General Floorplan for Reversible Quantum-dot Cellular
Automata

Sarah E. Frost-Murphy
University of Notre Dame and
Sandia National Laboratories*

Dept. of Computer Science

and Engineering 384
Fitzpatrick Hall
Notre Dame, IN 46556
smurphy@cse.nd.edu

ABSTRACT

This paper presents the Collapsed Bennett Layout, a gen-
eral purpose floorplan for reversible quantum-dot cellular
automata (QCA) circuits. In order to exploit the full density
and speed potential of emerging nanodevices, the principles
of reversible computing need to be incorporated into the de-
sign of nanoscale circuits and systems. The Collapsed Ben-
nett Layout implements Bennett’s algorithm in hardware,
allowing any arbitrary logic function to be implemented re-
versibly in QCA.

Categories and Subject Descriptors
C.1 [Processor Architectures|: Other Architecture Styles

General Terms
Design, Theory

Keywords

quantum-dot cellular automata, reversible computing

1. INTRODUCTION

Without incorporating the principles of reversible com-
puting into nanoscale designs, the density and speed gains
promised by emerging nanotechnologies may remain beyond
reach because of the dissipation associated with the erasure
of a bit. This work introduces a general purpose floorplan
for reversible quantum-dot cellular automata circuits, the
Collapsed Bennett Layout. Reminscient of Bennett’s alo-
gorithm, this layout allows any irreversible QCA circuit to
be executed reversibly. This work begins by briefly introduc-
ing the quantum-dot cellular automata (QCA) paradigm,

*Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94AL85000.

Copyright 2007 Association for Computing Machinery. ACMkaowl-
edges that this contribution was authored or co-authorednbgmployee,
contractor or affiliate of the U.S. Government. As such, tle€nment re-
tains a nonexclusive, royalty-free right to publish or mhrce this article,
or to allow others to do so, for Government purposes only.

CF’07, May 7-9, 2007, Ischia, Italy.

Copyright 2007 ACM 978-1-59593-683-7/07/000%5.00.

Erik P. DeBenedictis
Sandia National Laboratories
Scalable Computing Systems

PO BOX 5800, MS-1322
Albuquerque, NM 87185-1322

epdeben@sandia.gov

Peter M. Kogge
University of Notre Dame
Dept. of Computer Science
and Engineering
384 Fitzpatrick Hall
Notre Dame, IN 46556
kogge@cse.nd.edu

pointing out the magnitude of the power problem for nanoscale
systems, and discussing reversible computing as a way to ad-
dress the problem. Bennett’s algorithm is then briefly dis-
cussed followed by the presentation of the collapsed Bennett
layout.

2. QUANTUM-DOT CELLULAR AUTOMATA

The quantum-dot cellular automata (QCA) paradigm has
been widely described. In brief, charge configuration is used
to represent information rather than current. FEach QCA
cell consists of four quantum-dots arranged in a square and
two excess electrons that repel each other and can tunnel
quantum mechanically between the dots of the cell. Since
the electrons repel eachother, there are two stable config-
urations that correspond to a binary zero and binary one
(figure 1). If the QCA cells are arranged in a line, they form
a wire. Directionality can be imposed by a localized electric
field that controls the tunneling of the electrons. When the
field is high, the configuration of the QCA cells are locked.
When the field is low, the configuration relaxes and the cell
has no value. The basic gates in the QCA paradigm are the
majority gate and inverter which form a functionally com-
plete set. The majority gate functions as an AND gate if
one of its inputs is a fixed logical zero input and as an OR
gate with a fixed one input (figure 2).

Logically irreversible circuits and architectures have been
studied including a simple processor [7][8] and memory[4][3].
These works cite many additional papers describing different
aspects of the QCA paradigm including physical realizations
of the devices. Logically reversible circuits and design tech-
niques have also begun to be explored [5].

3. THE POWER PROBLEM FOR
NANODEVICES

Landauer’s principle, the justification of reversible com-
puting, says that the erasure of a bit leads to at least kT'In(2)
Joules of heat dissipation, where k is Boltzmann’s constant
and T is the temperature of the system (300K is room tem-
perature)[6]. If it is true, a processor design that takes ad-
vantage of the density and speed potential of nanoscale de-
vices will need to consider reversibility so the heating due
to the erasure of bits does not overwhelm the system. For
instance, consider the following scenario. Suppose there is a
device (e.g. a transistor, a carbon nanotube switch, xa QCA

@ ORCIRONO)
Electron Sites (@ (| |® @
O

® @ O
<_

0= Electrons

0 @

(@) (b)

Figure 1: (a) QCA cells consist of four quantum-dots
arranged in a square and two excess electrons that
repel eachother forming two stable states. (b) The
value of a QCA cell is determined by its neighbor.
The cell on the right begins with its electrons delo-
calized and assumes the configuration of its neigh-
boring cell on the left.

Figure 2:
majority gate with three inputs and one output.
The output value is the majority of the inputs, or
AB+AC+BC. (b) A QCA inverter. (c) An AND
gate is formed if one of the inputs is a fixed logical
zero. (D) An OR gate is formed with one input fixed
at logical one.

(a) The fundamental QCA gate is the

cell, etc.) that covers an area of 1 nm? and can be clocked
at 1THz. A circuit (e.g. an ALU or FPU) is built out of the
device in which just one bit for every 10 devices each cycle
is erased (e.g. only one device out of ten is switching each
clock cycle), and assume it operates at room temperature.
The dissipation due to bit erasures alone would be:

1 device % 1014 nm? 1 bit
2

kTIn(2
w1 x 2@ 1T H,
nm cm bit

10 devices

(1)
= 28,696 -

This is a particularly alarming number considering first
that this applies for any such device and second that the rule
of thumb limit for air cooling with heat sinks is 100 W/cm?.

Even backing away from this dissipation result by a few or-
ders of magnitude for density inefficiency, slower switching
speed, etc., one is still left with a staggering amount of dissi-
pation due to bit erasures alone. This indicates how critical
avoiding these bit erasures will be for nanoscale technologies.

4. REVERSIBLE COMPUTING

The reversible computing paradigm avoids the erasure of
bits and so avoids the dissipation associated with erasure.
Landauer proposed the idea of reversible computing in 1961,
but believed at the time that reversibility would be unwork-
able for arbitrary computation [6]. Bennett showed first that
arbitrary reversible computation was possible [1] and later
that the space overhead of imposing reversibility on an irre-
versible circuit or algorithm was on the order of the log of
the space required for the irreversible version [2].

The key insight of reversible computing is that informa-
tion does not need to be destroyed during computation.
Rather than erasing a value, it can be “decomputed” to
return the location storing the information to its previous
value. Decomputation is made possible either by saving all
the inputs of an irreversible function (e.g. an AND gate)
or by using inherently reversible functions (e.g. a Toffoli
gate). A reversible function is one which is one-to-one and
onto meaning that the function and its inverse both have
a unique inverse. In other words, no matter which direc-
tion a function is being applied, the previous state can be
uniquely identified. A computation involving only inher-
ently reversible operations, then, is really a unique trans-
formation of the input. Further, it has been shown that
there are several classes of reversible gates that are univer-
sal [9][10].

However, while it has been demonstrated that there are
universal reversible gates and functions, there is a long his-
tory of irreversible design — both in algorithms and in cir-
cuits. Bennett’s work shows how to execute any arbitrary
algorithm reversibly. This can be naturally extended to cir-
cuit design.

5. BENNETT'SALGORITHM

At a high level of abstraction, reversibility can be forced
onto any algorithm or circuit by saving the inputs and all
intermediate results. However, depending on the function,
this can lead to an exponential explosion in the amount of
data that needs to be stored. Bennett proposed an algorithm
that minimizes the amount of data that needs to be stored
at the cost of execution time [2]. Using Bennett’s algorithm,
any irreversible algorithm can be divided into segments that
will be calculated, have the intermediate result latched so
it can be used by the next segment, and then when it is
no longer needed, decompute the intermediate result so it
does not have to be stored. Bennett’s algorithm is an opti-
mal ordering for computing and decomputing the segments.
While Bennett’s original work envisioned these segments as
segments of an algorithm, they can also be thought of as
segments of logic that implement the algorithm. Figure 3
shows an example of the order of computations and decom-
putations for an algorithm broken into eight segments.

6. THE COLLAPSED BENNETT LAYOUT

DeBenedictis introduced the beginnings of a potentially
implementable layout that collapses Bennett’s reversible al-

2
:
INEERRERRRRRRRCO00000000000 ©

mm Computed segment storing result

1 Segment uncomputed this cycle

Time
[| | [N{NIm(A] | (miminnimni] | (i | |
Wi {0 |] IR][N

1 Segment uncomputed, nothing sto

tonEmROooooooooooooooEmmoon @
OOCOOMMMRRRRRRRRRRRRRRRCOO0S
(RN NNRRNN | (NN |

OooooooooDOaemRRRnoooonoooo
O0o00Dooo000ERnoo0o0000on0 S

Figure 3: Bennett’s algorithm divides an algorithm
or circuit into stages (8 stages in this example) and
selectively computes and decomputes them to store
the least amount of data necessary to maintain the
reversibility of an irreversible algorithm.

gorithm tree into a single level of re-usable logic with a stack
at either end of the combinational logic and a shifting mech-
anism to pop the top of one stack and push it onto the other
stack (i.e. shift left or shift right). This model was further
developed and a simple ripple carry adder was designed for
it to demonstrate the proposed operation.[5] Rather than
using unique circuits to implement each segment of the algo-
rithm or function, this layout assumes that a single segment
of logic can be re-used by each segment of the computation.
For instance, the logic could be as general as a complete
CPU or specialized for a specific function such as a part of
an ALU.

A schematic of the components can be seen in figure 4.
It consists of a left stack, an area of combinational logic, a
shifter unit, a shift-disable area, and a right stack. In addi-
tion, the logic unit as a whole can be disabled by adjusting
the voltage bias across the area, and separately the shifter
area can be similarly disabled.

The final piece of the set-up description is the clocking
signal generation. The required signals can be seen in figure
7. One of the modifications to traditional QCA design is
that more than the traditional four clocking signals (switch,
hold, release, and relax) may be useful. This floorplan re-
quires 6+ n clocking signals where n is the number of stages
in the logic portion of the layout. The optimal number of
stages in the logic portion is dependent on the complexity
of the function to be calculated and the cost of additional
clocking signals for a particular device implementation.

The collapsed Bennett model operates by combining four
“functions”: compute, decompute, shift left, and shift right.
In compute, the input at the top of the left stack is used
to compute a value that is pushed onto the right stack. In
decompute, a value is popped from the right stack and de-
computed. In shift left, the value is popped from the right
stack and pushed onto the left stack. Similarly in shift right,
the value is popped from the left stack and pushed onto the
right stack. Using this combination of functions, Bennett’s
algorithm can be implemented using a single copy of the
logic portion.

Bennett’s algorithm defines optimal time/space tradeofs.
The version of the algorithm presented here minimizes the

Logic—,,

Stack Stack

Shift
Interface to Stack

Figure 4: The regions of the collapsed Bennett lay-
out include two stacks, a logic or computational
area, a shift area that allows data to be transferred
between the stacks, and an interface between the
stacks and the logic and shift regions.

Table 1: Execution of a Four Segment Problem by
Bennett’s Algorithm
Step | Bennett’s Algorithm]

Compute 1
Compute 2
Decompute 1
Compute 3
Compute 4
Decompute 3
Compute 1
Decompute 2
Decompute 1

© XN O N

space required. However, at the expense of using more space,
the time component could be minimized. This tradeoff is an
important one for the collapsed Bennett layout because the
size of the stacks are determined by the time/space trade-
off made for the particular function being computed. An
algorithm that requires O(T') time and O(S) space to run
irreversibly can run in O(T"*¢) time and O(SlogT) space.

Logic Disable

0

Shift Disable

Figure 5: There are two disable sections in this
layout. The top area disables the logic, while the
bottom area disables the shift. While disabled, the
QDCA cells have no value and do not contribute to
the computation of any nearby cells.

A simple adder is shown in this section to illustrate the
layout and the interfaces between the computation and stor-
age. One can imagine sandwiching an entire processor be-

Ful

L2 1o

Half adder

Top of
right stacl

Top of |
left stackTh

Shifting Wires‘

Figure 6: Columnar clocking zones defined for this
adder. The shadings correspond to the shadings in
figure 7 showing the signal generation needed for the
four modes of operation.

Time

Time

Figure 7: Clocking signals required for four modes of
operation of collapsed Bennett clocking layout: (a)
Compute, (b) Decompute, (c) Shift Left, (d) Shift
Right. The clocking regions correspond to the col-
oring in figure 6

tween two stacks in this manner for a general purpose re-
versible processor.

For instance, consider a very simple example of using an
adder such as that in figure 4 to multiply 1x4 by iteratively
adding 1 to itself 4 times. Table 1 shows the operations asso-
ciated with the execution of a four segment problem by Ben-
nett’s algorithm. Table 2 steps through the execution and
shows the corresponding execution in the collapsed Bennett
layout. Since one of the operands is always 1 in this example
only the changing operand is shown at the top of the stack
to aid in clarity. The numbering of the steps is the number-
ing used in table 1. Notice that each Bennett’s algorithm
step is associated with two collapsed Bennett operations - a
shift left /right operation followed by a compute/decompute
operation. At the end of execution, the original input re-
mains at the top of the left stack, and the final output is

Table 2: Executing a Simple Example in the Col-
lapsed Bennett Layout

Step | Operation Left | Right
Stack | Stack
1. Enter Initial Input: 0 0 -
Compute 140 0 1
2. Shift Left 1 -
0
Compute 141 1 2
0
3. Shift Right 0 1
2
Decompute 140 0 2
4. Shift Left 2 -
0
Compute 142 2 3
0
5. Shift Left 3 -
2
0
Compute 143 3 4
2
0
6. Shift Right 2 3
0 4
Decompute 142 2 4
0
7. Shift Right 0 2
4
Compute 140 0 1
2
4
8. Shift Left 1 2
0 4
Decompute 141 1 4
0
9. Shift Right 0 1
4
Decompute 140 0 4

located at the top of the right stack. Clearly, this is a very
simple example, but it illustrates the relationship between
Bennett’s original algorithm and the operation of the col-
lapsed Bennett layout.

7. CONCLUSION

This work reminds readers of the importance of reversible
computing for nanoscale architectures that aim to exploit
the speed and density potential of emerging devices. In or-
der to fully harness this potential, reversibility must be ex-
plicitly incorporated into designs. This paper introduces a
general floorplan to incorporate reversibility into any design
for one such high-performance device, quantum-dot cellular
automata.

8. REFERENCES

[1] C. Bennett. Logical reversibility of computation. /BM
J. Res. Develop., pages 525-532, November 1973.

2]

8]

[4]

[5]

C. Bennett. Time/space trade-offs for reversible
computation. SIAM Journal on Computing,
18(4):766-776, 1989.

S. Frost. Memory architecture for quantum-dot
cellular automata. Master’s thesis, University of Notre
Dame, March 2005.

S. E. Frost, A. F. Rodrigues, A. W. Janiszewski, R. T.
Rausch, and P. M. Kogge. Memory in motion: A
study of storage structures in qca. In 1st Workshop on
Non-Silicon Computation (NSC-1), held in
conjunction with 8th Int. Symp. on High Performance
Computer Architecture (HPCA-8), Boston, MS, Feb 3
2002.

S. Frost-Murphy, M. Ottavi, M. Frank, and

E. DeBenedictis. On the design of reversible qdca
systems. Technical Report SAND2006-5990, Sandia
National Laboratories, 2006.

(6]

(10]

R. Landauer. Irreversibility and heat generation in the
computing process. IBM Journal, pages 183-191, July
1961.

M. Niemier. Designing digital systems in quantum
cellular automata. Master’s thesis, University of Notre
Dame, April 2000.

M. Niemier. The Effects of a New Technology on the
Design, Organization, and Architectures on
Computing Systems. PhD thesis, University of Notre
Dame, September 2003.

T. Toffoli. Cellular Automata Mechanics. PhD thesis,
University of Michigan, 1977.

T. Toffoli. Reversible computing. Technical Report
MIT/LCS/TM-151, MIT, 1980.

