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Scalable Computing

ccause it retrieves all instructions and data from a single memory. the
highly prevalent von Neumann computer architecture has a fundamental
speed limit. The speed of light limits the rale data can move from a single

memory. thereby limiting the speed of the computer. Attempts to push the physi­
cal limits in supercomputers reduce their efficiency: in fact. this is why a personal
computer provides morc performance for the dollar than a supercomputer.
Nonetheless. continued progress in science and engineering requires faster super­
computers. Consequently. researchers have long investigated non-von Neumann
compuler architectures. The scalable multicompuler architeclure, which uses
many microprocesrors logether 10 solve a single problem. promises 10 be a solu­
tion. 1In fact. scalable parallcl compulers thaI run al tera (1012) noating-poinl
operations per second arc now under construction.

While Tnops processor technology is well known. the scalable operating and
1/0 system technology necessary for those speeds is not. This article deseribes how
Unix can be eXlended to sealable computing to permit Tnops speeds. We designed
this lechnology into lhe system software of the Ncubc-2. the predecessor to
Ncube's announced Tnops parallel computer. We describe the system specifically
and provide some performance numbers,

Will tomorrow's
parallel computer

function like today's
workstation, only

faster? Applying the
Unix operating system

to a parallel
environment may be

the answer.

Parallel programming. Advancing technology makes parallel processing less
explicit. Newer systems avoid new commands. system calls. or languages, Inslead.
parallel eXlensions arc placed inlO existing soflware wilhout disrupling nonparallel
programs. The resulting systems will let you use a Tnops parallel computer with­
out knowing parallel programming as emerging parallel versions of standard lan­
guages movc these operations to lhe compiler. In addilion. parallel storage sys­
tems automatically dislribute large data sets over multiple 1/0 devices. Slandard
Unix commands now run arbilrary mixtures of parallel and nonparallel programs
and I/O devices. However. users will get scalable compuling and 1/0 rates from
commands that include only parallel components.

Scalable lIrchileclures. Several vendors2-4 sell machines thM have the scalable
architecture shown in Figure I. The archilecture has" processing clemen IS (PEs)
and 111 110 media. A log (n + III) stage communications networkS 11l1ows the PEs
and the 110 devices to communicate (one vendorZ uses an (II + /1/) • slage nel-
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packages offer functional
capabilities and promise
future continuity. running on
many generations of hard­
ware. In recent years. howev­
er, packages that deliver
more computing power have
become as important as the
hardware itself. Unfortu­
nately. existing packages for
nonparallel computers need

reworking to deliver scalable comput­
ing rates. This article describes rework­
ing Unix for this purpose.

The notion of the API is central to
this reworking. Programmers code
applications to run with an operating
system. not directly on the computer's
hardware. The API defines the inter·
face between applications and the oper·
ating system. Whcn compiled and
linked, applications can run on any
computer and with any 110 devices that
support the API. This gives hardware
vendors a ready market for new
machines as long as they support the
API on successive generations of hard­
ware. Similarly. software vendors code
to the API. not to the hardware, to
ensure that their software will run on
future computers.

The APls developed for nonparallel
computers are inadequate for parallel
processing. Specifically, existing multi­
tasking API implementations lose effi­
ciency when values of " and /II exceed
several dozen. More seriously. they
restrict 1/0 to a single channel at a

Repeated m times

System software, It takes more than
power to produce commercially suc­
ccssful computers. The power must
arrive in familiar. easy-to-use, portable
packages. These packages includc an
Application Program Interface (API).
the most widely known being DOS,
Windows. Macintosh. and Unix. These

also wrote a single program for all II

PEs. They distributed large arrays
among the PEs, leaving I/ilth of the
data and computations on each one.
More recent compilers can distribute
arrays themselves.s Extensions to con­
ventional programming languages let
the programmer declare fonns of paral­
lelism, The compilers then divide the
data and computations llmong thc vari­
ous processors. A similar approach
applies to I/O. The programmer speci­
fics ccrtain attributes of the secondary
storage system. and the compiler opti­
mizes the d,Ha distribution across the
PEs and 1/0 media simultaneously.

So what keeps parallel supercomput­
ers out of the mainstream?

Repeated n times

Figure I. Scalable architecture.

Programming. Thc data-pandlel
method dominates programming for
Scalable computers. Originally. pro­
grammers wrote data-parallel programs
by hand.7 At that time. programmers

work). Each PE contains
a microprocessor and some
local memory. This archi­
tecture avoids the von
Neumann bottleneck be­
cause the total memory­
aceess rate grows with
the number of processors.
Other bottlenecks nrc
avoided because the com­
munication network capaci-
ty grows with the number of PEs lInd
110 devices.

The Tflops computers due for deliv­
ery in 1995 approximate Figure 1. with
/I "" 10.000 and 100 million f1oating­
point operations per second (MOops)
per CPU. (See the sidebar "Message
passing and shared memory.")

The traditional standard for bal­
anced 110 requires the 110 rate (in
megabytes per second) to equal the
computing rate (in Mflops). Some
researchers expect this to hold true for
Tflops supcrcomputcrs.1i This implies
that a scalable processor requires ,I
scalable 110 system for balance. The
ratio of" to III - and the relative
speeds of the PEs and 110 media ­
determine the 110 balance. Keeping the
ratio of lIto 1/1 about the S<1me keeps I/O
balanced as the computers scale in size.

Message passing and shared memory

The message·passing type of scalable comptJter uses the
network to send messages between processors, These comput­
ers require the distribution of data al'ld computations.' This
means that large arrays become distributed among the memo­
ries of the processors. Programmers then try to assign each
computation to the processor holding the data it acts on.
tnevitably, however, some computations will use data stored in
several memories. In this case. messages convey data between
processors.

The shared·memory type of scatable computer can route
memory accesses from one processor through the network to
memory In another processor. The programmer still distributes
data arrays al'ld computations on shared-memory computers.
but the distributions do not have to match so precisely. This is
because a computation on any processor can access data in
any other processo(s memory. Announced products of this type
halle performance below the Tllops level, however. with network
performance being the limiting factor.

While research cootinues into faster networks for shared
memory, there is another approach as well. Newer compilers

cootrolthe distribution of data arrays al'ld computations for the
inner loops of computations.2 This reduces the number 01 memo
ory accesses that OCCtJr over the networl<, reducing network per·
formance requirements. This Improves performance but blurs
the distinction between the shared·memory and message-pass­
ing approaches.

Even though matching data distribution with va Is a main coo­
cern in this article, it does not apply directly to shared-memory
computers. However. matching distributions lessens network
performance requirements lor 110. as it does for computation.
This might make existing networks adequate. We suggest.
therefore, that this article applies Indirectly to shared-memory
computers.
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Figure 2. Mulliplc Illnguages.
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parallel proccssing if parallel programs
and parallcll/O usc an extension of the
standard Unix 110 stream. allowing
existing Unix programs to run on ncw
parallel computers. Like the window­
based user intcrfaces.this will providc a
limited upgrade.

The Unix API allows programmers
to treat all 110 as a byte stream. This
means programs do not need to know
the physical representation of files and
output devices (such as tape and disk
blocking and printcr carriage control).
Conversely. 110 devices do not need [0
know how a program interprets datll
(such as text or binary data). Inst<.:ad.
programlllers imagine and manipulate
data in the most natural way. On­
sereen text (illustrated in Figure 4) or
images (illustrated in Figure 5) arc

API hides 110 c1etails:
1. line orientation
2. Disk blocking
3. Parallelism

=
hello world
hello world
hello world
hello world

Byte stream to ~ B~estream t
line abstraction disk abstract'

Program wiltl Actual 110 path Block-orientedvariable-length
text lines (variable length lines go disk

to one or more blocks)

t-igure 4. Byte ",ITellm abstraction_

streams model. Window-based user
interfaces illustrate the value of this
internal interface.

Hundreds of Unix utility programs
were first writlen decades ago on mini­
computers. Their programmers knew
only about hard-copy terminals and
CRT character displays because there
were no windowing systems then. Since
old-style terminals performed 110 using
an 110 stream. windowing systems were
designed to emulate the older terminals
and allow older programs to run today
in windows. 110 streams allowed hun­
dreds of programs to upgrade to a win­
dow-based user interface. This aceeler­
atcd the acceptance or window-based
user interfaces by automatically provid­
ing hundreds of utility programs.

We can accelerate lhe acccptance of

Figure 2 shows how the Unix exe­
cutable file is an internal interfllCC lhat
limits the crfects of different program­
ming languages. Compilers specific to
each language translate programs into a
single executable rile type. This insu­
lates the rest of the system from know­
ing a program's source language. Por
these reasons. parallel source is com­
piled into the common executable.

Pigure J shows the Unix abstraction
for connecting application programs to
one another and to 110 devices. Unix
has several features for managing 110
that we collectively call 110 streams.
One such feature. device-independent
110. lets a program perform 110 to a
variety of 110 devices without a change
in source code. All programs and 110
devices communicate through a com­
mon interface, or 110 stream. A second
feature - variously called pipes. sock­
ets. and fifos - allows two programs to
communicate directly by using the 110

time. In contrast, some scalable algo­
rithms run on thousands of processors
and use hundreds of disks. Simple
extensions of the Unix API can put
these algorithms into an API that is
scalable by design.

The bulk of this llrlicle concerns
deriving a scalable API compatible
with Unix. We chose Unix because it is
the most popular operating system
among current users of parallel com­
puters. although the basic ideas can
apply more widely.

Extending Unix
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the PEs execute similar sequences of
instructions. but on different data. All
PEs execute system calls in the same
sequence.

The programmer vicws the data as
an 8)( 8 image. as shown at the top of
Figure S. (We labelcd cHeh pixel wiln
a small image so that corrcspon+
denees arc easy to sec.) Image pro­
cessing appliclltions commonly divide
data into roughly square two-dimen­
sional regions and dislribule Ihese
regions to the processors. where they
arc viewed as a 2D array. This distri­
bution excels for image-processing
algorithms that access the neighbors
of each pixel. The arrow from the
image to the sending (S) processor
array represents this distribution. We
placed a t;lg on this arrow with the
words "S: 4 x 4 images. 4 PEs" to
document this first distribution.

The figure shows normal striping for
the two-disk storage system on the
right. The sloragc system views data as
a ID sequence of 8-byte blocks. with
the blocks distributed round-robin to
the disk drives. This kind of distribu­
tion gives good results over the general
mix of I/O accesses in a computer sys­
tem. The arrow from the image to the
receiving (R) 1/0 array and the arrow's
tag document this second distribution.

As with nonparallel Unix I/O, paral­
lel 110 is not actually done in this way.

Disk
view

R: a-byte
blocks.
2 disks

Disk t

11\11it I VI 1\111 I}J

Memory

;:=~''''~~~L Unix
I/O

~::;~../t'-=-=-r- stream

Unix process

Other approaches 10 parallel operating systems

The most widely used approach to parallel operating systems is multithreading.' This
approach, now used on tens of thousands of symmetric multiprocessors, lets each Unix
process have multiple execution threads, as shown in FIgure A. Each thread has a sep­
arate CPU, but all threads in a process share the same memory.

During a computation phase, calculations are performed by all CPUs in parallel. In
earty versions ot this technology, only one CPU could perform a system call at once.
This was equivalent to having an "Va position" thai only one CPU could occupy. Since
the outside world sees a process only through system calls. such a process looks Jusl
like the single CPU In the va stalion. More recent operating systems allow multiple

processors to perlorm certain system calls
atlhe same lime. This technology requires
Identifying allinteraetions between system
calls and dealing with each case, so that
the fesulllooks like a single CPU. The
industry is stlll dealing with the complexity
explosion that results Irom this approach.
Commercial multiprocessors limilthe num­
ber 01 CPUs to around 32, although some
research computers have 256 processors.

Another approach derives from the
libraries ot parallel functions developed for
distributed-memory parallel computers.2

The first distributed-memory parallel com·
puters had no system sottware. Users
wrole tibrary packages with the minimal

Figure A. Multithreading In operallng
systems.

single progr;lm. multiple daln (SPMD):
loosely synchronous;' or data pamlld.8

In such a program. each of four PEs
runs the same progr,lm. Furthermore.

Parallel If0
data goes directly
trom computer to disk
with permutation
A_S'

R " Receiving LIO i11rilV
S .. Sending LIO i1rrav

PE 1

PE3

m
PE2

Programmer view

Parallel
computer
view

PE 0

Tags document views

Uni.~ cxlensiolls for dul:1 di.~lribu­

tion. Figure 5 also shows how data
flows in a prototypical parallel 1/0
activity. In the follo\\'ing sections. we
pOlckage these datafiows into the Unix
model. Figure 5 is an example of a par­
allel progmm in its execution en\'iron­
men!. The progr.ull is a parallel image­
processing application thOlt writes the
image to a par,lliel disk. The pamllel
program on the bottom left uses a pro­
gramming paradigm variously called

common models. While writing pro­
grams thm prillt lines of tex!. program­
mers im,lgine adding lines to the bollom
of a document. This model holds even
when the program is outpulling to disk.

Byte strcams arc abstractions
bec[lusc the system docs nOI really per­
form 110 that way. lnste'ld. daw aclUal­
Iy movcs from a progr.un to [I dellice in
one step [IS shown in Figure 4. Wrhing
,I line of text to disk. for ex:trllple. can
change the end of one disk block. get
an unused disk block from the "free
list:' add that block to the file descrip.
tion in the direclOry. and change the
beginning of the new block. (Sec the
sidebar "Other :Ippro;lches to parallel
operating systems."')

Figurc 5. Purnlld sJslclII CXUlIIlllc.
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I-lgure 6. PlIndlel algorithm 10 con'·cr1 dislribulions.

To achie\'c scalablc transfer
ratcs. the operating s)'stem
scnds data directly from the
processors to the disks.
Throughout Figure 5. the
pl,<e1s in PE 2 arc outlined in
color. This shows how out­
put from PE 2 creates a
complex p:tttcrn on thc disk.
Specifically, output from PE
2 goes to disk 0_ then I. and
repealS on disks 0 and I.
Funhermore. PE 2's data in
each stripe neither stans nor
ends either stripe and is not cven con­
tiguous within the stripe. Complex p:ll­
terns like these often result from com­
posing two data distributions.

Tags 5 and R define the paHern of
daHl rIlovcmenl. To preserve the bytc
strcAm abstraction. the API must hidc
the prognlm's tag from that of the 110
device, and vice \'eTS.1. (Sec thc sidebar
"Parallel 110 for supercomputing" on
the next p:lge.)

SclIllIble YO strellms. Figure 6 sholo1,'s
a .scalable algorithm suitable for an 110
stream. This diagram overlays the
processors. nelwork, and 110 units of
thc scalablc archilecturc shown in
Figure I. We show data swilches on the
left and right sides of the figure. Thcsc
switches arc placed in each processor
and 110 dcvice. As the data passes

through the left·hand switches, the
switch routes individual bytes or blocks
to the proper channel on the right. The
switches on the right order the arriving
data into a single stream, The network
in the middle conveys the data blocks
10 the proper unit.

The algorithm in Figure 6 is the new
fcaturc needcd in un 1/0 stream to
makc the bandwidth scalablc. The over­
all cffcci of thc algorithm is to redislrib­
ute dala from Ihe left-hand distribution
5 to the right-hand distribution R. This
is R • 5-1 in functional notation (using
the fundional composition operator o.

defincd as if° g)(x) IE (f{g(x))).
The algorithm in Figure 6 is both the·

orctically and practically scalable. As
delailed later, the data-switching algo­
rithms are Iheorctically -constant­
time- and fast in practice. Since they

arc independent and execut­
cd in parallel. thcy do not
impair scalability. Because
of the way the algorithm
uses the network. the algo­
rithm docs not impair scala­
bility either. The networks
used in multicomputers
cxperience slowly degrading
latcncy but conSlant band­
width per pori as the net-
work scales, The rate at
which a processor produces
data docs not change as the

number of processor grows. It matches
the network's constant bandwidth per
port cxactly. Data also may be
pipelined through the network, dimin­
ishing the effect of network latency.
Latcncy increases execution time by
just one network latency time per 1/0
block. which may be thousands or bytes.

While data-switching algorithms are
straightforward. the operating system
must know 5 and R to configure the
algorithm. The next section describes
how the system obtains 5 and R from
executing programs through system
calls. Also. we propose (although this is
not standard yet) that nonparallel pro­
grams and devices recei\·e a default tag
thai says -no distribution, one proces­
sor.- This would make the algorithm
handlc conncctions between parallel
and nonparallel programs and devices
automatically.

Rgure B. Parallel proceulng library
poe....-

1 Open SofIwar. Foul'ldatiol'l. OSFII Progrsmmer', Relertlnc8, Rel'isJon 1.0, P'entlce Hall,
NewYOl1l,1991.

2. J. Salmon, 'Cubl~: Prog,ammlng HYPllrcubll WlIhout Programming Holt.: Hyper­
cube Multiprocessors. M. Heath. ed., SIAM, PtlIladlllphia. 1967.

Intcrfllce to emerging pllrallel 11In­
guages. Figure 7 illustrales an interface
to parallel compilers. We illustrate the
array "dimension a(8, 8'" from thc
example at the top center of the figure.
Parallel compilers select data distribu­
tions like 5 and usc them for distribut­
ing arrays and calculations on the
arrays. Until recently. parallel compil­
ers discarded this information. making
it una\'ailable to other par1s of the sys­
tem. Now, parallel compilers are being
enhanced so that they place this infor­
mation into the executable file and gen­
craie S)'Slem calls 10 pass this infonna­
tion to the operating s)"Stem before per­
forming 110. This gives the operaling
system the information necessary to
use the 110 stream extension previously
described.

A similar situation exists with data
dislributions in 110 devices, The system
administralor selccts R based on the
number of disks on the system and
other requircmcnts. In current 110

Program element

Unix system
calls:

ope,
p~nix"ose ~peread

write Interlace

Parallel system
~rarallel,calls:

mead p<OOOW""
nwrite ,"Ierlace

number of tunctlons needed to run applica­
tion programs. These library packages
incIlXIed lunctions for message communi·
cations, memory allocation, ar'lCl arithmetic
exception processing. Over time, these
library packages evolved Into the system
calls 01 a new operating system. Adding
Unix system calls has become popular.
The resulting operating system has the
structure shown in F'9Ure B, with two types
of system calls: Unbl ar'lCl parallel. Each
type has a standard Interlace: data is intElf­
changeable only with the same type of
interlace on any OIher program.

The difficulty with this approach is that
UnIX and parallel data are incompatible
with each oIher. scalable rates are p0ssi-
ble by using paraJIlri system calls. but this makes !he large body of existing Unix pr0.­

grams useless. SWnilarty. lui Unbl: compatibility is possible by using the Unix .system
cal$, but Unix Iimils data rates.
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de\'ice technology. dala distribution is
entirely the responsibility of the storage
subsystem and is unavailable else·
where. This is equivalent to the parallel
compiler's discarding data-distribution
information. Making R availablc in the
data switch is crucial to producing scal·
able I/O to the (\e\·ice.

A s~'stem call dcli\'ering distribution
information to the operating system is

the primM)' extension needed for exe·
cUlllble files. If thc default is "no distri­
bution. one processor.~ the new system

call docs not affect existing programs.
Thai is. existing Unix programs. written
without knowledge of parallel process·
ing. become valid parallel programs
,.,'jth one processor. Parallel programs
make the new system call and thus
enable parallel I/O.

Unix cxlcllsitlns for Pllrllllci cxccu­
I.ion. If users arc to run parallel pro­
grams with Unix commands. the paral·
lel environment must closely follow
Unix abstractions. Surprisingly. "e
found Unix suppon for various t~'f>CS of
local area networks (LANs) to havc the
basic abstraclion needed for parallel
proccssing. Users need only add
instances of Ihis abstraction to suppon

Parallel UO for supercomputing
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Although there are other forms of parallel 110. you can view
them es variants 01 the example in Ftgure 5. (We refer readers
to Crocke"l for a similar taxonomy.) Specilically:

• Each PE may need to access the entire data set. Examples
of this include reading a configuration lile or accessing a data·
base. Our system supports Ihis mOda 01 access by letting a
processor that specifies no distribution lag access the entire file.

• PEs can append asynchronously 10 the end of a data set.
ThIs occurs when you write messages to the end of a debug.
ging liIe. lor example. We support this access scalably by
adding a shared readfwnte poIOter. USIflQ a mess3ge--based dis·
tributed addition algorithm based on Gottlieb et al.z for Ihe
sharedr~e pointer.

• 50metlmes PEs wi perfomt VO asynctlrooously ra\tler than
in the single program. rnuItJpIe data (SPMD) model. We have a
user-changeable IIag that declares 10 the operating system that
VOs are in SPMD mode. This cues the op8rallng system to
employ certain tmng opt/lTUations. With ltle flag off. the operat­
ing system pelforms asynchronous operations.

• Data is ohen formatted as variabie-1engIh text lines. Non·
parallel computers lace this issue as wen and reSOlve it by using
library packages for formatting and parsing. We believe ~bfary

packages are also right for parallel computers. A parallel library
would transfer data to and from the operating system using a
fixed distribution. The library code on multiple PEs would wOflt
collectively to format or parse the data.

There are nonobvious criteria lor selecting va data distribu­
tions. Umiting the maximum OIIerhead Is the key to a good va
system. "Having low OIIemead: however. is different from
"being last: Only programs with si~ data distributions can
produce data at the lastest rates. To limit OIIerhead. we need
fast algorithms lor these simple distributions. Conversely. deal­
ing WIth complex data distributions slows a program and its va
rate. The system designer can use slower algorithms here WIth·
out "trocb:ing high va 0IIflfhead. This means lhe 110 system
must be most eltidenl ody lor those data distributions thaI cor­
relate with high 110 rates.

Our experience shows that only 10 and 20 distributions need
direct support. Of the few programs we found with distributions
of three or more dimensions. aI but one were COfl'lPUIatlonally
Intensive anyway. Overtlead., redistributlng lhe data here Is 101­
erable. The one exception was out.of-core FFTs. which rema"
an exception_ A 1D distribution views data as a sequence 01
blocks that are distributed round robin 10 the units. The distribu·
tion 01 an array or dense matrix by column or row Is 10.3So are

the ln18neaved lorms of these distributions. We need unequal
block sizes when the number 01 data items Is not a multiple 01
the number of processors, however. The most even division of
the data involves some blocks of a partiCutar size and some
blocks 1 byte larger.· Block-oriented data movement is a 1D dis­
tribution. This includes system 110 by lorma"ing Of parsing
libraries, 110 to a striped disk,eand data handling in RAID
(redundant arrays 01 inexpensive disks).' Parity block genera­
tion in RAID syst&ms Is not a lorm 01 data distribution because
data goes to more than one place.

Computer graphics and visualization mal!.e 20 distributions
important, although they occur occasionally" other applica­
tions. lmagng programs are ohen computationally.simple. yet
have high bandwidth requirements. This makes controlling OV8(.

head important. A typieaJ distribution lor images diVIdes a CRT
sctgen inlO an amly 01 nearty square submages_ These SlJbim.
llIgBS are rnawect 10 proc::essofS. Inter18aving Is the most c0m­

mon variMt. In <Mer appications. dislribullTlg a dense matrix by
block is a 20 operation. So are the interleaved torms of these
distributions.. Furthermore. parallel compiers occasionally gen­
erate 20 distributions from 10 amlys.·

5ubsequentlO the writing oflhis manuscript. Ncube and other
vendors have relined the system in this artide (deScribed in
detaW in the next sidebar). Ncube now allows data to be distrib­
ute<! In kdimensions by specifying k·l parameters (the data
becOmes a. stream in the last dimension). Each 110 transfer
becomes a k-dimensional SlJbregion. The National lab's
Parallel Data·Exchange Group Is develOping a system based on
a list 01 distributions, In this system. distributions are Identified
by the terminology in this artiCle, but a program may supply a list
01 distributions. Two-dimensional (and higher) data can there·
lore be represented, although the amount 01 data required lor
the representation may be large.
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t-igure IJ. New network 1)·IIes.
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Figure 10. Sillilling
Unix processes.
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if we try to apply Unix
nilmes to the pariS of
Figure 8. We associate the
term "progranl" with the
file produced by a compil­
er. We also would say that
the Hcllo World program
writes '"hello world" on the
terminal oncc. Since Figure
8 has one a.out file but
writes "hello world" four
timcs. the two definitions
of program conflict. We
resolvc this by splilling the
Unix program abstraction
into two parts. The a.out
file becomes a pilrallel pro­
gr;lm (PP) that runs on

multiple processors. Wc call the code
that runs on each processor a program
clement (PE). even though it is not II

complete program. These two abstrac·
tions mcrgc for current Unix progrilms.
since illl run on one processor. (The
sidebaT "Program clements and
threads" on the next page elaborates
on PE terminology.)

As shown in Figurc 10. many fea­
tures of a Unix process become attrib·
uted to either a PP or PE. A fcw
receive more sophisticatcd treatment.
Program executables and the exit sys-

S nec -n 4 hello.c
S a.out
hello world
hello world
hello world
hello world
$

interconnects a specific gTOUp of
processors using nonnegativc integer
addresscs. The start-up procedure fOT a
parallel program creates one of these
networks to connect the processors.
This network is then used for inter·
processor communicll\ions. We empha­
size lhat a program network docs not
have dedicated hardware but shares the
scalable interconnect.

Splitting lhe Unix prO~'ess IIhslrll~'­

liun. Thc parallel cxecution model adds
II ncw abstraction to Unix. We see this

Unix process
abstraction

Interrupt ( -C ) Parallel
pr~ram Exit system caU

Parallel If0 ( P)

Nonparallel If0 Program Memory allocation
element system calls

Divide by (PE) Interprogram
zero inlerupt messaging

Figure 7. Flow of datll-dlslnbullon IIlfurnmlion.

~ dimension a (8. 8)

~
OISlrlbulion Olwlbutlon
S selected R selected

by complter ~systems
tl mlnlslretor

\. /
EllBCulable lile Device file

system_call (E] ) name = disk

distribution =~

11rugrum netwurks. The new messag·
ing systems have the slime effect as the
program network illustTllted in Figure 9
(we discuss the ch:mncl network in the
figure later). The progmm network

parallcl execution (such as
adding two new network
types 10 existing network
types like Ethernet).

Parallel l.'x('clIliun Illodel.
Figure 8 is iI defining example
of how we extended Unix on
the Ncube parallcl computer.
The example fiTst compiles
the well-known Hello World
program wilh the Ncubc C
compiler. The additional
command line SWiH:h "-n 4"
resullS in a p:lrill1d progr:un
wilh four processors. The sec­
ond linc runs the resulling
!I.QUI file. Running II C pro-
gram in parallel simply runs the pro­
gram on each processor.

Users could also compile a real p,H­
311el program. which also loads and
runs the same executable on each
processor. However. a real executable
does morc than just print the same
"answcr" four timcs. Each processor
first asks the operating system which of
the four proccssors it is. It then uses
this inforrnation to sdect the portion of
the distributed data it must compUle.
Following the computation. each
processor prints onl)' the part of the
answer that corresponds to its part of
the data.

The parts of the parallel program
also must communicate at times to
carry out some computations. Since a
parallel program should run on any sct
of processors. it is inappropriate for a
program 1o usc relll network llddresses
for communications. Instcad. thc
processors address each other using
nonnegative integers. with the operat­
ing system transtming thc integers 10

network addresses. To support this
communication. parallcl-computer ven­
dors typicall)' add a whole new messag­
ing system that t<lkes integer addresses.
Unfortunately. the abstractions in these
system calls duplicate the ones already
in Unix for networking support. To
achieve a morc concise description. we
will describe thcse features as though
there were no unneccssary duplication.
The Ncube·2 system likewise elimi­
nates unnecessary duplication.
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Program elements and threads

Multithreaded Unix operating systems lor shared-memory parallel computers1 also
split Ihe process abslraction. These systems keep the name process lor what we
call a parallel program and add a new enlity called a thread. Threads and PEs are
different. althOugh they occupy the same level 01 abstraction. However, a thread has
only an eX&ClJtion context, while a PE has memory as well.

We are deliberately giving ltte acronym PE two meanings. We chose the tenn pro­
gram element as a compromise between operating system and parallel processing
tenninology. The designers of scalable computers devised the tenn processing ele­
ment (PE). It relen-ed to the single-tasking microprocessor and memory that was
replicated to fonn early scalable computers. Over time. programmers expanded this
tenn to refer to the soltware that runs on the hardware with the same name. We now
lace a dilemma: You cannot use a hardware tenn lor the parts 01 a program In the
context 01 operating systems. By using the lenn program element instead 01 pro­
cessing element. we fix this problem while retaining the widely used acronym PE.

Reference

1. Open Software Fourw;lation, OSF/I Programmer's ReferBfICG. Revision 1.0. Prentioe Hall.
New Y<m. 1991.

tern call become allributed 10 PPs and
can affect many processors. Memory
allocation. in contrast. applies to a sin­
gle PE. Interrupts can receive both
treatments. depending on the particular
interrupt. The user-generated interrupt
signal (IIC) aborts an entire PI'. while a
divide by zero interrupts only the pE
where the division occurred. Except for
110. Unix features fit easily into the
parallel model without changing their
current behavior.

A full treatment of this alloc3tion
would be more complex than described
here. yct simpler than the correspond­
ing treatmcnt in multithreaded Unix,
which additionally deals with communi­
cation between threads using shared
memory. Thcse communications
increase the complexity of interactions
between system features.

Implementation on Ncube

LSB =;=_-"",;=

Position
in file

tracing each bit from lhe left side 01 5-1through the common
boundary to the right side of R. We call the reSUlting function R"
S-1 a composite data distribution. The data switch uses it to direct
data Irom the sending side directly to the receiving side.

This approach is partiCUlarly effICient lor sending data In blocks
rather than one byte at a time. DeBenedictis and del Aosario1

show a method 01 computing block size. The only aspect 01 the
block size computation actually related to the block size involves
counting the number or parallellraces in the composite data distri­
bution. With n paralle!traces, you can send a 21\..byte block. These
data structures and aJgorilhms should result in a small computa­
tional ovemead, wI1ich we show below.

We ran numerous perlormance trials. including program-to-pro­
gram, program-to-disk, and program-ta-device (videO display) va.
We also recompiled Unix programs, like tar, and put them on the
system release tape as system utilities. The detailed results
appear in DeBenedictis and del Aosario1 and in the Ncube techni­
cal documentation.2

We Include one perlormance result to shoW lhat the high-level
approach taken in this article can be efficient. Figure E shows a
parallel pipeline, or two programs running simultaneously on a
parallel computer. The output 01 one program becomes the input
of the other. In the trial runs, the programs input or output a 1,024

)( 1.024-byle matrix. We distributed lhe
matrix over a varying number or proces­
sors using row-, column-, and block-ori­
ented distributions. The parallel code is
similar to that shown in FlQure 11,
except there is no "open" command. To
provide a context ror the perlonnance
numbers, lhls computer has 2-Mllops
processors connected as a hypercube
with 2.22 MbyteJS communication paths.
Table A shows periormance reSUlts.

The results or lhese tests meet
expectations perlectly. Since these tests
use a flxed·size data set, the running
time decreases as the number of

Binary
representation
of argument

Figure C. Bit permutation function.

We wrote system sottware lor the Ncube parallel computer on
the basis 01 the Ideas presenled in this article. This sohware, now
version 3.0 01 Ncube's system sottware, is commercially available.
Ailleatures in this article are available except for preconnecting a
paraJlellile to a program. This release is not a Unix port, however.
We implemented operating system leatures In the C and Fortran
compiler libraries running on lop of Ncube's proprietary communi­
cations kemel. This sidebar describes some design choices in the
Ncube Implementation and shows that scalable operation is com­
patible with Unix. '

Figure C shows a clata-distribution function. The function maps
byte positions In an va stream to a byte position In one 01 the
replicated units. We represent the position 01 a byte as a binary
number and apply it to the lett of the function. The action ollhe
function Is to pennute the order of bits as shown by the lines In the
figure. The right-hand side 01 the function divides the bits into two
groups: The bottom group represents the unit number; the upper
group represents the byte position within ltIat unit. The specilic
lunction shown is the distribution on the leh side of Figure 5. With
the proper permutation, you can express any n-dimensional distri­
bution with or without interleaving. The limitation is that block
sizes musl be powers 012.

This class of lunctions has useful mathematical properties. The
data switch uses these
properties to compute
destinations and block
sizes. Figure D illus­
trates these properties.
The ligure shows 5 Irom
Figure C mirrored about
the vertical axis, lorming
5-1• The middle and
ngh! parts of the figure
show the composition 01
S-l and A. (R is the
data distribution for the
disk In Figure 5.) We
compose 5-1 and R by
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Link 10 1/0. Lel's discuss p:mlltclllO
enhancemellls for lhl: example in
Figure 5. Figure 11 illustrales some
code required for our approllch to this
example. The key issue in opening files
is whclher lhe entire parallel progrnm
is opening a file collectively or 11 PE is
opening one individually. The behavior
diffcrs. for example. if the file-opening
operalion creates a file. If scveral PEs
allempl to crcnle the Slime file individ­
uarry. only one can succeed. The others
will fail becnusc the filc already exisls.
We reconcile lhis by lelling a PE 0l>cn
or creale a file in global mode. In lhis
mode, only one PE actually creates the
file: il then relays lhe resulting handle
10 lhe olher PEs.

In our system. the Unix system cnll
;ot'/Imows infornwlion aboul datn dis·
tribution from lhe executable file into

the system. kl(.~tl performs lhe function
selected by lhe middle argumenl emd
(command) on the specified fill:. The
third :trgumenl is a pointer to :lll arbi­
trary block of dala conlaining lUI

encoding of the tags we have been
using in this article.

The write Slatemenl silins a series of
activities that can move dnla al scalablc
rilles. Before any dala can movc
lhrough lhe 110 stream algorithm
shown in Figure 6. we must configure
lhe data swilches 10 perform I~ 0 $-1.

The iOCll call cannol do lhis because
lhe ends of the channel can receivc
data tags at different times. Both $ and
R will bc :lvllilable ~fore the firsl data
movcmcnt. howcvcr. bl:cause the sys­
tem swaps the $ 'lnd R information
betwcen the ends of lhe channel. This
configures the claw swilches. as shown

1:= Dpen ("me" O_Gt.OB~L)/' ~(I me "I
~1I(1, C~D, ';\'rt1 r s:!!PP1Y lag"/
\\'llteU, ",tr, size) rcutp,!ll'/

\.. fiji'"""',"",p.,

"'igure 11. P:mdlcl prugrum exumple,

'>< a'byte

I'J ITI~~es Dala tiloc~s

'R s swilch 2 dlsks

BJ.t~ .... ......~yle
in ex index

Processor ......~nit
number number

Block
size

Figure 12. I)ulu SII-ildl.

5 5' A RoS'

Table A, Pipelines betll-ecn prognms or "lIrious si'les.

Pallam

() reversal

~
FIgure D. Composlle data distribution.

processors increases. The decrease is nol exactly linear because
lhere is a small overhead independent 01 the size 01 the data
transler (4 milliseconds, in lhis example). This causes Ihe rate per
node to decline. Parallel programs without UO have equivalent
behavior under the same circumstances, which led to the 'scated
speedup" model.3

Since the trials with mixed distributions perform dala permuta­
lion as well as data movemenl. lower performance could be
expected. We selectecllhe row-tcrcOlumn lrial specifICally
because it was pathological, as lis performance results reflect In
lhis case, each processor sends a small message to every other
processor. Known scatable algorithms lor matrix transposltion­
would avoid lhis performance problem.

s. R

2,
8

16

32

64

64

64
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Sender Receivcr Rille per Aggregate
distri- distri· node (in bandwidth
blltion but ion MBps) (in MOps)
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Foor Input streams
rate r

T his article outlined the evolu­
tion of software that will make
parallel computers as easy 10

use as nonparallel ones.. This evolution
involves some new ideas but does not
require de\'cIoping an operating system
from scratch. Most of the code now
wrincn for Unix will run unchanged on
a parallel computer.

Here is what a Tflops supercomputer
will look like. Parallel-computer ven­
dors will construct Tflops processors
and balance them wilh scalable sec­
ondary storage. Parallel IJO to fast net­
works and special I/O devices will be
available as oplions. The standard con·
figuration will include nonparallel LAN
interfaces.

The standnrd configuration will also
include an operating system like the
one described here and data-parallel C
and Fortran compilers. The operating
system will include the standard set of
Unix tools and utility programs com­
piled (but not rewrinen) to run on one
processor. This suite of sc\'eral hundred
programs will provide the networking.
electronic mail. and other traditional
tools that make Unix allraeth·e.

The user .....ould add parallel applica.
tions. like weather prediction or molec­
ular modeling. These would be Tflops
programs with balanced I/O. Users
could freely mix and match the pafllilel
programs with the Unix ulilities. For
example. you could direct the output of

individual toll booths are slow. The
stream combiner we illustrate works
like four toll booths and a one-lane
bridge. While cars merge randomly on
a roadway. the stream combiner
mergcsthe data aa:ording to the simple
interleaving pallern shown. Curiously.
several parallel computer \'endo1'5 have
110 devices that look like the one in
Figure 13, but the appearance is superfi­
cial because they use a different concept.

The merging pallern shown corre­
sponds 10 the 10 data distribution
described earlier. This lets )'ou create a
data-distribution tag for the stream
combiner. H you then treat stream
combiner inputs as the units of a paral.
lei entity. the software described earlier
will work. However. you must lailor a
stream combiner to each specific medi­
um. For example. an engineer must
pick a size for the symbols in Figure 13
and understand lhe flow-control
requirements of the medium.

While Tflops computers arc under
construction. the fastest external net­
works at Ihe same stage of develop­
ment operate at about I gigabyte per
second. This is under 0.1 percent of the
bandwidth required for a tr:lditional
110 balance. By using the softw:lre
described earlier and the "stream com­
biner" architecture in Figure 13. you
could build :l scalnble network thai any
Unix program can drive. You could
then scale the network 10 a 'Ibyte/sec­
ond level to balance a computer scaled
to Tflops operation. The 5o'lme architec­
ture could drh'e any fast medium. such
as 3 radar antenna or a video display.

The device in Figure 13 works like
the seclion of roadway between a loll
boolh and a bridge. Since speed at toll
booths is slower than in traffic lanes. a
two-lane bridge may need a dOlcn toll
booths. Cars emerge slowly from the
toll booths on a dozen lanes of road­
way. As these lanes quickly merge into
two lanes. the cars become closer
together and traffic speeds up. This lets
the bridge run at full capacity though

Scalable I/O hardware

I/O devices. corresponding 10 character
and block devices in Unix. One proto­
col deals with potentially random·
access disk requests. Here. the user's
PE must send messages lhat identify
exactly where in the file to read or
write. This protocol is similar to the
network file system (NFS) protocol for
workstation disk accesses over II net­
work, For a device not supporting ran­
dom access (like a communications
line). the data'S posilion in the stream
is implicit. Tagging dala wilh ils posi­
tion is unnecessary. Hcre. howcver. the
rccch'cr must have a data switch to know
which sender to obtain the data from
next. (Refer to the sideb.1f -Implemen­
tation on Ncube.~)

aeirn... - - - - \ One outPut stream
;:=~~.. rate 4r

bf"... - - - - ... : .. \~:;~~':I>~cd~l8~fghij~-:;"'~m:;.:;oop:;;;;...... . -­."
cgko -~-=-=-~'~" , :.s:
cIlIp • ' • \rIItS

"lgure 13.
Slrellm oombiner. L -'

by the tags in Figure 12.
The easiest explanation of dala

movement assumes that each byte is
moved individually. The process starts
with the index of a byte within the PE's
I/O stream. Arter receiving the tags
shown in Figure 12. the switch can com­
pute the destination for a byte. The
destination consists of a destination
unit number and an index within that
unit. Here. a unit is a disk or a proces·
sor, depending on the nature of thc
connection. The byte is then sent to this
destination in one of two protocols. as
described in the next section. This
expanation applies in concept to most
scalable I/O systems but details vary
widely.

Actually. to obtain acceptable per­
formance. data must move in blocks
rather than one byte at a time. We
enhanced the data switch to emit a
block size m; well. Block size computa·
tions require unexpectedly complicatcd
math, however.

Chllnn",1 networks. We propose
channel networks as a way of repre­
senting scalable I/O strelllllS in the
Unix 110 stream model. (Figure 9
shows such a nelwork.) Like a program
network. a channel network connects ,.
specific group of processors and uses
integer addresses. I. connec.s two par­
allel enlities. howe\·er. such as a pp and
a parallel disk. both having addresses
starting at O. Instead of circulating with·
in the sending parallel entity. messagcs
go 10 the other end. This means that
messages coming from the left side arc
delivered to the right. and vice versa.
We enhanced the operating syslem to
sct up a channel network for each I/O
Slream open at startup. The data switch
is straightforward when used with a
channel network. It simply sends the
data onto the network by using the unit
number as the address.

We necd IWO protocols for various
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a parallel program 10 a workstation running data visualiza­
tion software via a LAN.

While recompiling the hundreds of well-known Unix utili·
ties would provide a great deal of software at low cost. this
approach has limits. As the application programs become
more powerful. some nonparallel Unix utilities would
become bottlenecks. For example. the Unix copy command
would be the only tool available to copy a Thyte file distrib­
uted over 10.000 disks. Since the Unix utilities run on only
one processor. the operation would be very slow. As they
become bottlenecks. these Unix utilities would be rewritten
as scalable programs. while providing the same interface.

We now hllve a computer with parallel processing "under
the hood." Just as new cars have familiar controls. Tnops
supercomputers will have familiar commands for editing files
and sending electronic mail. Running or writing computa·
tionally intensive applications with the familiar commands
yields a surprise: The computer runs 10.000 times faster than
a workstation.•
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