values are also altered.
Model A recomputes KA : minimum (_.
W,'): 1.010. which exceeds Ihe VA value
of 1.000 with the consequence that the
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milS execution of all models up 10 the
minimum value.

In the Yaddes approach. the dfecl of
any change in Wor W' must ripple through
lhe dalanow nelwork as far as the effect
can propagate.1lIeclO5sb3rswitch implies
lransith'e closure o\'er all models in a
feedback loop and guarantees that Ihe U
and W values of every simulation model
Ihat may possibly be affected by a change
in Ihe Wor W" value of a model will be
updated. In addition. the minimum oper,
ator used in the compUialion of every IV.
IV. and K value ensures Iheir correctness
in the presence of multiple changes. The
crossbar switch is equivalent to the lra­
versal ofall relevanlloops in a design and
computing the minimum over all relevam
U and W values.

The exception-mode algorilhm) sends
messages with increlTl(ntally increased
time values. even when the logical \'alues
II the OUIPUIS are unchanged. Conse­
quenlly. the simulalion lime up to which
every model is simulated is advanced
continuously. The mechanism is necessary
because a model cannOI view the global
picture and sec. for example. an unchanged
eXiemal inpul signal. A consequent lim­
itation is the potentially large number of
messages in the system when Ihe external
inpul signal remains unchanged for long
periods of lime relative 10 the cumulative
propagation delays of the models in the
feedback loop.

Yaddes. on the otker hand. subslitutes
the global picture with the primed copy of
thedatanow network. It pennitsOplimistic
jumps in the values of IV. assuming that
future events will be unable 10 innuence
and modify them. Normally such optimism
leads 10 inconsistency and error. but the
crossbar switch and minimum oper,ltor
ensur~ the correct advancement of Ihe W
valuc.

W....mn(2O<-S. 10+5. _5).15(no change)
W,.min(l5+5. -.5).2otcnanoe)

Ihis model may nOI execute. and a dead­
lock resulls. When such a deadlock occurs
across the entire syslem. a distributed
deadlock-detection mechanism deteclS lhe
situalion and a central entity synchronous­
ly accesses !he U and W values of every
model. compules lheir minimum. and per-

~
U.

P---j+--1A >-----1 •-

U... may be execuled 10 pnll1lce no lrlU'llilion lit IhlI 0U\pUI 01 A

W ....15
W,.mIn(l5+5, _5j.2O(change)

W.... INn(-.5.-.5.1G+S).I5(el'Iange) W.... I'I'lWl(-.5. 10+.5.1Gt6).15(nochangej
W 1I.1'I'lWl(15+S. 5+5).10(1'10 dlIngll)

K.-1S>S

W .... rrWl(-s. _5. 1.ClllO+5).1.005{e:tMlngI) W.... rrWl(1Gt6. 1.000+5).15{chInge)
W,.rrWl(1.006+6. 5+5).10(1'10 ctwlga) W,.n*'(15+5, 5+6).10(1'10 ct'lIngIo)

U,may be exetlA«I '0 pnll1lce I h ~ I tr8nIi1ion It I. 10 It'"~ 01 B.

Wilh the deadlock recovery algorilhm.J

a simulalion model does nOI propagate any
OUlput signal infonnation 10 ocher models
connecled to ils OUlput port when its value
as a consequence of execution remains
unchanged. Therefore. olhermodels whose
execution depends on the OUlput value of

A'

(g)

(.)

Now. U,II
18tlo_.
BandS
Ire lniIl8\1d.

"""'-,_s.
"""",...
,oA.. U .
AnA'
_~tecl.

Now. u~ IIIel
to 1.000. A and
K are 1nItle'KI.

(0

Proof of correctness

The proof of correctness of the Yaddes
algorithm requires the correcl execution
of tke simulation models. execution of
events in the COfT(~ct order. absence of
deadlock. and the tennination of simula­
tion in finitc time. The execution of a
simulation model implies the execution
of the model description. so the accuracy
of the simulation model'sdcscription also
affeets correctness. Complete dctails on
II'Ie proof of correctness are presented
e1sewhere.-

~
U.

A' »------i.' »--t+--i
K.... "*'11,010, _j.1,010 > 1.000

W....min(-.5. _S. 1.0ll0+5).1,OO5(chInge) W...."*'I1.010+S. 1,000+5,1-1.005(dlange)
W,.min(1.005+S. _S).1.010(chatlge) W,.mlrl(1.00S+S. _Sj.1.010(c:hange)

(h)

U... IIN!
1.000. A.. ~
are lnililted.
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Figure 14. Yaddes performance measurements for a cross-coupled Nand latch (a,
b). Performance measurements of the exceptlon.mode algorithm for I.he same
circuit (e).

_120 1,11,111
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Implementation

The implementation orlhe Yaddes algo­
rithm is complex. Given any complex cir­
cuil and a user-specified panilion. the (ot31
number of processors required for simula·
tion equals N +2. where N is the numberof
panitions. While the componenlS of every
panition execute on a processor. the algo.
rithm models the primary inputs of the
simulation circuit and the outputS of the
dataflow nctll>'ork as enlilies p. and PI'
respectively. and execUies them on unique
processors. The entity PI signifies the
rightmost boundary of the dataflow net­
work and participates in the propagation of
acknowledgments. If a circuit contains
feedback loops. a preprocessor that gener­
ates thedmanow network accepts the user­
specified feedback are set.

Corresponding to every simulation cir­
cuit component. the final implementation
consists ofthrceentities: asimulation model
that represents the functionality of the
component. and the primed and unprimed
pseudocomponents. These are expressed
through the C fUl1Clions sim-componcnt.
ppc-component. and puc·component. reo
speclively. Ahhough they arc concc,,"
lually concurrent entities. in Ihe current
implcOlCOlalion they arc executed round­
robin on a processor. When a partition
includes multiple models. we ~press an
inlerconneclion between two or more
models on the same processor through a
data SlruClure. When the models are lo­
cated on separate processors. an interpro·
cessor prolocol represents the conneclion.

A significant part oflhe implementalion
consisls of a kernel C description (approx-

32

imately 2.500 lines) that executes on every
processor except those Ihat execute the
enlities PDand PI' Each processor acceplS
a unique input file that represenlS informa·
lion on the models and pseudocomponents
and lheir inlerconnection for tke corre·
sponding partilion. The inpul files for the
partitions arc generated by a preprocessor
Ihat acceptS a descriplion of Ike circuit in
lhe hardware-dcscriplion language ESL"
and Ike useT+Spccified partitions and feed·
back arc set.

During execution of the algorithm. tke
Ihread of conlrol shifts from one entily to
anOlher. The algorilhm first executes the
simulalion models -the sim-componenl
functions - corresponding to the compo­
nents that reccivc signal transitions from
the external world at their primary inpul
ports. A sim·eomponenl. in turn. initiates
the executions of the puc-component and
ppc-component functions. and suspends
itself. When theexecutionsofpuc·compo.
nent and ppc-componenl arc complete. Ihe
sim.component is reactivated. The execu·
tion of a puc-component (or ppc·compo­
nent) is complete whcn eilherthe W(or \V)

valuc at the output is unchanged or an
acknowledgmenl is reeeh·ed. signifying
thai the change in Ike outputW(or IV) value
has been propagated throughoul the d:lta­
now network. Additionally. the algorithm
may initiate the puc-componcnt and ppc­
component functions for execution whc:n
they recei\'e from the Irfl a new W(or IV)

value at any oflheir input ports. Evenlual­
IY.the simulation process terminales when
all e\'ents ha\'e been ~ecuted - Ihat is.
when the algorithm has used all externally
supplied (usable) transitions at the primary
input pons 10 generate output transitions.

Performance

In principle. the Yaddes algorilhm can
be: implemented on any generic parallel
processor - Ncube. Armstrong. Sequent.
BBN-Butterfly. or t~nsputers. Howe\'er.
the loosely coupled parallel-processor ar­
chitecture is the most realiSlic model of an
aClual complex asynchronous sySlem such
as a self-timed digital design. banking sys·
tern. or packel nelwork. Our principal aim
in this anic:1e is 10 present the Yaddes
algorithm as the first successful approach
to asynchronous distributed discrete·event
simulation of cyclic circuits on parallel
processors. Compared with olher ap­
proaches. an asynchronous approach has
the highest theoretical potential of using
the most parallelism in a simulation. As
with any asynchronous approach. the effi·
ciency of Yaddes is realized for Ihe simu·
lation of sySlems whose models impose
significant compulational requirements and
minimal need for data dependency or syn·
chronization. Thus. Yaddes is not appro­
priate for systems whose models require
minimal computation and frequent syn­
chronization. The pscudocomponenlS of
lhe dataflow network that arc synthesized
in the Yaddes approach arc purely mathe­
matical entities which merely evaluate
functions. The significant computational
load is still confined to the simulation
models.

We implemented the Yaddes algorithm
on the Armstrong" parallel-processor
system at Brown UniversilY. Armstrong is
a loosely coupled user-configurable paral.
leI processor consisting of 100 processors.
We reconfigured ArmStrong as a six·
dimensional hypercube.

The principal purpose of our implemen­
lation was to verify Ihe correctness of the
algorithm. In an experiment. we represent­
ed and simulated a laleh constructed from
two crou-coupled Nand gates. We set the
propagation delay for each gale at 500 ns.
wilh the consequence that the cumulati\'e
propagation delay through the feedback
loop was 1.000 ns. We chose the external
lransilions (teoned input veclors in lhe
digital design discipline) assened al the
primary inputs of the lalch so the latch
experienced bach slabililY and oscillalion.
For the experimenl. we varied Ihe number
of ~Iemal transilions at both primary in­
puts from 1.000 to 10.000 and measured
IheCPU lime foreachcasc.lnaddition, we
selecled three SCIS of average time periods
fortheextemal signals: 1,000. 10.OOO.and
100.000 os.
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The graphs in Figures 14a through 14c
show the results. Figure 14a is a log-log

graph where the y axis represents the CPU
time in seconds and the x axis the number
of external transitions asserted at the pri­
mary input pons. The three overlapping
graphs I. [I. and III refer to the three sce­
narios corresponding to the values I. 10.
and 100 of the ratio expressing the average
time period ofexternal transitions (T)to the
cumulative propagation delay around the
loop Ci.,d,). Figure 14b shows the same
results as in Figure 14a. except that the x
axis represents different values of the ratio
Trr.t1,. Figure 14c shows the results of
simulation of the same circuit using the
exception-mode algorithm.) also imple­

mented on the Armstrong parallel-processor
system.

The graphs show that the performance
of the Yaddes algorithm is independent of
the ratio T!I,di and is consequently free
from the Ii mitations ofthe earlier algorithm.J

We plan to publish full details of perfor­
mance issues for a number of complex
sequenlial circuits simulated with Yaddes.
These will show that Yaddes is a mathe­
matically proved algorithm applicable to
any complex sequential system.

A
synchronousdistributeddiscrete­
event si mu Ialion ofcyelic circuits
has the potential to address

problems in digital hardware design.
queuing networks. and banking transac­
tions. Until now. no reponed algorithm
offered freedom from deadlock and ac­
ceptable performance. The Yaddes algo>
rithm, on theOlhcr hand, is mathematically

correct and free from deadlock.
The Yuddes approach opens Ihe [)Ossi­

bility of modeling as discrete-event sys­
tems challenging problems from such dis­
c.iplines as banking. railway and mobile
phone networks_ sociological interactions.
human decision -maki ng processes_ ai rcraft
simulation. oceanics. and weather fore­
casting. For example. we arc studying the
algorithm as a basis for distributed fault
simulation using circuit partitioning. for
distribUled real-time banking systems. and
for modeling l:lrge switching networks to
investigate the role of overload conditions

on network performance.•
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