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Will tomorrow’s
parallel computer
function like today’s
workstation, only
faster? Applying the
Unix operating system
to a parallel
environment may be
the answer.
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)| ccause it retricves all instructions and dala from a single memory. the

highly prevalent von Neumann computer architecture has a fundamental
o J speed limit. The specd of light )imits the rate data can move from a single
meniory. thereby limiting the speed of the computer. Attenipts 1o push the physi-
cal limits in supercompulers reduce their efficiency: in fact, this is why a personal
computer provides more performance for the dollar than a supercomputer.
Noncthetess, conlinued progress in science and enginecring requires fasler super-
compulers. Consequently, researchers have long investigated non-van Neumann
computer archilectures. The scalable multicomputer architecture, which uses
many microprocessors (ogether to solve a single problem. promises to be a solu-
tion.! In facl. scalable parallel computers that run at tera {10Y7) Rouating-poinl
opcerations per sccond arc now under construclion.

While Tflops processor technology is well known, the scalable operating and
[/O system technology necessary for those speeds is not. This article describes how
Unix can be extended 1o scalable compulting lo permil Tflops speeds. We designed
this technology into the system softwarc ol the Ncube-2, the predecessor 1o
Ncube's announced Tflops parallel computer. We describe the system specifically
and provide some performance numbers.

Parallel programming. Advancing tecchnology makes parallel processing less
explicit. Newer systems avoid new commands, systemn calls. or languages. Instead,
parallcl extensions are placed into existing software without disrupting nonparallcl
programs. The resulling syslems will et you use a Tflops parallel computer with-
out knowing parallet programming as emerging parallel versions of standard lan-
guages move these operations to the compiler. In addition. parallel storage svs-
tems automatically distnibute large data sets over muliiple 1/0 devices. Standard
Unix commands now run arbitrary mixtures of parallel and nonparallel progrims
and /0 devices, However. users will get scalable computing and YO ratles from
commands that include oniy parallel components.

Scalable architectures. Scveral vendors?™ sell machines that have the scalable
architecture shown in Figure 1. The architecture has n processing clements (PEs)
and m /O media. A log (1 + m) slage communicalions network® allows the PEs
and 1the [/O devices to communicate (one vendor® uses an (11 + m) = slage nel-
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work). Each PE contains
a microprocessor and some

Repeated n times

local memory. This archi-

tecture avoids the von
Neumann botilencek be-

cause the total memaory- [

PE (CPU. mamory, [ 1 n+m port
and network) = 1 log (n+m)
] slage
L network

access rate grows with 1

Repeated m times
———,

¥O device
(disk) .

packages offer functional
capabilities and promise
futurc continuity, running on
many generations of hard-
warc, In recent years, howev-
er. packapges that deliver
more campuling powes have

the number of processors.
Other boltlenecks arc
avoided because the com-
munication nciwork capaci-
ty grows with the number of PEs and
[/0 deviees.

The Tflops computers due for deliv-
ery in 1995 approximate Figure 1. with
n = 10,000 and 100 million floating-
point operations per second (Mflops)
per CPU. (See the sidebar “Message
passing and shared memory.™)

The traditional standard for bal-
anced /O requires the [/O rate (in
mcgabytes per second) to equal the
computing railc (in Mflops). Some
rescarchers expeel this to hold true for
Tflops supercompuiers.® This implies
thal a scalable processor requires a
scalable 1/0 system for balance. The
vatio of n to m — and the relative
speeds of the PEs and 1/O media —
dectermine the 1/O balance. Keeping the
ralio of n 10 m about the same keeps 1/0
balanced as the computers scale in size.

Programming. The dara-parallel
mcthod dominates programming for
scalable computers. Originally. pro-
grammers wrote data-parallel programs
by hand.” A( that time, programmers

Figure 1. Scalable architecture.

also wrote a single program for all
PEs. They distributed large arrays
among the PEs, leaving t/nth of the
data and computations on cach one.
More recent compilers can distribute
arrays themselves.® Extensions 1o con-
ventional programming languages et
the programmer declare forms of paral-
lehism. The compilers then divide the
data and computations among the vari-
ous proccssors. A similar approach
applies 1o )/O. The pragrammer speci-
fies certain atinibutes of the secondary
storage system, and the compiler opli-
mizes the data distribution across the
PEs and /0O media simultancously.

So what kecps parallel supercompul-
ers out of the mainstream?

System software. [t takcs more than
power to producc commercially suc-
cessful computers. The power must
arrive in familiar. casy-to-usc, portable
piackages. These packages include an
Application Program Interface (API),
the most widely known being DOS,
Windows, Macintosh, and Unix. These

Message passing and shared memory

become as imporiant as the
hardware itself. Unfortu-
nately, existing packages for
nonparallel computers need
reworking to deliver scalable compul-
ing rates. This article describes rework-
ing Unix for this purpose.

The notion of the API is central to
lhis reworking. Programmers code
applications to run with an operating
systcm, not direclly on the computer's
hardware. The API defines the inter-
face between applications and the oper-
ating system. When compiled and
linked, applications can run on any
computer and with any /O devices that
support the APL. This gives hardware
vendors a rcady market for new
machines as long as they supporl the
API on successive generations of hard-
ware. Similarly. software vendors code
to the API. not to the hardware, 10
ensure that their software will run on
future computers.

The APls developed for nonparallel
compulers are inadequale far parallel
processing. Specifically. existing multi-
lasking API implementations lose effi-
ciency when values of o and »m exceed
several dozen. Morc scriously, they
restricl [/O to ua single channel al a

The message-passing type of scalable computer uses the
network 10 send messages between procassors. These comput-
ers require the distrbution of data and computations.' This
means that large arrays become distributed among the memo-
ries of the processors. Programmers then try to assign each
computation to the processor holding the data it acts on.
Inevitably, however, some computations will use data stored in
several memories. In this case, messages convey data between
processors.,

The shared-memory type of scalable computer can route
memory accesses from one processor through the network to
memory in another processor. The programmer still distributes
data arrays and computations on shared-memory computers,
but the distributions do not have to match so precisely. This is
because a computation on any processor can access data in
any other processor's memory. Announced products of this type
have performance below the Tllops level, howaver, with network
performance being the limiting factor.

While research continues into faster networks for shared
memory, there is another approach as well. Newer compilers

control the distribution of data arrays and computations for the
inner loops of computations.? This reduces the number of mem-
ory accesses that occur over the network, reducing network per-
formance requirements. This improves performance but blurs
the distinction between the shared-memory and message-pass-
ing approaches.

Even though matching data distribution with I/O is a main con-
cern in this article, it does not apply directly to shared-memory
computers. However, matching distributions lassens network
performance requirements for I/0, as it does for computation.
This might make existing networks adequate. We suggest,
therefore, that this article applies ingirectly to shared-memory
computers.
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Figure 3. VO streams in Unix.

vme. In contrast. some scalable algo-
rithms run on thousands of processors
and use hundreds of disks. Simple
extensions of the Unix API can put
these algorithms into an APJ that is
scalabie by design.

The bulk of this article concerns
deriving a scalable AP] compatible
with Unix. We chose Unix because it is
the most popular opcrating system
among currenl users of parallel com-
puters, although the basic idcas can
apply more widely.

Extending Unix

Figurc 2 shows how the Unix exe-
cutable file is an internal interface that
limils the cffects of different program-
ming languages. Compiters specific to
cach fanguage 1ranslale proprams inlo a
single exceutable Tile type. This insu-
lates the rest of the system from know-
ing a program’s source langouage. For
these reasons, parallel source s com-
piled into the common executable.

Figure 3 shows the Unix abstraclion
for connecting application programs to
one another and 1o 1JO devices. Unix
has scveral features for managing [/0
thal we collectively call [/O streams.
One such feature, device-independent
1/O. lets a program perform /O to a
variely of QO devices without a change
in source code. All programs and [/O
devices communicate (hrough a com-
mon interface. or /O stream. A sccond
featur¢c — variously called pipes. sock-
cts, and filos — allows (wo programs to
communicaic disectly by wsing the 11O

November 1993

strcams model. Window-based uscr
interfaces illusirate the value of this
internal interface.

Hundreds of Unix utility programs
were first written decades ago on mini-
computers. Their programmers knew
only abou( hard-copy terminals and
CRT character displays because there
were no windowing systems then, Since
old-style terminals performed 1/0 using
an /O stream, windowing systems were
designed to emulate the older terminals
and allow older programs to run today
in windows. [/O streams allowed hun-
dreds of programs 1o upgrade 1o @ win-
dow-based user imterface. This acccler-
ated the acceptance of window-based
user inerfaces by automatically provid-
ing hundreds of ulilily prograns.

We can accelerate the acceptance of

parallel processing il parallel programs
and parallel 1/O usc an extension of the
standard Unix [/O stream, allowing
existing Unix programs Lo run on new
paraliel computers. Like the window-
based user interfaces. this will provide a
limited upgrade.

The Unix API altows programmers
to treat all I/O as a byie strcam. This
mcans programs do not nced to know
the physical representation of files and
outpul devices (such as tape and disk
blocking snd printer carriage control),
Conversely. 10 devices do not need (o
know how a program interprets dala
(such as text or binary data). Insiead,
programmers tmagine and manipulate
dats in the most natural way. On-
screen lext (illustrated in Figure 4) or
images (illustrated in Figure 5) arc

] API hides 1/O details:
| 1. Line orientation

hello world
hello world
hello world
hello world

Byte stream to < —
line abstraction :

Actual I/0 path

¥
Program with

Byte stream to
disk abstraction

Block-oriented

variable-fength
text hnes

(variable length lines go
to one or more blocks)

Y

disk

Figure 4. Byte stream abstracfion.
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Figure 5. Parallel system example.

common madels, While writing pro-
grams that print hnes of lext. progeam-
mers imagine adding lines (o the botom
of i document. This model holds ceen
when the program is outputiing to disk.

Bylc <urcams are abslractions
because the system does not really per-
form 170 that way. Instead. data actual-
ly moves from a program 1o a deviee in
one slep as shown in Figore 4. Writing
a hne of texc to <hsk. for example, can
change the end of one disk hlock. pel
an unused disk block from (he “tree
list.™ add that black (o 1he Tile deserip-
lion m the dircctory, and clange the
bepinning of The new block. (See tie
sidebar “Other approaches to payallel
opcraling systems.™)

Unix extensions for data distribu-
tion. Figure 5 also shows how data
flows in a protmypical parallel 1/Q
activity. In the following sections, we
package these dataflows into the Unix
madel. Figure 5 is an example of a par-
allel program in ifs exceution environ-
ment, The program is i parallel image-
processing applicalion that writes 1he
image 10 a parallel disk. The parvalfel
program on the botiom lefl uses a pro-
gramming paradigm various)y called
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single program, muoltiple dats (SPMD):
looscly svachranous:” or data parallel ®
In such a program, cach of {our PEs
runs the same program. Furthermore.

the PEs excente similar sequences of
instructions. but on diffcrent data, All
PEs exceute system calls in the same
sequence.

The programmer views the data as
an R x § image. as shown at the top of
Figure 5. (We labcled cach pixcel with
a small image so that correspon-
dences are casy Lo see.) Image pro-
cessing applications commonly divide
data into roughly square two-dimen-
sional regions and distribute thesc
regions 1o 1he processors, where they
arc viewed as 4 2D array. This distri-
bution vxcels for image-processing
algorithms that access the neighbors
of each pixel. The arrow from 1he
image to the sending (S) processor
array represents this distsibulion, We
placed a tag on this arrow with the
words “S: 4 x 4 images. 4 PEs” 10
document this first distribution.

The figure shows narmal striping for
the (wo-disk storage system on the
right. The storage syslem vicws dala as
a 1D sequence of 8-byte blocks, with
the blocks distnibuted round-rohin to
the disk drives. This kind of distribu-
Lion gives goad resulls over the gencral
mix of /O accesses in i compuler sys-
tem. The arrow from the image to the
receiving {R) VO arrav and the arrow’s
tag docament this sceondd distribution.

As with nonparalle! Unix 1O, paral-
el 1/O i not actually doac in thix way,

Other approaches to parallel operating systems

The most widely used approach to parallel operating systems is multithreading.’ This
approach, now used on tens of thousands of symmetric multiprocessors, lets each Unix
process have multiple execution threads, as shown in Figure A. Each thread has a sep-
arate CPU, but all threads in a process share the same memory.

During a computation phase, calculations are performed by all CPUs in parallel. In
early versions of this technology, only one CPU could perform a system call at once.
This was equivalent to having an “I/O position” that only one CPU could occupy. Since
the outside world sees a process only through system calls, such a process looks just
like the single CPU in the 1/O station. More recent operafing systems allow multiple

Unix process

1o,
position

Unix
D))}
slream

| Memory J

Figure A. Multithreading in operating
systems.

processors to perform cerain system calls
at the same time. This technology requires
identifying all interactions between system
calls and dealing with each case, so that
the result looks like a single CPU. The
industry is still dealing with the complexity
explosion that resulls from this approach.
Commercial multiprocessors limit the num-
ber of CPUs to around 32, although some
research computers have 256 processors.
Another approach derives from the
libraries of parallel functions developed for
distributed-memory parallel computers.?
The first distributed-memory parallel com-
puters had no system software. Users
wrote library packages with the minimal



To achicve scajable transfer
rales. the operaling svstem

Repeated 1 times

sends data ditectly from 1he

processors to the disks.
Throughoul Figure 5. 1he

Repeated mtimes
N e—

pixefs in PE 2 are outlined in
cotor. ‘ftic shows how out-
put from PE 2 creates n
complex pattern on the disk.
Specifically, outpul from PE

]

SW = Data switch in each processor
that directs VO bytes tofrom the
other end ol the connection

R:S" swW
in
nework l |

arc independent and execut-
cd in parallel. they do not
impair scalability. Beeause
ol the way 1the algorithm
uses the network. the algo-
rithm docs nol impair scala-
bility c¢ither. The networks
used in multicompuartcers
experience slowly degrading
Jalency but constant band-

2 goes 1o disk 0. then ). and
repeats on disks O and |,
Funthermore, PE 2%s data in
each stripe neither slars por
ends cither siripe and s not ¢ven con-
vguous within the stripe. Complex pal-
lerns like these often result from com-
pusing two dia distributions.

Tags S and R define the paitern of
data movement. To preserve the byle
strepm abstraction, the AP most hide
the program’s tag (rom that of the 170
device. and vice versa. (Sce the sidebar
“Parallel /O for supercompuling”™ on
the nexl page.)

Scalable /O streams. Figure 6 shaws
a scalable algorithm suitable for an /O
strcam. This diagram oveslays the
processors, actwork. and 'O units of
the scalable architecture shown in
Figure 1. We show data switches on the
lef and night sides of the figure. These
swilches are placed in cach processor
and DO device. Ag the data passes

number of functions needed to run applica-
tion programs. These library packages
included functions for message communi-
cations, memory allocation, and arithmetic
exception processing. Over time, these
library packages evolved into the systemn
calls of a new operating system. Adding
Unix system calls has become popular.
The resulting operating system has the
siructure shown In Figure B, with two types
of system calls: Unix and parallel. Each
type has a standard interface; data is inter-
changeable only with the same type of
interface on any other program.

The difficulty with this approach is that
Unix and parallel data are incompatible
with each other. Scalable rates are possi-

Figure 6. Parullel algorithm to conven distributions.

through the left-hand switches, the
switch routes individual byics or biocks
to the proper channel an the night. The
swilches on the right vrder 1he arriving
data imto a single stream. The network
in the middle conveys the dina blocks
Lo the proper unit.

The algorithm in Figure 6 is the new
feature needed in an 1/Q stream o
make the bandwidih sealable. ‘The vver-
all elfect of the algorithm is to redistrib-
ute data from the leN-hand disiribution
S to the right-hand distribution R. This
is R » §°'in functional notalion {using
the funclional composition opcralor »,
defined as (f < g)(a) = (flglxD).

The algorithm in Figure G is both the-
oretically and practically scalable. As
delailed later. the data-switching algo-
rithms are thearelically “constant-
nme” and fast in praclice. Since they

Program elament
Unix system
calls:
St Unix
close ipe
rez_ld ﬁ'\ierlace
wrile
Parallel system
calls: 4 Parallel
nread procassing
nwiite intertace

Figure B. Paraliel processing library
package.

bie by using parallel system calls, bul this makes the large body of existing Unix pro-
grams useless. Similarly, full Unix compalibility is possible by using the Unix system

calis, but Unix limits data rates.
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widlh pcr por( as the nel-
wark scales. The rate al
which o processor praduces
data does not change as the
number of procesxar grows. [t matches
the nctwork’s constant bandwidth per
port cxactly. Duala also may be
pipclined through 1he network. dimin-
ishing the effeet of network lateney.
L.atency increases cxecution time by
just onc netwoark lawency time per /O
block. which may be thousands of bytes.

While data-swilching algorithins asc
straightforward. the operating system
must know S and R to configure the
algorithm. The next seclion describes
how the sysiem obtains S and R rom
exccuting pragrams Lhrough <ystem
calls. Also, we propose (although this is
not standard ver) that nonparallel pro-
grams and duvices receive a default tag
that says “no disinbulion. one proces-
sor.” This would make the algorithm
handle connecnons between paralled
and nonparallel programs and devices
automalically,

Inferface 1o cmerging paralle! lan-
guages. Figurc 7 itlustrates an inlerface
1o parallel compilers. We illustrate the
arcay “dimension a(8, 8)” from the
example at the top cenler of the figure.
Parallel compilers select data distribu-
tions Jike S and usc them for distribul-
ing arrays and calculations on the
arravs, Until recently, parallel compil-
ers discurded this information. making
il unavailable la other parts of 1he sys-
tem. Now, parallel compilers are being
cnhanced so 1hal they place this infor-
mation into the executable file and gen-
erale system calls Ta pass this informa-
lion to 1he operaling systent before pes-
forming [/O. This gives 1the operating
svsicm the information necessary to
use the IO slream extension previously
described.

A similar situition cxists with data
distributions in 1/0 devices, The svstem
administralor sclects R based on the
number of disks on the system and
other requirements. In corrent /O
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device technology. data disirihution is
cnlirely the responsibility of the starage
subsystem and ix unavailable ¢lse-
where. This is eyuivalent 10 the parille!
compiler’s discarding dama-distribution
information. Muking R avzilable in the
dota swilch is crucial to producing scal-
able /O 1o 1he deviee.

A sysiem call delivering distributian
information 1o the operating syslem s

the primury exlension needed for exe-
cutable files. I the default is “no distri-
bulion. one processor.” the new sysiem
call does nol affect existing programs.
That is, exisling Unix programs, wrilten
without knowledge of parallel process-
ing. hecome valid parallel progrims
with one processor. Parallel programs
makce the new svatem call and thus
enable paralle] 1/0.

Unix exwensions for parallel execu-
tion. If uscrs are Lo run paralle) pro-
grams with Unix commands. the paral-
Iel environment musl closely follow
Unix abstrachons. Surprisingly, we
found Unix support {or vanous 1vpes of
local arca networks {LANSs) to have the
basic absiraction needed for paralic)
processing. Uisers need only add
instances of 1his abstraclion 1o suppon

Parallel 1/0 for supercomputing

Although there are other forms of parallel VO, you can view
them as variants of the example in Figure 5. (We refer readers
to Crockett! for a similar taxonomy.) Specifically:

» Each PE may need to access the entire data set. Examples
of this include reading a configuration file or accessing a data-
base. Our system supports this mode of access by letting a
processor that specifies no disiribution tag access the entire file.

= PEs can append asynchronously 1o the end of a data set.
This occurs when you wrile messages to the end of a debug-
ging file, for example. We support this access scalably by
adding a shared read/write pointer, using a message-based dis-
tributed addition algonthm based on Gottlieb et al.? for the
shared read/wrile pointer.

= Sometimes PEs will perform IO asynchronously rather than
in the single program, multiple data (SPMD) model. We have a
user-changeable flag that declares lo the operaling system that
I/Os are in SPMD mode. This cues the operating system to
employ certain liming optimizations. With the flag off, the operal-
ing system performs asynchronous operations.

» Data is often formatted as variable-length text lines. Non-
parallel computers face this issue as well and resolve it by using
library packages lor formalting and parsing. We believe library
packages are also right for paraliel computers. A parallel library
would transfer data ‘o and from the operating system using a
fixed distribution, The library code on multiple PEs would work
collectively to format or parsa the data.

There are nonobvious criteria for selecting /O data distribu-
tions. Limiting the maximum overhead is the key to a good VO
system. "Having low overhead.” however, is different from
“being fast.” Only programs with simple data distributions can
produce data at the fastest rates. To limil overhead, we need
fast algorithms for these simple distributions. Conversely, deal-
ing with complex data distributions slows a program and its /O
rate. The system designer can use slower algorithms here with-
out introducing high YO overhead. This means the /O system
mus! be most efficient only for those data distributions that cor-
relate with high /O rates.

Our experience shows that only 1D and 2D distributions need
direct support. Of the few programs we found with distributions
of three or more dimensions, all but one were computationally
intensive anyway. Overhead in redistributing the data here is tol-
erable. The one exception was out-of-core FFTs, which remain
an exception. A 1D distribution views data as a sequence of
blocks that are distributed round robin to the units. The distribu-
tion of an array or dense matrix by column or row is 1D.? So are

the interleaved forms of these distributions. We need unequal
block sizes when the number of data items is not a multiple of
the number of processors, however. The most even division of
the data involves some blocks of a particular size and some
blocks 1 byte larger.* Block-oriented data movement is a 1D dis-
tribution. This includes system /O by fornalting or parsing
libraries, I/0 1o a striped disk,® and data handling in RAID
(redundant arrays of inexpensive disks).® Parity block genera-
tion in RAID systems is not a form of data distribution because
data goes to more than one place.

Computer graphics and visualization make 2D distributions
important, although they occur occasionally in other applica-
tions. Imaging programs are often computationally simple, yet
have high bandwidth requirements. This makes controliing over-
head important. A typical distribution for images divides a CRT
screen into an array of nearly square subimages, These subim-
ages are mapped to processors. Interieaving is the most com-
mon vanant. In other applications. distributing a dense matrix by
block is a 2D operation. So are the interieaved forms of these
distributions. Furthermore, parallel compilers occasionally gen-
erate 2D distributions from 1D arrays.*

Subsequent to the writing of this manuscript, Ncube and other
vendors have refined the system in this article (described in
detail in the next sidebar). Ncube now allows data to be distrib-
uted in k dimensions by specifying k-1 parameters (the data
becomes a stream in the last dimension). Each /O transfer
becomes a k-dimensional subregion. The National Lab’s
Parallet Data-Exchange Group Is developing a system based on
a list of distributions. In this system, distributions are identified
by the terminolegy in this anicle, but a program may supply a list
of distributions. Two-dimensional (and higher) data can there-
fore be represented, although the amount of data required for
the representation may be large.
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paraltc) execution (such ax
adding two new nelwork
types 10 existing network

/~— dimension a (8, 8) \

il we (ry to apply Unix
names to (he parts of
Figure & We associate the

types like Ethernct). & BN Distribution lerm “program”™ with the
%I_slnl'ﬂuttqn R selected file produced by a compil-

Parallel execution model. by%%fn%lﬁgr by systems er. We also would sav that
Figure 8 is a defining example NG auminislatoh the Hello World program

of how we extended Umix on
the Ncube parallel conmputer.

N

The example first compiles
the well-known Hello World
program with the Neube ¢
compiler. The additional

Execulable file

system_call (| © sl

/

wriles “hello world™ on the
terminal once. Since Figure

Device file
name = Oisk

dstibution = ;. R ol

8 has onc¢ a.out file bul
writes “hello world™ four
times, the two definitions
of progyam confhet. We

commuand line switch *-n 47

resolve this by sphitting the

results i3 a parallel program
with four processors. The sec-
ond line runs the resulting
a.0ut file. Rumning a C pro-
gram in parallel <imply rans the pro-
gram on each processor.

Lisers could also compile a real par-
allel program, which also loads and
runs the same execulable on ¢ach
processor. However. a real executable
docs morc than just prinl the same
“answer” four times. Each processor
first asks the opcerating system which of
the four processors it is. 1t then uses
s information w seleet the portion of
the distributed data it must compulte.
Following 1the computation. each
processor prints only the part of the
answer that corresponds to its parl of
the data.

The parts of the parallel program
dlso must communicatle at times Lo
Carry oul some computalions. Since a
paralic) program should run on any set
of processors. it s inappropriate for a
program 1o use real network addresses
{for communications. Instead. the
processors address cach other using
nonnegative imegers. with the operat-
ing system translating the integers (v
network addresses. To «upport this
communication, parallel-computer ven-
dors fypically add a whole new messag-
ing system tha( takes infeger addresses.
Unfortunaltely. the abstriactions in these
system calls duplicale the ones already
in Unix Tor networking support. To
achieve a more concise descriplion. we
will deseribe these features us though
there were no unnecessary duplication.
The Neube-2 system likewise elimi-
nates unnecessary duplication.

Program networks, The new messag-
ing svstems have the sane ¢ffect as the
program network illustrated in Figure 9
{we discuss the channe! network in the
figure later), The program netwosk
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Figure 7. Flow of data-distribution information.

interconnects a specific group of
processors using nonnegative integer
addresses. The start-up procedure for a
paratlel program creates one of these
networks 1o cannect the processors.
This network is then vsed for inler-
processor communicafions. We empha-
size that a program network does nol
have dedicated hardware bul shares the
scalable interconnecl.

Splitting the Unix process ubstrac-
tion. The paralle)l execution model adds
a new abstraction to Unix, We see this

$ nce -n 4 hello.c
$ a.out

hetlo world

helto wortd

hello wortd

hello world

Figure 8. Exccution model.

Unix progranm abstraction
inla (wo parts. The a.out
file becomes a parallel pro-
grum (PP) that runs on
multiple processors. We call the code
thal runs on cach processor a program
element (PE). even though it is nol &
complete program. These two abstrac-
tons merge for corrent Unix programs,
since all run on ane processor. (The
sidebar “Program clements and
threads™ on the next page claborates
on P2 lerminology.)

As shown in Figure 10, many fca-
tures of a Unix process become al(rib-
uted 1o cither a PP or PE. A few
receive more sophisticaled trestment.
Program executables and the exir sys-

Program Channel
network network
Addresses Addresses

Figure 9. New network types.

Unix process

abstraction
Interrupt ( °C) » Parallel
program > Exit system call
Parallel I/O > (PP)
Nonparallel /O » Program » Memory allocation
F e element system calls
Divide by »! (PE) > Interprogram
Zero interupt messaging Fig"fe 10. Splilling

Unix processes.
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Program elements and threads

Multithreaded Unix operating systems for shared-memory parallel computers' also
split the process abstraction. These systems keep the name process for what we
call a parallel program and add a new entity called a thread. Threads and PEs are
different, although they occupy the same level of abstraction. However, a thread has
only an execution context, while a PE has memory as well,

Wa are deliberately giving the acronym PE two meanings. We chose the term pro-
gram element as a compromise between operating system and parallel processing
terminology. The designers of scalable computers devised the term processing ele-
ment (PE). It referred to the single-tasking microprocessor and memory that was
replicated to form early scalable computers. Over time, programmers expanded this
lerm to refer to the software that runs on the hardware with the same name. We now
face a dilemma: You cannot use a hardware term for the parts of a program in the
context of operating systems. By using the term program element instead of pro-
cessing element, we fix this problem while retaining the widely used acronym PE.

tem call become attributed 10 PPs and
can affect many proccssors. Memory
allocation. in contrast, applics to a sin-
gle PE. Interrupts can reccive both
treatments, depending on the particular
interrupt. The user-gencrated interrupt
signal (#C) aborts an entire PP, while a
divide by zero interrupts only the PE
where the division oceurred. Except for
1/0. Unix features fit easily ino the
paraliel model without changing their
current behavior.

A (ull treatmen of (his allocation
would be more complex than described
here, yet simpler (han the correspond-
ing treatment in multithreaded Unix.
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Implementation on Ncube

We wrote system software for the Ncube parallel computer on
the basis of the ideas presented in this article. This software, now
version 3.0 of Ncube’s systern software, is commercially available.
All features in this article are available except for preconnecting a
parallel file to a program. This release is not a Unix por, however.
We implemented operating system features in the C and Fortran
compiler libraries running on top of Ncube's proprietary communi-
cations kernel. This sidebar describes some design choices in the
Ncube implementation and shows that scalable operation is com-
patible with Unix.'

Figure C shows a data-distribution function. The function maps
byte positions in an I/O stream to a byte position in one of the
replicated units, We represent the position of a byte as a binary
number and apply it to the left of the function. The action of the
function is to permute the order of bits as shown by the lines in the
figure. The right-hand side of the function divides the bits into two
groups: The bottorn group represents the unit number; the upper
group represents the byte position within that unit. The specific
function shown is the distribution on the left side of Figure 5. With
the proper permutation, you can express any n-dimensional distri-
bution with or without interleaving. The limitation is that block
sizes must be powers of 2.

This class of functions has useful mathematical properties. The
data swilch uses these

which additionally deals wilth communi-
cahion between threads using shared
mcmory. These communications
increase 1he complexily of interactions
between syslem [eatures.

tracing each bit from the left side of S~' through the common
boundary to the right side of R. We call the resulting function R ¢
S-' a composite data distribution. The data switch uses it to direct
data from the sending side directly to the receiving side.

This approach is particularly efficient for sending data in blocks
rather than one byte at a time. DeBenediclis and del Rosario'
show a method of computing block size. The only aspect of tha
block size computation actually refated to the block size involves
counting the number of parallel traces in the composite data distri-
bution. With n parallel traces, you can send a 2™-byte block. These
data structures and algorithms should result in a small computa-
tional overhead, which we show below.

We ran numerous performance trials, including program-to-pro-
gram, program-io-disk, and program-to-device (video display) I/0.
We also recompiled Unix programs, like tar, and put them on the
system release tape as system utilities. The delailed results
appear in DeBenedictis and del Rosario' and in the Ncube techni-
cal documentation.?

We include one performance result to show that the high-level
approach aken in this anticle can be efficient. Figure E shows a
parallel pipeline, or two programs running simultaneously on a
parallel computer. The output of one program becomes the input
of the other. In the trial runs, the programs input or output a 1,024

% 1,024-byte matrix. We distributed the

properties to compute
destinations and block

Bina
sizes. Flgum D illus- represenrlya[ion
trates these properties. of argumant
Tha figure shows S from

g MSB

Figure C mirrored about
the vertical axis, forming
$-'. The middle and
right parts of the figure
show the composition of
S-'and R. (Ris the
data distribution for the

Position
in file

malrix over a varying number of proces-
sors using row-, column-, and block-ori-
ented distributions. The parallel code is
similar to that shown in Figure 11,
except there is no “open” command. To
provide a context for the performance

aﬁ'i',',"“ numbers, this computer has 2-Mflops
unit processors connected as a hypercube
with 2.22 Mbyte/s communication paths.
"""""" Unit Table A shows performance resulls.
The results of these tests meet
Number

expectations perfecily. Since these tests

disk in Figure 5.) We

compose S~' and R by Figure C. Bit permutation function.

use a fixed-size data set, the running
time decreases as the number of
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Link to VO. 1.cts discuss puralle) O
enhancements for the example in
Figurc 5. Figure 11 illnstrates some
code requircd for our approach to (his
cxample. The key issue in opening files
18 whether the entire paralle] program
18 opening a file collectively or a PR s
opening one individually. The behavior
differs, for example, il 1the file-opening,
operation creates a file. If several PEs
atempt 1o create the same file individ-
vally. onfy onc can succeed. The others
will fail because the file already exists,
We reconcile this by letting a PE open
or create a file in global mode. T this
modue. only one PE actually creates the
file: it then relavs the resubting handle
o the other Pl

In our system. the Unix system call
toct! moves information about dita dis-
Iribulion fram the execotable Tile into

the sysiemy. loctl performs (he Tunction
sclected by the middle argument Crd
(command) on the specificd file. The
third argument 15 a pointer 1o an arhi-
trary block of data containing an
cncoding of the tags we have been
using wn 1his arlicic.

The wrike statement skarts a serics of
activities thar cin move data at scalable
rates. Before any data can move
through the 17O stream algorithm
shown in Figure 6. we must configure
the data switches to perform RS
The ioctl call cannor do this because
the ends of the ¢hannel can receive
dia tags al different times. Both S and
R will be avaitable before the first data
movemenl, however, because the sys-
lem swaps the S and R informalion
between the ends of the channel. This
configures the data switches, as shown

foctl(l, EMD, pointer)

1= open (file’, OLGLOBAL)A open file */

7 supplytag
I output

Data
swilch

[Processor
number:

number

L, Block

size

Figure 12. Data switch.

Table A. Pipelines between programs of varions sizes.

Sender Rceciver  Rate per Aggregale
distri- distri- node (in - bandwidih
S.R O buion hution MBps) (in MBps)
| row row 220 220
Figure D. Composite data distribution. 2 row row 218 4.36
4 row row 234 8.56
processors increases. The decrease is not exactly linear because IS row row 2.07 16.6
there is a small overhead independent of the size of the data
transfer (4 milliseconds, in this example). This causes the rate per la row row 1.94 3.4
node to decline. Parallel programs without /O have equivalent 32 row row 1.72 55.0
behavior under the same circumstances, which led to the “scaled e ’ o
speedup” model.? 64 row row 1.68 108.0
Since the trials with mixed distributions perform data permuta- . 919
tion as well as data movement, lower performance could be 64 row block 0.36 23.2
expected. We selected the row-to-column trial specifically 64 row column 0.03 2114
because it was pathological, as its performance results reflect. In
this case, each processor sends a small message to every other
processor. Known scalable algorithms for matrix transposition*
would avoid this performance problem.
References
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Figure 13. e

Streum combiner.

Four input streams

aeim... —

One output stream
rale 4r

abodefghijkimnop. ..
——

by the tags in Figure 12.

The easiest explanation of data
movement assumes that cach byle is
moved individually. The process starts
with the index of a byte within the PE's
/O strcam. After receiving the tags
shown in Figure 12, the switch can com-
pulce the destination foy a byte. The
destination consists of a destination
unit number and an index within that
unif. Here, o unit is a disk or o proces-
sor, depending on Lhe natvre of the
connechion, The bvie is then sem to 1his
destinalian in one of two prolocols. as
desceribed in the pext section. This
expanation applics in concept to mos)
scalable [JO systems but details vary
widcly.

Aclually, to obtain acceplable por-
formance, dals must move in blocks
rather than one byte at a time. Wy
enhanced the data switch to vmil a
hlack size as well, Block size computa-
tions require unexpectedly complicated
math. however.

Chunnel networks. We prupose
channel nelworks as o way of repre-
senting scalable J/O streams in The
Unix 1/0 stream model. (Figure 9
shows xuch a network.) Like a program
nctwork, a channel network connects a
specific graup of processars and uses
snteger addresses. [t connccts two par-
allel entaties. however, such as a PP and
a parallcl disk. both having addresses
slarting a1 0. Inslead of circulating with-
in the sending paralle) entity. messages
go to the other end. This means tha
messages coming [rom the teft side are
delivered 10 the right. and vice versa.
We enhaneed the operuting system Lo
sel up a channel network for each HO
sircanmt vpen at startup. The data switeh
is straightforward when used with a
channcel nerwork. It simpty sends the
datia onto the network by using the unil
number us the address.

We need Iwo protocols (or various

A
1o

1’0 devices, corresponding 10 character
and block devices in Unix. One proto-
col deals with poientially random-
access disk requests. Here. the user's
PE must send messages that identify
exactly where in the file 10 read or
write. This protocol ix similor (0 Lhe
network file system (NFS) protocol for
workstalion disk accesses aver a net-
work. For a device nul supporling ran-
dom access (like a communications
Jinc), the data’s posnion in the stream
is smplicit. Tageing data with its posi-
lion is unnecessary. Here, however, the
receiver must have a data switch to know
which sender 10 obtain the dala from
nexl. (Refer 1o the sidebar “Implemen-
{atiun on Neube.™)

Scalable /O hardware

While Tflops computers are under
construciion. the fastest externdl net-
works al the same stage of develop-
ment opesale at aboul | pigabvie per
sceond. This s under 0.1 pereent of the
bandwidih reguired for a (radinonal
1’0 balance. By using the saflware
desceribed cardier and the “stream coni-
biner” architeclure in Figure 13, you
vould build a scalable netwaork thst any
Unix program can drive. You could
then scale the network to a Tbyiefscc-
ond level to balance 2 compuler scaled
1o Tflops operation. The same architee-
ture eould dave any fast medium, such
as a radar antenna ar a video display.

Thye device in Pygure 13 works tike
1he section of roadway between a 10l
boorh and a bndge. Since xpreed al toll
Lawolhs is stower than in tralfic Jancs. a
two-lane bridge may need a dozen toll
booths, Cars emerge slowly from the
1oll baoths on a dozen lanes of road-
wity. As these lanes quickly merge into
wo lanes. the cars becume closer
1ogether and traffic spucds up. This lets
Ihe bndge run at full eapocily though

individual to!l booths arc slow. The
sircam combiner we illustrate works
like four 101 booths and a one-lanc
bndge. While cars merge randomly on
a roadway. thue strcam combiner
merges the data according to the simple
interleaving patiem shown. Curiously,
scveral parallel computer vendors have
I/O devices thart look like the one in
Figure 13, bul the appearmnce is superfi-
cial because they use a different concept.
The merging patiern shown corre-
sponds to the 1D dala distribution
described carlicr. Thixs lets you cereale a
datg-distribution tag for the strcam
combincr. If you then treat strcam
combiner inputs as the units of a pasul-
let entity, the sofiware described carticr
will work. However, you must 1ailor a
stream combiner (o cach specific medi-
um, For example. an engineer must
pick a size for the symbols in Figure 13
and understand the flow-control
requirements of the nredium,

his article outlined the evolu-

tion of software thar will make

parallcl computers as casy 10
usc as nonparzllei onvs. This evolution
involves same new ideas but does not
require developing an operating system
from scralch. Most of the code now
written for Unix will run unchanged on
a parallel computer.

Here is what a T(lops supercomputer
will tock like. Parallel-computer ven-
dors will construel Tilops processors
and balance them with scalable sec-
ondary storape. Parallel 1/0 to fast net-
works amd speeial IO devices will be
available as oplions. The standard con-
figuration will sinclude nonparallel LAN
inerlaces.

The standard configuration will also
include an operating system like the
onc described here and data-parallel C
and Fortran compilers, The operating
svstem wild inctude the standard sct of
Unix touls and ulility programs com-
piled (but nol rewritien) to run on onv
processor. This xuite of severa) hundred
programs will provide the nelworking.
clectronic mail. and other traditional
tools that makce Unix altrachive.

The user would udd paridlel apphica-
tons. like weather prediction oF molec-
ular modcling. These would be Tflops
pragrams with balanced [/O. Users
¢ould freety mix and match the parallel
programs with the Unix utilities. For
example, vou could direcl the oulput of
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a parallel program to a workstation running dala visualiza-
tion software via a LAN.

While recompiling the hundreds of well-known Unix utili-
ties would provide a great deal of software at low cost. this
approach has limits. As the application programs become
more powcrful, some nonparaliel Unix utilities would
become bottlenecks. For example, the Unix copy command
would be the only tool available to copy a Tbyte file distrib-
uted over 10,000 disks. Since the Unix utilities run on only
one processor, the operation would be very slow. As they
become bottlenecks, these Unix utilities would be rewrilten
as scalable programs. while providing the same interface.

We now hitve a computer with paralle) processing “under
the hood.” Just as new cars have familiar controls. Tflops
supercomputers will have familiar commands for editing files
and sending electronic mail. Running or wriling compula-
tionally intensive applications with the familiar commands
yields a surprise: The camputer runs 10,000 times faster than
a workstation. ll
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