
CALT-68-867
DOE Research and
Development Report

Nearest Neighbor Concurrent Processor

E. Brooks. G. Fox. R. Gupta. O. Martin. S. Otto

Caltech High EJnergy Physics Group

E. DeBenedictis

Caltech Computer Science

ABSTRACT

We propose to build a concurrent processor based on an 4 by 4

by 4 array of microprocessors. These are arranged in a three

dimensional lattice with each processor connected to its nearest

neighbors. This architecture is optimized for numerical solution of

differential equations (as the finite difference form of a differential

only involves nearest neighbors) and to the many statistical

mechanics problems with short range forces. We intend to use it

to solve two and three dimensional quantum field theories using

the Feynman path integral formulation of the theories. We will also

investigate the generality of the architecture for other problems

because we will need huge arrays (up to one million concurrent

processors) to solve realistic four dimensional field theories. The

proposed array will have the computer power of about one halt a

Cray I or about 15 times that of a VAX11 1780 for problems that can

use this concurrent architecture.

September 1981

CALT-68-867
DOE Research and
Development Report

Nearest Neighbor Concurrent Processor

E. Brooks, G. Fox, R. Gupta, O. Martin, S. Otto

Caltech High FJnergy Physics Group

E. DeBenedictis

CaJ.tech Computer Science

ABSTRACT

We propose to build a concurrent processor based on an 4 by 4

by 4 array of microprocessors. These are arranged in a three

dimensional lattice with each processor connected to its nearest

neighbors. This architecture is optimized for numerical solution of

differential equations (as the finite difference form of a differential

only involves nearest neighbors) and to the many statistical

mechanics problems with short range forces. We intend to use it

to solve two and three dimensional quantum field theories using

the Feynman path integral formulation of the theories. We will also

investigate the generality of the architecture for other problems

because we will need huge arrays (up to one million concurrent

processors) to solve realistic four dimensional field theories. The

proposed array will have the computer power of about one half a

Cray I or about 15 times that of a VAX11 1780 for problems that can

use this concurrent architecture.

September 1981

1. Introdw:ti.on

Rece~ly there has been substantial progress in the understanding of quan

tum fteld theories usiD& numerical calculations in regions where the coupling is

large and so normal perturbation series methods are inapplicable [1-2]. Field

theories involve an infinite number of degrees of freedom labeled by a spacetime

vector % and some discrete index. For instance in QeD, % runs over four dimen

sional space while the discrete index (for the pure gauge theory with no quarks)

labels the elements of a 3 by 3 unitary matrix. As we describe in detail in the

next section, current results are encouraging but the present calculations are

far too limited to allow significant conclusions.

It is our understanding that the proper solution of this problem does NOT

involve giant (e.g. Cray) computers. These are not more cost effective than VAX

class machines: rather they otfer the possibility of doing in a week something

that would take a year on the VAX. Further the speed of very fast computers is

limited to something like a 100 times the VAX. In fact the correct method of

solution of quantum field theori-es (and no doubt many other problems) lies in

parallel (concurrent) processing. In the past parallel processing has not been

successful because one has not been able to design suitable general purpose

compilers to take advantage of the hardware architecture. However it is easy to

see that numerical algorithms for field theories have just the structure neces

sary to e.llow straightforward application of parallel processing. The first step is

to change the continuous label % to 'a discrete set by dividing space time into a

lattice. If each dimension is divided into N parts, we get Nfl sites for a problem

in d dimensions. For the real problem d = 4- but there is a lot of interesting phy

sics even in one space and one time dimension: d =2. It is worth noticing that

essentially no physically observable quantities (e.g. masses) have been

-2-

calculated in any field theory even for d = 2. Now we have to calculate multidi

mensional integrals of the form

Here 11 is the total number of variables =N"xL where L is number of indepen

dent degrees of freedom at each site.

WGTW is a positive weight function which contains the dynamics. In the

statistical physics analogy.

"GT(rpl.rp2. ... rpll)=e:rp(-H/ leT)

wbile in the quantum field theory case

where S is the action.

F1na11y. the choice of the function PHY(rpl." rpll) depends on the physical

observable of interest. For instance, for a theory with a mass gap. taking PHY

to be the correlation between the fields at ditrerent sites, the integral falls off

exponentially with distance between the sites. The mass gap of the theory is

then given by the rate of fall ott. There exists other choices of PHY to find the

mass spectrum. [5]

This multidimensional integral is solved by monte carlo techniques. Each

set of values of the integration variables is called a configuration. This involves

specifying a value for each of the M rp's. There are some clever but simple

methods for choosing the rp's distributed according to the weight function WGT

(Le. importance sampling). A sweep consists of updating all the variables on the

lattice once. If the rp's are chosen in this way, our integral becomes:

-3-

Average over configurations of PHY(l#l ... l#1I)

To get good answers one needs many sweeps; the current studies are too

limited to precisely estimate how many for realistic problems (see discussion in

Section 2) but at least a million sweeps are probably necessary for interesting

problems. One also needs N AI 100 (about 10 sites inside a particle and a world

whese total extent is also about 10 particles!), therefore the total number of

sites needed is very large. For QCD (Quantum Chromodynamics. the gauge

theory of quarks and gluons) in four dimensions we have. say. 109 variables (for

the product of LxNfl) The generation of a configuration according to the impor

tance sampling algorithm. is an iterative technique which uses the previous

configuration (ie. the previous point in M dimensional 9'-space). This technique

calculates a new value of rp at each site solely based on the values of the nearest

neighbor fields. This is the critical feature of the algorithm. but it is very general

as its validity only depends on the interaction being local; something for which

there is a lot of theoretical prejudice and experimental evidence. The calcula

tion of the new field value at a·site might involve 100 -> 1000 computer instruc

tions and so total number of operations required to solve QeD is around

lae(#swf!eps)xl0'(luariables)x1000(#operationsl site). On a VAX an operation

takes about 3jJ.S and so we need about lCC' years to solve our problem. However,

the fact that you only need to know about nearest neighbors implies that a very

simple concurrent processing algorithm is possible. Taking the simplest case,

we imagine a computer at each site to perform the updating. We have Nfl com

puters With nearest neighbor connections.

-4-

"-"-------------
"-------._._---.

In the above. "." and "I" denote connecting lines and computers. The usual

periodic boundary conditions imply that the computers at opposing ends are

also connected to each other. It is the clear that the above architecture can be

easily implemented; each computer needs just to be able to run programs

accessing its own memory and at the end of each cycle. transfer its new site

value to its neighbors. There is no problem in the concurrent algorithm and one

can gain a factor of tyfI! In practice the -'s above will represent computers each

holding a block of B neighboring sites (e.g. 2x2x2x2 cube of values for B = 8

etc.). For QCD one can imagine 10:5 (108) computers each with 1000 (100) sites

costing perhaps S10 million. AS'this is comparable in cost to a single experiment

in high energy physics. it seems likely that the physics community would con·

sider this a good investment it one could show there was a good chance of solv

ing QCD. The above estimates suggest that the factor of ~10e improvement over

a normal sequential computer provides a possibility of solving QCD. At the

moment we do not know enough about simpler systems to know if this conclu

sion is optimistic. In the above diagram. one can choose - either to be a special

ized chip or a general purpose microprocessor. To refine our techniques we

need to investigate a variety of theories and ditferent choices of PHY. Thus it is

appropriate to use a general purpose microprocessor in the first system.

-5-

We propose an initial system of 64 computers arranged as a 4 by 4 by 4

three dimensional array. This can also be viewed as a 8 by 8 two dimensional

array-in each case with connections appropriate for periodic boundary condi

tions. This will be interfaced to the unibus of a PDP-ll or VAX which will initiate

our machine and accumulate results. Programs tor the computers will be writ

ten in C. compiled on the High Energy Physics PDP-ll 145 and down loaded into

the microcomputers. With this system. we will have the power ot about 15 VAXs

for about one third the cost of a single VAXJ

We can use this system not just to learn about the concurrent architecture

but also to solve many physics problems. As described in section 2. we should

be able to solve all two dimensional theories and make a start on the important

three dimensional case. In particular we want to look at the SU(2) gauge theory

in d = 3 dimensions.

If we are successful. the next step would be about a 1000 (say 8 by 6 by 16)

component system which should be able to solve most three dimensional

theories and make a stab at the four dimensional case. After this we may know

enough to see if the grandiose million unit machine mentioned above is war

ranted.

Section 2 discusses the details of the application of our proposed machine

to quantum field theories while section 3 describes the hardware and its cost.

Section 4 discusses other possible applications of this parallel architecture. In

the first appendix we evaluate our proposal trom a computer science point ot

view; comparing the architecture with other possible designs and estimating the

efficiency of our proposal. This turns out to be very high tor problems related to

ditferential equations. In appendices 2 and 3 we show that our design will in fact

also be very useful for matrix problems and discuss a theoretical quantum

mechanics application involving matrices which we intend to test on our system.

-7-

obeys the ccntinuum renormalization group. Bhanot and Rebbi [4] have gone

further and have estimated the mass of the glueball of this model via the fall off

of plaquette-plaquette correlations.

Though the above results are encouraging in the sense that they show that

lattice calculations are capable of giving quantitative results for physically

interesting quantities, so tar the results are crude. In the case of the glueball

mass, for example, we believe the difficulty of the problem has been underes

timated. The method used by Bhanot and Rebbi is unreliable and a correct esti

mate of the glueball mass requires much more statistics (i.e. sweeps) than they

took in their calculation [5].

2.3. Physics Accessible with the NNCP

2.3.1. 2-D lIodels

To see how difficult an estimate of something like a glueball mass is. we

have tlrst studied simpler 2-0 field theories which can be done on a VAX via

Monte Carlo methods. The Oen) models are of particular interest. The 0(2)

model (n=2, Le. planar spins interacting with nearest neighbors), has a non zero

mass gap which we have measured via correlation falloff and variational methods

[5]. We are also interested in the continuum limit of this model - that gotten by

approaching a critical point of the model. Kosterlitz and Thouless [6] predict

that the mass gap goes as

m .- Cezp(-bl (T-Tc)1

where Tc is the critical temperature. b and v are predicted by continuum

theory. We determine the mass gap for a range of T near Tc:, T> Tc:. and see if

the lattice mass gap obeys the continuum form. If so, we can then extrapolate

-8-

to the continuum limit using the analytical expression above to get the physical

mass. This is the analogue of renormalization group behavior in QCD. In deter

mining the exact value of C. the main source of error will be due to finite Monte

Carlo statistics.

For the 0(2) model, Tc turns out to be ~.9. Let us give an estimate of the

run time needed to determine the mass gap at T =~1.0, where the correlation

length of the lattice is approximately 10 lattice spacings. For correlation length

of 10, we need to work on a lattice of size 50x50 or more. Smaller lattices give

rise to systematic errors which are too large if good accuracy is needed. The

Monte Carlo algorithm generates field configurations which are very correlated

from one sweep to the next. 'Ibis means that the etIective number of field

configurations our algorithm generates is much less than the naive number.

From our studies of this model on our VAX we have measured this "speed of

travel through phase space." At this value of the correlation length we estimate

that one has 1 "useful" sweep per 300 sweeps generated To determine the mass

gap m. to an accuracy of 6m./m.~.05 we need to generate ~100.00 sweeps. On

the VAX this would take 2x10:5 sec or 60 cpu hours. For the 8x8 array of proces

sors this determination of the mass gap near the continuum region to 5~ accu

racy would take 4- hours. This needs to be done for several values of T and one

would probably need 1~ accuracy for good estimates of the T dependence.

In conclusion. for 2 dimensional field theories of compl~xity similar to 0(2).

we estimate that it Will indeed be possible to study the mass spectrum with the

NNCP. A preliminary (5";) study will take 2 days; 1"; accuracy a few months!

: . c

-9-

2.3.2. 3D models : Gluebal1 iOn IIDd Spin for SU(2)

~ an example of an interesting model in higher dimensions which we can

nudy With the NNCP we w1l1 discuss pure caUie SU(2} in 3D. 'Ibis theory is

thoU&bt to possess the same qualitative features as SU(3} in 4D. that is.

confinement. and the existence of a mass gap. Although it has the same qualita

tive features as the real theory. it is much more tractable for Monte Carlo stu

dies and much can be learned from it. 'We would like to calculate the mass of

the glueball te. the lowest bound state of Clue for the pure gauge theory. It is

also possible to determine the spin of this lowest excitation. This is done in the

following way. Instead of just ~d.il:1g the 2-pt correlation function of the sim

plest operator - the average plaquette. one can ODd the 2-pt correlation for

operators which transform non-trivially under the discrete rota~ionalsymmetry

of the lattice. An example of such an operator is shawn below.

4

1

-10·

3

2

The operator is gotten by adding the 4 plaquettes with relative phases:

pLczq (1) + .(trJ''plaq (2) + .2iw/Zplaq (3) + .~trJ'~ (4). This operator only cou

ples to states of specific spins. For the above case, the spins selected are:

1.5.9.... Since the mass of the spin 1 excitation is almost certainly much lower

than that of the spin 5 excitation. flnding a mass using this operator will. give the

mass of the lowest spin 1 excitation. Doing this for various operators gives us

the masses of the lowest bound states of pen spin.

We now estimate the cpu time needed to make an initial stab at this calcu

lation. Suppose that a correlation length of 5 lattice sites is a reasonable

approximation to continuum physics. and further that a 16x16x16 lattice (~3

correlation lengths) is large enough. To calculate the mass gap to an accuracy

of IIlIl~. we need at least 100 sweeps. This number comes from some

.,

-11-

preliminary studies on our VAX. The time per gauge link update is 2.4 msec for

our al&ortthm. 10-ps on a 1SS lattice therefore implies 700 cpu beurs =1

DJDDth on a VAX). The NNCP would reduce this to the reasonable run time of 2

days for .ach value of the coupling. Again we would need to Ond the dependence

of the mass gap on the coupUng constant.

The lattice size mentioned above is rather small:on.e needs to store 48 bytes

per s1te(see appendix 1) and the proposed machine(see section 3) allows 11I:I1000

sites to be stored in each processor.So we can investigate dnite size effects with

a 48x48X48 lattice although the running time would be prohibittve for a com

plete study With this lattice. However 'We believe that we can make an important

iDWal study of these physics problems With the first NNCP proposed here. 'lb.e

Dext step (-1000 .concurrent processors) should enable a complete study of this

theory.

2.3.3. Ferm10as

One is ultimately interested in theories involving dynamical fermions.

Several algorithms exist for lreatini termions on the lattice [7-10]. These algo

rithms necessitate much more cpu time than tor the case of bosonic ftelds

but in several cases parallel processing is possible. We plan to implement such a

fermion algorithm tor 2 dimensional theories which allOlfS one to gain a tactor

equal to the number of processors. Two particularly interesting models are the

SchwiIlger model (fermions coupled to photons) and the Gross-Neveu model

(massless fermions coupled via quartic interactions). 'lb.e Schwinger model With

massless fermions is exacUy soluble; this gives us an opportunity to study

d11!erent lattice techniques and see bew 'Well they rep~duce exact results. The

Gross-Neveu model is known to contain dynamical mass generation. It 'Would be

at interest to study the bound states.

-12 -

3. Technical P'eab1re8 01 the Ccmprttng Array

The drst. prototype of the computing array will consist of 64 processing

units arranged in a 4X4x4 &!Tay.. Each processor will have the capability of

asynchronous communication with both the host computer and its nearest

neighbors. Communication between individual processors is kept asynchronous

to prevent timing problems that would occur as the physical size of the system

becomes large in future computiDg arrays. The processors on the edie of the

array are connected to processors on the opposite side. (periodic boundary con

ditions)

The connections between processors are implemented in the torm. ot two

ane-way mail boxes as opposed to a bidirectional data port. When a processor

Wishes to send a value to its neighbor it puts the value in the mail box and sets

the dag. The receiViDg processor. which is nmning a program that requires the

value removes it from the mailbox and resets the t1ag so that the sending pro

cessor may send a new value. Calculations that need communication ot values

between the processors run in two (possibly overlapped) phases. The first is

when the processors are sending values to (and receiving values trom) their

neighbors. The second phase is when an individual processor has all ot the infor

mation it needs to update its internal variables. The overlapping of these two

phases of the computation is possible if the I/O through the ports connecting

the processors is handled with interrupts as opposed to polling the tIags on the

ports.

Now that the leneral features of the architecture ot the computing array

have been discussed a description ot the detailed characteristics of the indivi

dual processing unit is in order. The microprocessor that we intend to use in

our tlrst 4x4x4 prototype is Inlel's 1APX86/20 two chip microcomputer. This

microprocessor consi.sts ot the 8088-CPU. a leneral purpose 16 bit

- 13-

microprocessor and the 8087 NPU coprocessor. The 8087-NPU adds 32, 64 and

80 bit ftoati.Dg point data types to the data types supported by the 8086-CPU. It

also adds SIN, COS. EXP, LOG and SQRT along with +, -, • and / to the 8086

instruction set. The iAPX86/20 operated at 10 mb2 is estimated to have approxi

mately 1/4 -> 1/5 the power of the VAX in normal operations that are memory

intensive. In applications that could take advantage of the 8 register stack in

the 8087 the machine would be faster yet. A 64 element array of these units will

have the computi.Dg power of approximately 15 VAX:es. The basic processor will

have 12Bk bytes of programmable memory 1) (dynamic ram lmplemented in 64k

or 16k by 1 bit chips) and 4k bytes of read only memory (EPROM). The read only

memory will be used to house the monitor for the processor. See Fig. 1 of a

block diagram for the individual processing unit. The arrows over the ports indi-

cate the six nearest neighbor connections.

8086
CPU

80B7
NDP

Fig. 1

~ Lf K
,. RoM

12BK
RAM

The following table gives an approximate breakdown of the parts required to

build the individual processing unit along with cost estimates. These costs are

d M shown in 8ection 2 and appendiz 2,this size memory is well matched to the BOB6 CPU
power to allow a good initial study of three dimensional gauge theories.

.1>

-14-

reasonably &om except for that of 8087-NPU which is not yet available in quan

tity. 'Ibe construction costs are based an use of the Hi&h EnerU Physics Shop.

However we may well use an outside ftrm to massproduce the boards once the

prototype has been built and tested.

lreq. item cost each extension

CPU
1 8284 clock generator 5.00 5.00
1 8086 cpu 80.00 80.00
1 8087 npu 200.00 200.00
1 8268 bus controller 20.00 20.00
3 8283 address latch 8.00 18.00
2 8287 data bus driver 8.00 12.00

KEMORY
1 8286 transceiver 8.00 8.00
1 8205 decoder 3.00 3.00
4 8287 transceiver 8.00 24.00
2 8283 data latch 8.00 12.00

84 2118 18k ram chip 2.00 128.00
2 2716 2k·S eprom 6.00 12.00

I/O
16 8212 i/o DOrt + decod.in-'l 2.00 32.00

'Printed circuit board. connectors 100.00 100.00
construction 240.00 240.00
TOTAl tor one nrocessor 872.00
TOTAL for 84 units 156.000

The software interface to the host computer will be accomplished b-y cross

compiling in C and down loadin& to the processing array. Bell Labs has a C com

piler for the 8086 that. will be our starting point. This cross compiler is expected

to b-e available for 12.500. One must also consider the cost of the mother board

and the controlli.Dg computer. "e estimate that the mother board, power sup

plies and interconnecting cables should cost 12.500, the intermediary control

ling computer (another 8086 with perhaps more memory) another 12,000.

F1nally the cost of the interface to the VAX unibus is 12,000. These

- 15-

considerations bring the total hardware (+C compiler) cost of our processing

array to 165,000.

As the BOB7-NPU will nol be available for perhaps a few months we intend to

initially implement the tioating instructions with software emulation that runs at

about 1/100 the speed of the 8086-8087 combination. During this time we will be

generating the software interface to the host which will either be the V/V{ 11/780

or the 11/45. By the time the 8087-NPU is available at a low price (perhaps at a

price considerably better than the S200 estimate) we will be able to plug it in

and remove the software emulator. This will have us up and runnjng at a speed

comparable to 15 V/V{'es. With 128k bytes of ram on each processor we will have

8 megabytes of memory at our disposal in the system.. Currently we are optimis

ing the design described above. It seems best to implement the communication

between processors with FIFO's rather than the 8212 of the first design. How

ever this makes no no signiticant ditIerence to the cost and as our problems are

not 110 dominated the performance of machine is not materially atfected by

changes in this area.

4. Other uses r:A. the NNCP

Although the current system can be justified for its effectiveness in lattice

field theory computations alone. in order to justify building of larger machines

in the future the array processor must have other applications. We would like to

point out the fact that the proposed architecture is ideal for many problems in

physics and engineering. The nearest neighbor connection arrangement can be

used to advantage in solving'any ditIerential equation that can be reduced to a

finite ditrerence system. As discussed in appendices 2 and 3. one of us (E.

Brooks) also intends to investigate using the architecture

to attack the eigenvalue problem for large sparse matrices. Matrices of this

- 16-

sort occur in the matrix approach to Quantum Field Theory as well as many

other branches of physics and engineering. The 4x4x4 computing array will be

useful to any operating system which supports piped processes even after its

use in physics calculations has become outmoded due to its "small" size. A pipe

of N processes can be set up in the array by using the I/O ports connecting N

processors in the array. In this way many CPU consuming tasks can be off

loaded into the array by the host. This will reduce the overall system loading in

the host reserving it to perform I/O functions to the disks and doing compiling,

As the computing array can be used in this general purpose manner its useful

lifetime will greatly exceed the relatively short lifetime (a tew years) that it will

have in theoretical physics calculations.

It should be emphasized that the importance of designing concurrent algo

rithms is not generally recognized in the physics community. We expect to try

to see if there are better fermion algorithms optimized for concurrent process

ing. More generally the success of our machine may encourage scientists in

other fields to reformulate their problems for concurrent machines. Problems

requiring the solution of systems of coupled partial differential equations (fiuid

dynamics,weathe'r prediction,geological survey gravity. plasmas....) are amen

able to parallel processing since the equations are local. The processors are

placed on a spatial grid and as in our application. they each hold a block of

neighboring variables. Then each operation of the NNCP will evolve the system

forward in time. Taking gravity as an example. Larry Smarr's calculations of

such things as gravitational waves emitted from the collision of two black holes

are presently being limited by the huge amounts of cpu time needed to step the

non-linear equations of gravity forward in time. Since these calculations are

fl1ready taxing the Cray-1 at Livermore. we feel that further progress in this area

may also lie in concurrent processing.

- 17-

5. References

[1] K. Wilson. Cargese LectW'e Notes (1979)

[2] M. Creutz. Phys. Rev. D 21. 2308 (1980)

[3] M. Creutz. Phys. Rev. Let. 45. 313 (1980)

[4] G. Bhanot. C. Rebbi. Nucl. Phys. B1BO [FS2] 4S9 (1981)

[5] G. Fox. R. Gupta. O. Martin. S. Otto. "Monte Carlo Estimates ot the Mass Gap

of the 0(2) and 0(3) Spin Models in 1+1 Dimensions", Caltech preprint

CALT-S8-8SS(1981).

[S] J. Kosterlitz. D. Thouless. J. Phys. C.:Solid State Phys., S, 1181 (1973)

[7] F. Fucito. E. MariDari. G. Parisi, C. Rebbi. Nucl. Phys. B180[FS2] 3S9 (1981)

[8] D. Weingarten. D. Petcher. Indiana University Preprint

[9] A. Duncan. M. Furman. Columbia University Preprint

[10] H. Hamber, Phys. Rev. D 24.951 (1981)

[11] E.Brooks and S.Frautschi,"Scalars Coupled To Fermions in 0+1 Dimensions",

Caltech Preprint (1982).

- 18-

Appendix 1: Computer Science Issues Relennt to the Nearest Neigbbcx- Con

current Processor Proposal

A History of~arProjects

A generalization can be drawn from a historical analysis of concurrent mul-

tiprocessor networks: the potential performance of the machine is propor-

tional to the number of processors. and the fraction of that performance

realized is related to the clarity of the algorithm programmed on the machine.

The impressive projects are those with many processors with an extremely well

understood algorithm. Unfortunately. many of these projects were less than

successful. but most succeeded in implementing algorithms like those proposed

here.

Two highly publicized multiprocessor projects have been undertaken at

CMU. C.mmp and CM·. C.mmp was a 16 processor network consisting of

PDP-lls. and CM· is an open-ended star connection. currently with 50 pro-

cessors. Both projects involved programming various algorithms on the respec

tive multiprocessors. In both cases numerical analysis problems were success-

fully implemented on the networks. but more ambitious problems such as distri

buted operatirig systems were less successful.

Alain Martin (Philips. Eindhoven. the Netherlands) implemented a 36-

processor grid folded back in two dimensions to form an interconnection called

a tlristed torus. His work addresses very well the problem of distributing

computations IlCross an ensemble in such a way that each processor may

have many concurrent processes eligible for execution. and the load is kept rea-

sonably well balanced.

Browning 2) described programming a tree connected ensemble. The

., BrowuinI. Sally, "The Tree lIaahiDe: a HiIhly Ccrnc1zmmt Computing Em'ircmment",
PhD thai.. Caltec:h Computer Science. 1mmary. 1980.

- 19-

variety of problems that were addressed included solution ot np-complete

graph problems. sorting. and vector and matrix operations. The number ot con-

current processors was extremely large - a million processors was typical in

her thesis.

H. T. Kung 3) at CMU has studied algorithms and corresponding communi-

cation structures for pipelined computational arrays that he refers to as sys

tolic arrays. Similar work in this style. generalized to asynchronous data flow

and using more stable and advanced numerical methods has been done by S. Y.

Kung 4) and Lennart Johnsson~)

Illiac IV was the most famous machine ot this genera, but is distinguished

trom those described above by only having one instruction stream. The single

instruction stream introduced so many problems in programming and communi-

cation that is it no longer technologically appropriate.

This proposal is for the construction ot a machine similar in many ways to

those described above, and will use well understood algorithms. The present

proposal, while being tor a modest 64 processors, can be viewed as a feasibility

study for a machine with a million processors. The algorithms that are expected

to be implemented on these processors are all of the numerical type: PDEs and

matrix operations.

3S Section entitled "Alaarithms for VLSI ProcelllOr' krrayfl', in lIead and Ccn~y, "Intro
~uction to VLSI Systems", Addi.90~Wesley. 1980.

Uni?er.Sity of Southern California.
&) Caltech Computer Science Depa:rtment. •

- 20-

'Ihe Performance of 811 Array Connected Network for Nearest Neighbor Pro~

!ems

The performance of concurrent processors can be evaluated in a variety of

ways, such as fractional utilization of tloating point capacity. or simply as a

cost/performance ratio. The present proposal is for 64 concurrent processors,

each with a significant amount of CPU capacity. It is easily seen that the poten

tial doating point capacity is very great, and the cost is very small. It remains

to be shown that this doating point capacity can be efficiently used.

The major use of this concurrent processor is expected' to be solving

ditlerential equations on a uniform. rectangular lattice. The lattice will be

represented by an array of values. with each processor representing many

points of the lattice. There should be no argument that the lattice values in

each processor should all be adjacent. to mjnimize communication between pro

cessors. 5)

Within each processor there is only one impediment to continuous tioatiDg

point operation. the necessity to communicate nearest neighbor lattice values

between processors. We must develop a quantitative idea of the fraction of time

that will be spent on this communication at the exclusion of numerical calcula-

tion.

Consider a two-dimensional lattice problem being solved on the proposed 64

processor machine. The entire lattice will consist of more than 64 points. say m

points. In this case each processor will contain the lattice values for m/64

points. The iteration cycle for each processor will. consist of communicating

values for all boundry points to and from other processors and evaluating the

iteration function m/64 times. If the processor represents a square array of

i) Far aample. if the entire problem were a ~dimeDSiona1 lIqWIl'e. the processars should
dmde the em.ire problem iDto mWler~

- 21 -

m/64 points then the number of points along the edge is 7) "'(m./ 64). This is

exacUy the number of lattice values that must be transmitted along each com-

munication pathway to an adjacent processor. Since the number of communi

cated values is related to the square-root 8) of the number of processing steps.

As the size of each processor increases the ratio of processing steps to com-

munications steps increases.

APerformance Example

Consider the proposed machine solving the physically releve.nt problem of

SU(2) lattice gauge theory in three dimensions. Each lattice site contains three

2X2 unitary matrices which in turn can be represented as 4 real numbers each

"e therefore have 12 real numbers per lattice site. The iterative step consists of

replacing each matrix by an updated matrix. where this ne~ matrix depends on

12 neighboring matrices (Le. they are interacting through plaquettes), Since

this is a three dimensional problem being implemented on a two dtmensional

array some mismatch lfill necessarily occur. We choose to tlatten the space

along one dimension into a two 'dimensional problem.

The proposed processors will each have 12Bk bytes of memory. Assume

that about lOOk of this is available for storing lattice points. Since we will

represent each real number as 4 bytes and there are 12 numbers per point.

each lattice point will require 48 bytes. Each processor will have a storage capa-

city 01 a litUe more than 2000 lattice points.

The entire problem can then be a 48x48X48 array of lattice points. Each

processor would contain a 6x6x4S slice of the total 'solid. Of the 12Bk bytes in

'" fcnorini the four corner points.
I) In ceneral. for k-dimensions the number of communicated values varies ISS the (k-t)/k
power.

- 22-

each processor, 82944 will be used.

Assume that the time to transfer one matrix to an adjacent processor is 160

JAB. 9) NoW' consider points on the surface of the 6x6x48 slice of the total solid.

To update the matrices associated with these points requires. on the average.

the communication of 6 matrices per lattice point. The number of points on the

surface is 4x6x48 and so the time to transfer these values will be about 1.1 sec .

The computation performed on each lattice point consists of 528 multiplica

tions and 430 additions. Assume 20 JJS average for operand setup and a multiply

or addition and the computation time per lattice point is 19 mse.c. This time is

about three times slower than that on a VAX (comillg from actual tiIiungs of this

program. on a VAX). 90 the 19 msec estimate is at least roughly correct. Total

update time for the entire array is 34 seconds.

Summarizing, the machine will be able to preform an iteration on a

48x4Bx48 array of 2x2 matrices in approximately 34 seconds. The 34 seconds

will be all computation except for 1.1 sec of interprocessor communication. In

this example the fractional Boating point utilization is about 97~.

t.place's Equation

The previous example yielded attractive results due to the large amount of

time required to manipulate matricies with complex entries. and the number of

lattice points in each processor. We will consider another nearest neighbor

problem where the emciency will not be aided in this way: solving Laplace's

equation on a small square lattice of 8x8 points. Each lattice point consists of a

single real number, or 4 bytes.

il 10 JJ.s to service a port for cme byte times 18 bytes per matri:J:.

- 23-

The time to transfer one lattice point to an adjacent processor is 160~ 10)

The number of lattice points to transfer is 1, or the total time will be 160~ per

iteration.

Each iteration consists of replacing each lattice point with a simply

'Weighted average of its four neighbors. The weights are 1,1.1.1, and 4, and hence

do not require any real multiplications. The updating can be done with 6 ftoating

additions. Again assuming 20 jJS for an operation we t1nd an iteration will take

120~. CPU utilization is now under 50~.

Fifty percent utilization of a processor, although somewhat wasteful is

better than average for multiprocessor programs. Of course in any practical

problem(whose size 'Would warrant use of the NNCP) one would have several sites

per processor and much greater efficiency.

Other Potential Architectures

Why was an array network chosen over other networks such as a tree. a bus.

a hypercube 11) , or a simple VNM 12) ? We will briefty discuss each of these

architectures.

A tree network is less expensive and well suited to this sort of computation,

but is not as good as an array. A tree is less expensive because each processor

bas, on the average. two connections to other processors 13) The organization of

the tree causes a bottleneck at the root, however.

This etfect of this bottleneck can be analyzed by calculating the number of

values that must be transmitted through the root node. Recall that an array

10) 10 uS to lIervice each port for one byte, "poN, " bytes per lattice point..
U) See appendix :5 for Ii d1scuaian at the c1C*l relaticmship between the Hybercube and
NNep architectures.
12) Van Neuman machine, or canveIItionaJ computer.
IS) Leaf processon have one cazmecticm, all others haye three.

- 24-

processor must transmit lattice values for all lattice points on the boundary of

its area. This number was the square root of the number of points in that par

ticular array element. The root processor has similar behavior: the root node

must transfer all boundary points of its left subtree to its right subtree. and

vice vena. Again, the number of lattice points is the square root of the number

of lattice points in the subtree. Unlike the array. however the size of a subtree

is half the size of the entire problem. . not 1I 64th or an amount determined by

the number of nodes in the tree.

The number of values transmitted through the root node of an equivalantly

sized tree network 'Would be about B times as large as between elements of an

array. 'Ibis would increase the communications overhead to an intolerably large

amount in some cases.

A bus connected network is even worse. In a bus connected architecture all

the values transmitted on the array network are transmitted. but on the same

bus. The resulting traffic on that bus would be 6x64 times as large as on any of

the array connections.

Other networks are known. but less well understood. Hypercubes have the

advantage of offering a maximum interconnection distance between processors

of log n. n the number of processors. While this is attractive for some problems.

it is not well understood for nearest neighbor problems. (The maximal inter

connection distance in the array processor. for nearest neighbor problems. is

1.)

An array network appears to be near optimal for these sorts of problems.

Each element of the array has a processing unit that is used at close to 10070

etficiency, as is the processing unit of a VNM. The total amount of memory in

the entire array is about the same as that in a VNM solving the same sized prob

lem.

- 25-

Appendix 2: Application 01. the NNCP to Quantum lIechanics

Vlrtually every tleld of physical science has applications of quantum

mechanics. Among these fields are atomic and nuclear physics, chemistry,

quantum electronics. and recently even experimental gravitation. Of course we

can't forget the theory that is considered (at least by field theorists) to be the

root of all of this. quantum tleld theory.

The basic program in solVing problems in quantum mechanics can be

reduced to tlnding the eigenvalues and eigenvectors of a hermitian operator (the

hamiltonian) that is dictated by the physics. [11] The energies of bound states

are given by eigenvalues of the "discrete" part of the eigenspectrum of R.

Scattering amplitudes are calculated from the eigenvalues and eigenvectors of

the "continuous" part of the eigenspectrum of H. In many cases a particular

problem can be adequately solved by the combination of analytical solution and

perturbation methods but it seems that some quantum systems are resistant to .

solution by any method but numerical calculation. Any doubts of the utility of

numerical solution of quantum systems can be immediately dispelled by the

success of the worlds drst digital computers in Hartree Fock calculations of the

spectrum of many electron atoms.

The basic problem blocking the progress of digital calculations is that the

size of the matrices that one wants to diagonalize in quantum systems of

current interest have become much too large for our digital computers to

tackle. 'Ibis is particularly exempl.i.tled by the size of matrices that occur in

investigations of quantum. field theory on the lattice. The matrices grow like QP

where Q is the number of possible configurations of quantum numbers on a par

ticular lattice point and P is the total number of lattice points. As one can see

the size of the matrices involved grow exponentially with the accuracy of the

approximation. It is quite obvious that current digital computer technology will

- 26-

never be able to proceed too far with matrix sizes that grow in this manner and

that the only possibility for success is to have computers that solve the prob

lems in a way that can use parallel processing. In tbis way one can build a large

computer that can solve the large problem in a ftnite amount of time. We will

shoW' that the NNCP structure will provide very high performance for attacking

problems of this type.

Numerical solution of a quantum mechanical system consists of three steps.

These are: tmding a tinite set of basis vectors that will adequately span the

eigenvectors of the hamiltonian that one wants to diagonalize. calculation of the

matrix elements in the chosen basis, and then diagonalization of the resulting

finite dimensional matrix. The step of t\ndiog a finite set of basis vectors and

calculation of matrix elements of the hamiltonian operator is trivially done on

array of independent processors. The question of solving the matrix eigenvalue

problem on the NNCP must be examined in detail as this task will. require com

munication between processors. This examination will be carried out in the fol

lowing appendix and will lead to the conclusion that the NNCP architecture will

be very efficient for solving quantum systems numerically.

Appendix 3: The eigenYalue problem. on the NNCP

The previous appendix has indicated the importance of the matrix eigen

value problem. In this section we will show that the NNCP structure is well

suited for the solution of the eigenvalue problem by the power method. Solving

the matrix eigenvalue problem by the power method is achieved by repeatedly

multiplying a trial vector by the matrix that one wants to diagonalize. It the vec

tor is a mixture of the eigenvectors of the matrix the component of the eigen

vector with largest absolute eigenvalue will grow with a rate that is controlled by

the ratio of the largest absolute eigenvalue and the next to largest absolute

·27·

eigenvalue. The eigenvectors belonging to eigenvalues of lower absolute magni

tude can be obtained by removing the component of the eigenvector already

found (this is called purification) and iterating this process of multiplication and

purification. Using this procedure one can find all of the eigenvectors and eigen

values of a matrix to any desired accuracy. The computer operations needed

are multiplication of a matrix and a vector. the vector dot product and vector

arithmetic.

Below is a table of the number of time units required for the serial com

puter to do these tasks. The dimension of the vector space is denoted by M, and

a "time unit" is defined as the basic combination of multiplies, adds, fetches and

stores that must be iterated sequentially in time in order to accomplish the cal

culation. This basic time unit will be ditrerent for the various vector operations

we wish to perform but what we wish to use as a source of comparison is the rate

at which the number of time units required for an operation grows as we change

M the dimension of the vector space. Indeed certain array processors pipeline

these operations in such a way as that a time unit is always one machine clock

cycle. We will show in this section that the NNep is well suited for matrix and

vector operations that would be used to solve the matrix eigenvalue problem.

- 28-

l4ATRIX OPERATION

A,;=B. c.l
li=~Xi

~=.AuXs sparse matrix

Au=cBv

li=c~

c=~X\

z.=~+~

TIME UNITS FOR COMPLETION

Jl9

Jl2

Mrn

M2

M

Jl

M

(771 is the average number of nonzero entries per row)

AB can be seen from the above table all of the operations require some

power of Mto complete. Since serial computers are not likely to achieve speeds

that are much greater than the Cray. time limits put a definite limit on the

dimensions of vector spaces that we can work in. These limits are currently of

order las to 10° depending on matrix sparseness. The ability to extend the size

of the matrices that we can diagonalize on a computer will be necessary to pro

gress in solVing quantum systems using the matrix approach. It is quite evident

that serial computers are doomed to failure as far as applications of the matrix

formalism to quantum field theory is concerned. This is due to the fact that the

dimensions of the matrices involved grow exponentially with the accuracy of the

approximation. The NNCP structure is well suited to those matrix operations

that are used in solving the eigenvalue problem by the power method. and in

fact is very etrective on the type of matrices that occur in field theory.

..

- 29-

The feature of the eigenvalue problem that makes the NNCP usetul in the

solution of the eigenvalue problem is the fact that the vector operations that are

performed are repeated iteratively in the algorithm using the same matrix and

the same set of vectors. Because of this the data can be kept distributed

throughout the memory of the NNCP and the algorithms used allow all ot the

processors in the array to be operating on various parts ot the data at the same

time. The NNCP will be etricient in any problem that can keep the data distri

buted through its memory, and any problem that would need the host to

transmit a huge amount of data to and from the NNCP would find that the

bottleneck between the NNCP and the host would dOminate the time required to

do the computation.

The previous table indicates the pertormance of a serial computer at these

tasks. and we now consider the pOSSible algorithms that can be used on the

NNCP to complete these computations and their relative performance. Consider

~st the case of vector arithmetic. i.e. adding vectors to vectors and multiplying

vectors by scalars. Suppose we have a computing array with the number of

interconnected processors N -equal to the dimension of our vector space M.

Then the emcient method of storage is to store the i·th element of each vector

we wish to have in the machine in the memory of the i'th processor. The scalars

would be stored in the host that can communicate with all of the processors in

the NNCP at the same time. Since each processor in the array may add two vec

tor elements independent of the of the other processors the number of time

units for a vector arithmetic operation is always 1 if the array size is kept the

same as the dimension of the space. If the number of processors in the array N

is smaller than the dimension of the space M the number of time units for a vec-

tor arithmetic operation is ~ (one stores ~ elements of each vector in each

processor). The improvement over the serial computer in this case is equal to

- 30-

the number of processors in the NNCP. The efficiency of processor use in the

NNCP is high.

Consider now the performance of the NNCP with a low cost addition in wir-
.

ing for doing the vector dot product. We already have the restriction that each

vector is distributed in the memory of the NNCP in order to do vector arith-

metic. Therefore in order to do a dot product the host commands each proces-

sor in the array to multiply their element of the two vectors and then the sum

over the array of the products must be evaluated. Consider the algorithm for

evaluating the sum on a 4x4x4 subcube of processors depicted in the diagrams

below. An arrow indicates passing a value to a neighboring processor, a plus sign

indicates the processor adding the passed value to its internal one.

T=l T=2

- 31 -

T=3 T=4

And finally along the third dimension.

T=5 T=6

AB one can easily see we have implemented the binary tree sum in the 4x4x4

14) computing array. In order to get this binary tree sum to continue we only

need to add interconnections to the nearest neighbor configuration in such a

way that we can build a 4x4x4 block ot 4X4x4 blocks and so on. This can be done

14) Note that in appendi% S we point out that this subcube is isomorphic to a K=6 hypercube
which is well known to allow such lOCarithmic algorithms.

- 32-

by adding an extra set of ports to one out of 64 processors in the NNCP(and then

adding and extra set of ports to one out of every 64 of the processors that we

just added an extra set to etc.). This incurs an extra cost that amounts to less

than one percent of the total cost of the NNCP. It's essentially free. With the

binary tree sum option added to the NNCP the number of time units needed to

do a sum over the array is log2(N). If again we have N <M processors in the

(NNCP+binary tree sum option) the number of time units to do a dot product is

~ + 10g2(N). A performance increase that is proportional to the number of pro

cessors is achieved. The only time that processor efficiency falls significantly

below 100% is when one is on the tail of the binary tree sum. This loss of

efficiency is a low price to pay for the log2(N) elapsed time for doing dot pro

ducts. The only operation left to consider is the matrix vector product.

We consider first the matrix vector 'product Y;.=H\jXj where M is a full

. matrix (that is all the matrix elements are nonzero). The dimension of the

space is M and assume for the moment that we have N =M processors in our

NNCP. As we are already forced to dedicate one processor to each element of

any vectors. a reasonable way to store the matrix is to put the i'th row of a

matrix in the processor that holds the i'th vector element. The storage scheme

is depicted for the case of M=N=16 in the square array in the diagram below.

The arrows on the connections show the direction of data tlow in the "Bucket Bri

gade" algorithm that will be described below.

- 33-

,
MI~ M tJ MJ~ M..;.. - r0-Y, .x, ~Xl '() Xl y.. X4

•
M'i

~
M'J M,j

"" Ii
Y, X, V, X1

r0-
Y, ~, - y{ ~S

t

M,~ .. ft.. ~ - "'j MIlJ

Y,)(, '(. X.. Y. ~
~

Y.. XI',
M.a.;

~
~ISi M",; M~j

'(IS XIS "(~ ~
r-

Y. "-
..

'(~ X~
f

The operation ~=H;.;Xi is accomplished by circulating the elements of X

around the NNep array in the directions shown by the arrows on the connections

in the above diagram. At each shift each processor multiplies the newly arrived

element of X by the appropriate element of H and sums to it's stationary ele

ment of Y that it had initialized to zero at the start of the computation. In this

way the vector Y is computed in M operations (16 for this case) and the vector X

is lett in its original storage position at the end of the calculation. For a case in

- 34-

which the dimension of the vector space M is larger than N the number of pro

cessors in the NNCP, M/ N rows of the matrix are stored in each processor. The

l'th row of the matrix is stored in the same processor as the i'th vector element.

The number of time units required to do the computation in this case is U; with

high processor utilization.

It is important to consider how well one can do with the product Y1. =HiJJC;

when H is a sparse matrix. It is usually the case that when the matrices one

wants to diagonalize get large they also get very sparse. An example is the

matrices that occur in field theoretic problems. Rememberi.ng that the serial

computer will do the sparse matrix-vector multiply in time units that grow like

JIm where M is the dimension of the space and m. is the average number of

nonzero elements on a row of the matrix we already know that the Bucket Bri-

gade algorithm can do the multiply m. times faster that a serial machine. But

this is for a M processor system and in a Mprocessor system each processor will

spend most of its time passing vector elements without multiplying and sum

ming. For very sparse matrices the emciency of this algorithm will be very poor

indeed.

The loss of efficiency for sparse matrices does not happen unless the

number of processors N is larger than the mean number m. of nonzero elements

M Mm.per row. Thus each processor stores N rows or a grand total of N" nonzero

matrix elements. The bucket brigade algorithm will be efficient as long as each

new vector element ~ passed to a processor is multiplied by at least one matrix

element. On average each processor has '; elements to be multiplied by each

new vector element arriving. Therefore we need ';; ~ 1 for the bucket brigade

algorithm to be satisfactory without any modification.

- 35-

In the case where m <<M the loss of efficiency is caused by the processors

having to shuttle along all N vector elements even though a particular processor

might not need a particular vector element due to the fact that the matching

matrix element is zero. In this case it is better to send the vector elements

along the shortest path to the processors that need them. This is accomplished

by sending the processor address along with the vector element so that each

processor on the path can check the address and push the vector element along

the shortest path to the destination processor. An estimate for the time

required to complete the transfer of the vector elements can be made as fol-

lows. Let the average number of processors that a vector element must travel

through be D. The total number of transactions that must occur is mMD. The

total number of processors available to do the transactions is N. If no bottle

necks occur in the data paths the time required to complete the data transfer

will grow like m..;D For our 3 dimensional array the average distance traveled

D will be bounded by N 1/ 3. The time for a matrix-vector multiplication on our

mMNl/ S mMNv2
NNCP to be N for a 3 dimensional array and N for a 2 dimensional

array. If the hypercube architecture were used D could be decreased to log2(N)

which would be a substantial increase in performance for large N. The cost of

the copper wire that connects the processors and physically organizing the pro-

cessors in the hypercube architecture would be prohibitive however. This pro-

cess of mai..ling the vector elements directly is very useful when the matrix is

hermitian as the processor that needs to send its vector element can find out

where to send it by examining its own matrix elements and does not have to wait

for a request from the receiving processor. For small m this method will greatly

improve the efficiency of the processors in comparison to the bucket brigade

algorithm. but is a long way off from the time of order m that is possible if all of

the processors have global connections (an option too expensive to consider for

- 36-

large machines).

There is one kind of matrix that can use the direct mailing method of com-

municating the vector elements very efficiently. This is a matrix that has a very

small bandwidth. Let the band width be q. then the distance over which the vec

tor elements must be transmitted shrinks to ql/S and the time required to do

mMQ 1/3
the multiplication is N . When the band width gets close to the number of

nonzero matrix elements per roW' the bucket brigade algorithm becomes more

efficient. In fact the matrices that occur in the analysis of field theoretic prob

lems have a very small bandwidth and the NNCP will be effective in studying field

theory using the matrix approach. In the table below the number of time units

required to do the various matrix operations on the NNCP is summ~ized. The

notation is that which we have adhered to in this section (M is the dimension of

the space. N is the number of processors of the array. m is the number in

nonzero elements in a row, q is the matrix bandwidth) .

MATRIX OPERATION

Yi =H\jX; (full matrix)

Yi=H1JX; (sparse matrix)

c=Xi Yi

TIME UNITS FOR COMPLETION

IJ2
N

mM(min (q ,N))1/3

N

M
N

M
N

MF+log2(N)

By comparing this table with the table for the serial machine it is very evi

dent that the NNCP is optimized for vector arithmetic and dot products. It also

- 37-

gives very good performance for the full matrix-vector product considering the

fact that the best one could do is a time of order 10i2(N) it one bad a machine

that used the binary tree algorithm to evaluate all N dot products at the same

time. For the sparse matrices of small bandwidth the NNCP is optimum as the

time required to do the matrix vector product gets very close to Tn the number

of nonzero elements on a row.

Appendix 4: Considerations in developing larger machines

Although the 4x4x4 NNCP array that we are proposing will have B mega

bytes of memory and the computational performance of 15 YAXs in problems

that can take advantage of the nearest neighbor architecture, the 4X4x4 NNCP

array can be regarded as a feasibility study for muc;h larger machines that can

be built using current technology. Since we are proposing the current project

with the possibility of building much larger machines in the future in mind.

some comments on possible technical limits to which this architecture can be

pushed are due. This section considers the technical problems that one might

expect to encounter as one generalizes the architecture to large arrays.

The first problem that one expects to encounter is actually designing. build

ing and servicing arrays that might be 100 processors on a side. The only possi

ble way that such a machine could be built is to have the physical layout of the

machine exactly follow the 3 dimensional architecture. If this is done the wiring

will remain simple and one will avoid the basket of snakes that would be inevit

able it the conventional backplane and ribbon cable wiring that is used for

current computer systems were used. In order to implement the 3 dimensional

physical architecture in a serviceable way one would have to build the machine

in modular subunits of perhaps 4x4x4 arrays and connect these subunits with

cables of about 4 teet long so that there would be room for maintenance

- 38-

personnel to get in to the array and remove defective modules quickly. The bad

module could then be taken to a shop that could replace the individual proces

sor that had developed a failure. Each module would have a connection to the

host. power connections. coolant connections and connections to the 6 nearest

neighbor modules.

One must also consider the etIect that the physical size of the processor will

have on the operating speed of the array. Since the lines connecting the neigh

boring modules will be short the speed of the array will not be hampered by

communications delays as the size of the array is increased. Even the lines that

connect the ends of the array can be made short for large arrays by arranging

the array in a layered doughnut configuration. However this won't be necessary

until one builds arrays of around 1 million processors (l00xlOOX100) and the

physical dimensions of the array exceed a few hundred feet. This fact that the

operating speed of the array will not sut!er for large array sizes is a feature that

only the nearest neighbor connection has. Communication with the host will

take longer time as the si.ze of the machine grows but since communication with

the host is done rarely a delayaf a few tens of microseconds is allowable.

Another consideration is reliability. If one builds an array of 108 processors

and each processor has a mean time between failures of 10 years , the NNC? will

fail on the average every 5 minutes. This is unacceptable and one will require

hardware redundancy in the basic unit so as to automatically find errors and

allow the system to continue operating once an error has been detected.

- 39-

Appendix 5: 1be Relationship between Hybercube and NNCP architectures in

Two and Three Dimensions

For the benetlt of physicists, we will first detlne the K'th Hypercube archi

tecture as an array of N=i< processors where it is convenient to label each pro

cessor by a K digit binary number. Then the Hypercube architecture is realised

when every processor is connected directly to all other processors whose binary

representation di.t!ers in one and only one digit. In this architecture I each pro

cessor has K connections and the mean (maximum) communication time

between any two processors is K/2(K). As usual.we call NNCP the architecture

with nearest neighbour connections in a specified number of dimensions d.Each

processor has 2d connections in an NNCP.

One can easily show that:

(a) The K=4 Hypercube is isomorphic to the 4x4 d=2 NNCP. Each processor

has four connections.

(b) The K=6 Hypercube is isomorphic to the 4x4x4 d=3 NNCP. Each proces

sor has six connections.

(c) This result can easily be extended to higher dimensions (relating the

K'tb hypercube and the 4x4 ... x4 NNCP in K/2 dimensions) but this does not

seem interesting as the important features of the NNCP are seen in 2 and 3

dimensions. Only in tbese cases is it relatively easy to build with short physical

communication paths and of course the (currently known) problems only need

two or three dimensions.

In fact it is quite feasible and probably most tlexible to build arrays with the

hypercube architecture when the number of processors is ~1000. However in

this proposal we have emphasized the NNCP architecture as one can realistically

plan on building extremely large arrays of this type (appendix 4). The NNCP is

quite adequate for the local problems which are of greatest interest to us

-40-

although in matrix problems sketched in appendix 3. we see the advantage of

the hypercube.Even in the latter case the NNCP is suprisingly powerful!

For solving two dimensional fteld theories, we will. view our array as a d=2

NNCP. For this purpose, the following maps are of interest:

The d=3 4X4x4 NNCP contains the d=2 Bx8 or 4x16 NNCP'

The d=3 Bx4x4 NNCP contains the d=2 Bx16 or 4x32 NNCP.

The d=3 16x8x8 NNCP contains the d=2 32x32.16x64.or Bx126 NNCP.

The useful relationships between NNCP and Hybercube architectures for

64->1028 processors are:

The K=6 Hypercube is isomorphic to the d=3 4X4x4 NNCP.

The K=7 Hypercube contains the d=3 8x4X4 NNCP.

The K=6 Hypercube contains the d=3 Bx8x4 NNCP.

The K=9 Hypercube contains the d=3 8xBx8 NNCP.

The K= 10 Hypercube contains the d=3 16x6x6 NNCP.

In the above "contains" means that the ftrst architecture reduces to the

second when some of its communication channels are ignored.

	CALT-68-867-000
	CALT-68-867-001
	CALT-68-867-002
	CALT-68-867-003
	CALT-68-867-004
	CALT-68-867-005
	CALT-68-867-006
	CALT-68-867-007
	CALT-68-867-008
	CALT-68-867-009
	CALT-68-867-010
	CALT-68-867-011
	CALT-68-867-012
	CALT-68-867-013
	CALT-68-867-014
	CALT-68-867-015
	CALT-68-867-016
	CALT-68-867-017
	CALT-68-867-018
	CALT-68-867-019
	CALT-68-867-020
	CALT-68-867-021
	CALT-68-867-022
	CALT-68-867-023
	CALT-68-867-024
	CALT-68-867-025
	CALT-68-867-026
	CALT-68-867-027
	CALT-68-867-028
	CALT-68-867-029
	CALT-68-867-030
	CALT-68-867-031
	CALT-68-867-032
	CALT-68-867-033
	CALT-68-867-034
	CALT-68-867-035
	CALT-68-867-036
	CALT-68-867-037
	CALT-68-867-038
	CALT-68-867-039
	CALT-68-867-040

