
Bell Laboratories Document Cover Sheet
KI Technical Memorandum

for 0 Inlernal Memorandumo Technlca' Correspondence

For help in completing this sheet, see In.tructlon. lor Completing Document Co~e,She.t (Form £-9272).

Tille: Finite Element Algoritirns for Multiprocessors Using
Distributed Variables

Aulhor's Dale:
6/15/84

AUlhor(s) Locallon Ext. Dept.

r--;-:-N-P:-:en-~-:m-o-n-'~-is--------""TI-~-E~-~-~-~-=-l-~-;;~:¥¥-3------:-."""1

Documenl No.(s)

Dept.
Date

yr/mo/day
C8te- Software

seq. gory Suffix Filing C••e No.(s)

~f-_3_9_3_94 ---.,_3_ll_3_0_6_-5_0_0_0 ----1

Keywords: Distributed <:anputing, Algoritirns, N\m'erical Analysis, Catplexity Theory

MERCURY Announcemenl Bullelin Secllons (check alilhal pertain):

o CHM - Chemistry and Materials R9 CMP - Computing
KJ CMM - Communications mElC - Electronics

o lFS - life Sciences
o MAS - Mathematics and Statistics
o PHY - Physics

ABSTRACT By using a finite element program as an example, this dc:x::urcent presents
progranming techniques and a canplexity theory for nessage passing IlUlltiprocessors.
The dc:x::urcent describes algorithms, using distributed variables, for all the canp
utationally intensive tasks in a finite element program. The canplexity theory predicts
the perfOl:mance of the algorithms on a general IlUlltiprocessor. Finally, the overall
performance is used to evaluate the suitability of an architecture for this particular
application.

The finite element material in this doc\.mant is obtained fran a finite
element program developed by one of us (Shenton) at CMIJ. This program, targeted for
magnetic field cc:rrputation, is adaptive and uses Delaunay triangulation and carple
rrentary finite element nethods. The cc:rrputational rcodel is a IlUlltiple instruction
nultiple data (MIMD) nessage passing cc:rrputer with up to 100,000 cc:rrputational nodes.
The basis of the progranming techniques are distributed variables, a device developed

Page Arrangement

Pages of Text 25.. Other Pages .. 1. Total 2 fi .
No. Figs..7... No. Tables ...O. No. Refs. .4...

Mailing Lebel

AT&T BELL LABORATORIES - PROPRIETARY
Use pursulnt to G.E.1. 2.2

E-9271 -8 (6-83)

4

Inltl.1 DI.trlbution Speclflc.tlon.

Complete Copy Cover Sh"t Only

Addr..~(byName,orby I Company, Addre""1 (by Name, or by I Company.
BTL Organization and/or Leve') If Other Than BTL BTL Organization and/or Leve') If Other Than BTL

1135 DH A. A. Penzias 11 DIR
1135 SUPV J. W. Tukey 113 DPH
G. s. Indig P. W. Arxiersson 1127 DPH
113 EXD 11 EXD 1135 MrS

45 EXD 1135 srA/TA
52 EXD
54 EXD
55 EXD
59 EXD

(If additional space is needed, attach another page.)

o So"••re (any nontrivial executable computer program routine, whether in source or object code. or
any material from which such a routine can be readily derived)

Proprietary CI...lfle.tlon

Unless otherwise indicated below, this document will be classified BELL LABORATORIES PROPRIETARY,
8S it is now marked on the front of the cover sheet. If you want one of the other classifications listed below,
check the appropriate box, cross out the restrictive marking on the front of the cover sheet, and if needed.
replace it with the appropriate marking and explanation.

CI....fle.tlon Approval

o BTL PROPRIETARY - NOTICE Supervisor

o BTL PROPRIETARY - PRIVATE Director

o No marking

o Govemment Security CI....'led (e.g., CONFIDENTIAL, SECRET, TOP SECRET). see BTL Security Handbook.

ABI Dt.trlbutlon
To expedite the movement of documents to ABI, Director-level action is requested regarding items (1)
and (2), below, when the document is first distributed. In those cases where approval is not provided on
the cover sheet, approval will be sought when a request is received from ABI. with consequent delay in
filling the request.

Indicate whether the document:

D.O. ReudinkDirector

o.N. SheI'iton

(1) Contains network planning information, customer proprietary information, or nongeneric so"ware
for use in ABI prQducts or se ices t at BTL may not f!Jrnish to AB!. 0 Yes KJ No

(2) Gil Yes 0 No

~~

Complete If thl. document .upe,.ede. or .menda .n e.rtler one:
Earlier Document Number Author _

Filing Case No. Date _

For U.e by Recipient of Cover Sheet:
To get I complete copy of thil document:

1 Be sure your correct location il given on the mailing lebel on the other
lide.

2 Fold this sheet in hllf with this side out.
3 Check the Iddress of your local Internl' Technic.\ Ooc:ument Service

if listed; otherwise. use HO 4F-112. use no envelope.
4 Indic... whether microfiche or piper copy is desired.

Intern.1 Technic.1 Document Service

l» HO 4F-112 () AlC 1B-102
() IH 7K-101 () MV 10-40
() WH 3E-204 () CB 1C-33S

PtelSe send. complete 0 microfiche 0 paper copy 01 this document to
the .ddre.. shown on the other side. UNIX'" or GCOS users may order
copies vi. the ilds system; for inform.tion. type "m.n itds" .tter logon.

Document Cover Sheet
(Contlnu8tlon)

ntl.:
FD~~ Element ~goritbns for Multiprocessors Using
~s

Author'. Dat.:
6/15/84

Author(.) (Continued) Location Ext. Dept.

Document No.(.) (Continued)

Dept.
Dele

yr/mo/dey
Cel.. Software

Seq. gory Suffix Filing C•• No.(.) Charging Ca•• No.(I)

1----·-~------B:II:Jt-----~-------8-- ----~

If addItIonal .pace IS needed for the Abstract, u.e the ,eve"e "de of thIS .heet.

Complete Copy (Continued) Conf IMet Only (Continued)

Addre_ (by Heme, or by , Compllny, Add........ (by Heme, or by I Company,
In Organlutlon and/or LeYeI) "Other TMn ITL In Organlutlon and/or LeYeI) "Other Than BTL

.

. .
E-9271-C (7-83)

Abltr.ct (Continued)

by the other of us (DeBenedictis) at AT&T Bell Laboratories. The
canplexity theory includes the effects of canputation speed,
bandwidth, and latency to predict the performance of a program
over a wide range of rcessage passing I'lUlltiprocessor architectures.

.,'

subject: Finite Element Algorithms for Multiprocessors Using
Distributed Variables

WPN 311306-5000
Filing 39394

TECHNICAL MEMORANDUM

date: JUDe 15, 1984

from: E. P. DeBenedictis
8011353
4E-610 x5742

D. N. Shenton
E. E. Departme!lt
Carnegie-MeDon University

11353-840615-09-TM

By using a finite element program as an example, this document presents programming
techniques and a complexity theory for message passing multiprocessors. The document describes
algorithms, using distributed variables, for all the computationally intensive tasks in a finite element
program. The complexity theory predicts the performance of the algorithms on a general
multiprocessor. Finally, the overall performance is used to evaluate the suitability of an architecture
for this particular application.

The finite element material in this document is obtained from a finite element program developed
by one of us (Shenton) at eMU. This program, targeted for magnetic field computation, is adaptive
and uses Delaunay triangulation and complementary finite element methods. The computational
model is a multiple instruction-multiple data (MIMD) message passing computer with up to
100,000 computational nodes. The basis of the programming techniques are distributed variables, a
device developed by the other of us (DeBenedictis) at Bell Labs. The complexity theory includes the
effects of computation speed, bandwidth, and latency to predict the performance of a program over a
wide range of message passing multiprocessor architectures.

1. Introduction

Finite element programs approximate the solution to a problem defined in a continuous two
(or higher) dimensional region by using a mesh of discrete subregions called finite elements. A
frequently used finite element is a triangle with solution values defined at the vertices and midpoints
of the sides. Figure 1 illustrates such a triangle. Within a single triangle the continuous function is
represented by a biquadratic equation.

When a region is divided into many triangles, the density of triangles in a particular area
determines the precision with which the continuous function is modeled. Figure 2 illustrates the
triangles around a triangular wedge of dielectric material. Note the higher density of triangles near

AT&T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

- 2 -

Figure I: A Triangular Finite Element

the points of the dielectric material.

A finite element problem is solved as a single matrix equation of the form Ax - b. The numbers
in the solution vector x are really the coefficients of the biquadratic equation defining the triangles,
but can be thought of as the values of the approximated solution at the points (vertices and
midpoints of the sides) of the mesh. If there are n points in x, A is a (sparse) nxn matrix. A is
called the stiffness matrix, and its entries represent dependencies between points. The vector b is the
boundary conditions.

The numerical method of solving Ax - b involves iteration. The Incomplete Cholesky Conjugate
Gradient (ICCG) decomposes A into the product of LL" where L has the same sparsity pattern of
A. The conjugate gradient method is used iteratively to find x from an initial arbitrary value. The
mathematical complexity of ICCG is given as n1.2. where n is the dimension of the vector.

The solution of the system of equations Ax - b provides the answer for the specified mesh. In
the adaptive procedure ICendes 82), two approximate solutions are derived, the difference between
them providing an element by element measure of the accuracy of the solution. By refining those
elements having the largest errors and recomputing the solution iteratively, finite element meshes
having a uniform error density are obtained.

1.1 Multiprocessor Programming

The multiprocessor algorithm presented here divides the entire region into contiguous
subregions, one for each computational node, of the multiprocessor. The nodes execute instructions
independently, but must communicate intermediate values at various points in the processing to
correctly execute the algorithm.

Figure 3 shows the mesh of figure 2 broken into eight pieces. Note that the triangles are divided
to equalize the quantity in each node while retaining a compact shape.

A computational node contains data on all the points in and at the boundary of its region.

AT &T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

- 3 -

Figure 2: Triangularization of a Region

Boundary points are duplicated between computational nodes. A computational node contains all
the A-matrix elements between its points. The structure of the A matrix follows the mesh closely.
Each row and column of A represents a point (vertex or midpoint of a side) of a triangle, and the
elements of A represent dependencies between points in the mesh. Two points in the mesh are
dependent only if there is a triangle that contains both of them.

1.2 Overall Program Structure

Although the multiprocessors under discussion are MIMD machines, there is some similarity
between the structure of the algorithms and a single instruction-multiple data (SIMD) machine.
The proposed program of the MIMD multiprocessor includes making a SIMD machine with a
matrix operation instruction set. The following matrix operations are done by this virtual SIMD
machine with a single or fixed sequences of commands:

(J) vector-scalar multiplication
(2) vector inner product

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

·4-

Figure 3: Partitioning of a Region

0) matrix-vector multiplication
(4) solving Lx - b, for X. where L is lower triangular. x and b are vectors
(5) the incomplete cholesky decomposition LV - A. where A is given

The complete algorithm for a finite elements program involves repeated matrix. vector. and scalar
.operations along with a computationally insignificant amount of control. A conventionally coded
control program manipulates this highly parallel processor programmed only for matrix operations.
The control program. resident in just one computational nodes. would manage graphical input and
output of the problem and its solution. generate matrix operation commands for the rest of the
processor. and do its own (scalar) control computations for convergence and related issues.

1.3 Algorithm Complexity

The crucial question. about algorithms for multiprocessors is how efficient they are in
execution. Since multiprocessors are a rapidly advancing technology. efficiency measurements on
existing hardware is of marginal utility. The approach used here is to describe the performance of

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

- 5 .

an algorithm in terms of four generic multiprocessor performance parameters.

The four parameters are: I, the instruction time within each computational node, F, the floating
point time, M, the time to send a message, and L, the message transfer time from writer to reader.
The measures I and F are the measures used in conventional complexity theory. Sometimes, as
here, one of I and F dominate and the other can be ignored. M is related to the bandwidth of the
message passing network. L is the message latency, or the amount of time a message is within the
message passing network.

An possibly fruitful exercise, which is done here, is to consider the design of a multiprocessor
that would execute these algorithms efficiently. By analyzing the performance of the algorithms in
terms of the four performance parameters it may become evident that certain relative values of the
parameters would be optimal.

2. Distributed Variables

The reader is familiar with the role of variables in conventional programming. Distributed
variables are the extension of many of the characteristics of conventional variables to MIMD
computers.

A variable is a conceptualization of a temporary value in a program. When desired a variable
has a name such that reference anywhere to the name refers to the same conceptual object. The
names of variables can be changed, however, by passing the variable to a subroutine, supporting the
concept of a variable as a conceptual object, rather than just a name.

Each language employs a set of interactions with its variables; each language has a self-consistent
set, but different languages have distinctly different operations. In Fortran-type languages, a
variable is the address of an area in memory. A Fortran-type variable is read by the name
appearing in expressions and written by appearing to the left of an equals sign. In Smalltalk or
Simula, variables can refer to objects, where interactions are functios calls on objects.

Within a single computational node, a distributed variable has a name like a Fortran variable. A
distributed variable retains its meaning when used on different computational nodes, however.
When invoking a subroutine, for example, on a different computational node, distributed variables
used as arguments refer to the same conceptual object when referenced by either the calling
program or the subroutine.

Since shared memory not available on message passing machines, global variables, that can be
refered to anywhere merely by knowing its name, are generally disallowed. Variables must get
around through other means, such as function invocation, or through pre-existing distributed
variables.

2.1 Mailbox Type Distributed Variables

The Mailbox variable probably corresponds most closely to the common interpretation of a
message passing channel. The allowed interactions with a Mailbox variable are putting a value into
it and taking one out. The values are typed when the variable is declared; e.g. values could be

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

·6-

characters, other distributed variables, or structures. Generally speaking the variables will come out
in the order they went in, although this concept is unclear when there are multiple readers or
writers. Unlike the channels in many conventional operating systems, there is no opening or closing
of Mailbox variables; all that is needed to interact with one is its name. Mailbox variables have a
queue for values, the size is specified when the variable is created, but must always be greater than
zero.

2.2 Other Types of Variables

A possibly expected variation on the Mailbox variable is the Broadcast variable. A Broadcast
variable may have a several readers, each of which will get every value put into the variable. Like
Mailbox variables, anybody can write a value into a Broadcast variable.

A probably unexpected variation on the Broadcast variable is the Command variable, or a
Broadcast variable with stronger synchronization. Interactions with distributed variables have two
synchronization events; Mailbox and Broadcast variables use only one. A read from a Command
variable synchronizes when the data is available, and again when the reader has completed any
processing associated with that data. A writer to a Command variable therefore wait until its value
has been read and used by all the readers.

There is a reverse version of the Broadcast variable that has considerable application. A
broadcast has the property that one value goes in and many come out; in a reverse broadcast, many
values go in and one comes out. A reverse broadcast variable has an associated operation, such as
addition, that is applied to the written values to produce the value that is eventually read. The Sum
type distributed variable is reverse broadcast on input and broadcast on output. A Sum variable
adds all the values written and then the sum can be read by multiple readers.

2.3 Extensibility of Types

With an abstractive concept with as many variations as distributed variables, much of the
power is derived from the programmer being able to select the variations most appropriate to his
task.

It is possible to describe the characteristics of a distributed variable type through such things as
state transition tables, making formal descriptions of existing and proposed variables possible. It
may also be possible to build programming systems that operate on dynamic definitions of the lowest
level distributed variable characteristics.

2.4 Performance of Distributed Variables

Even without knowledge of how distributed variables will be used, it is possible to find upper
bounds on some aspects of their performance. The dominant execution cost in a distributed variable
is the number of messages that get passed between nodes, and minimums for these can be
investigated.

The time required to pass a message to a known destination node is assumed to be constant as a
function of the number of nodes in the system. Theoretically, however, the message latency must be
a slowly increasing function of time. Present hardware is limited by switching events, which scale as

I

log2n. Were speed of light delays to be significant, message latency would vary as n 3. These

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

.,.

• 7 •

functions vary slowly enough that approximation by a constant is reasonable.

A Mailbox variable can be as efficient as the underlying hardware only when used in certain
ways. If one node were usualIy the writer and another usualIy the reader. a appropriately designed
Mailbox variable would adapt and send messages to the right place before they are requested. If a
Mailbox has many readers at once. it is probably most efficient to store the messages at a central
location and have readers send request messages there. Under these circumstances. a Mailbox read
would require a request message and a data message for each value transferred.

The spatial distribution of information as in a Broadcast variable requires at least log2n
messages. Distribution through a tree structured network of message relays is probab1y most
efficient. Sequential message delays in a tree structured distribution is log,n, where f is the fanout;
whereas sequential transmission would require n sequential delays.

3. Data Representation

A graphical representation of vectors and sparse matrices is used as in figure 4. Point data
structures represent vector elements or rows and columns of matrices. An attribute of point i is Xi,

the i'th element of vector x. Arcs represent the non·zero matrix elements; matrix element Aij is
represented by an arc between point i and point j.

Figure 4: Graphical Representation of Vectors and Matrices

3.1 Data Structures

The data structures for points and arcs are shown below:

AT Ii T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.l. 2.2

- 8 -

triangle data structure
attribute type
sides[3] pointer to triangle

vertex[3] pointer to point
midpointl3] pointer to point

arc[6,6] pointer to arc

point data structure
attribute type

/inks to other triangles
/inks to vertex points
/inks to midpoints
/inks to arcs

floating point
floating point

vector element
vector element

head pointer to point
tail pointer to point

a floating point

I floating point

arc data structure
attribute type

point at head of arc
point at tail of arc
matrix element
lower triangular matrix element

The highest level data structure is the triangle. The topology of the mesh is represented by the
connections between the triangle structures. Each triangle has pointers to the three other triangles
sharing sides.

The point data structure represents the vertices or midpoints of the sides of the triangles. The b
and x attributes of a point data structure represent vector elements in certain matrix-vector
operations. Each triangle has three mesh points at its vertices (which define the triangle) and three
points representing the midpoints of the sides. The triangle data structure has six pointers to data
structures representing these points.

The non-zero elements in the stiffness matrix are represented by the arc data structure.
Generally, the ij'th element of a matrix is represented by an arc from the j'th to i'th point (j.e. an
arc with the head pointer addressing the i'th point and tail pointer addressing the j'th point). If a
matrix is symmetric. as is the stiffness matrix, the head and tail pointers are interchangeable,
allowing one arc to represent two elements. If the matrix is lower triangular, as is the matrix
resulting from the incomplete Cholesky decomposition, the value of the element is zero in the
opposite direction of the arc.

3.2 Boundaries and Shared Points

At the boundaries between regions. the structure described above is amended. Each
computational node has a complete and consistent description of its region. Where two nodes join.
which is always along a side of a triangle. points are duplicated. The program that sets up the
points must create the duplicate points and verify that their data is consistent.

Arcs between two points. both on a boundary, are duplicated in two nodes. The value of the
matrix element is the sum of the values associated with all such arcs. See figure 5.

AT &T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

·9 .

Figure 5: Boundaries and Shared Points and Arcs

3.3 Example Values

The performance of a multiprocessor on the algorithms that follow depends on how many
triangles are in the memory of each processor. It is assumed here that a problem always fills
memory, and scaling occurs by increasing the number of nodes (and hence adding memory
indirectly.) The quantity of triangles is equal to the available data memory divided by the average
data size per triangle.

We designate the quantity of triangles as T, the quantity of mesh points as P, and the quantity of
arcs A. Analysis of existing meshes suggests the following ratios are typical of a two dimensional
adaptive finite element mesh:

AT &T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

. triangles per node
points per node
arcs per node

points on a boundary
arcs on a boundary
maximum block number

• 10 -

Assertion
PT - 2 average of 2 points per triangle

~ - 15 average of 15 arcs per point

End of Assertion

Engineering considerations suggest that the appropriate memory size if 500 K bytes per
computational node with perhaps 350 K bytes available for data storage; implying a typical figure of
400 triangles per node.

Example Values
T - 400
P - SOO
A - 12000
End of Example Values

Given that the subregions in each node are compact, the perimeter of a region approximates the
square root of its area, and certain relations result. The maximum block number is limited
similarly.

Example Values
4.JP - 113
S.JP - 226
B - 20
End of Example Values

3.4 A Block Form of a Finite Elements Matrix

The theoretical amount of concurrency for several of the algorithms explored here is vastly
improved by finding a block form of the stiffness matrix. The block form that can be employed,
illustrated in figure 6, has diagonal submatrices on the diagonal of the main matrix. When looking
for block forms, the goal if to divide the matrix into few large blocks.

To specify a block form of a matrix expressed graphicalIy it is only necessary to assign a block
number to each point. If we want the diagonal blocks to be diagonal themselves we must assure
that no point has an arc to another point with the same block number.

3.4.1 Bounds on Block Number Size
It can be proven that there exists a block number assignment for the two dimensional mesh used

here where the largest block number is eight.

An algorithm to assign alI points to eight blocks is outlined: Each of the eight blocks is assigned
a color and the block assignment is equivalent to doing two map-coloring operations on the points.
The first map coloring operation assigns four of the eight colors to only the vertex points. The
coloring is done such that no two points in the same triangle have the same color. The second map
coloring operation treats the vertex points as holes in the map and colors the midpoints. The second
coloring uses four different colors from the first coloring and assigns colors so no two points in the
same triangle have the same color.

AT&T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

- 11 -

D . S S

S [) ,
S S 0 s

s S D

Figure 6: Matrix Interpretation of Block Numbers

3.4.2 An Algorithm to Find a Block Numbering

Algorithm A. (Block number assignment.} Given a set of points Pn-PJ ...Pp and arcs
An-AJ ...Aa• assign block numbers to the points.

AI: [Iterate.] Do A2 for all Pn in any order.

A2: [Assign.] Set Pn - the smallest block number different from all its neighbors.

End of Algorithm

This algorithm can be executed in parallel as long as the points being numbered do not share an
arc.

4. Algorithmetic Complexity Issues

The study of algorithms for conventional computers is a substantially more mature field than
that for multiprocessor algorithms. The differences between the two fields is in the model used to
evaluate the efficiency of an algorithm. The running time of an algorithm for a conventional
machine is measured by total floating point computations. By contrast. it is proposed here that the
running time on a multiprocessor depends on three things: (I) the time required to communicate
intermediate results, (2) the time required to resolve sequential dependencies that prevent
computational nodes from operating in parallel. and (3) total floating point operations.

AT" T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

- 12 -

Other authors have proposed two efficiency measures for parallel programs; speedup and
efficiency (jordan 82l:

Definition
N
Tj

T)
S-

TN
SE-
N

End of Definition

number of computational nodes
time to run with i computational nodes

speedup

efficiency

The speedup is the amount faster a program runs on a multiprocessor compared to a conventional
computer. Speedup is limited by the number of nodes in the multiprocessor. In practice, any
speedup of order N is excellent. Efficiency is the fractional utilization of the nodes of the
multiprocessor.

4.1 Specific Performance Measures

The multiprocessor is a collection of N computational nodes and a message passing system.
Each computational node is modeled as a conventional Von-Neumann computer, with floating point,
and with a message passing 10 interface. The performance of a multiprocessor is measured here by
the following:

Definition
I
F
M
L
End of Definition

instruction execution time (not used here)
floating point execution time
message send or receive time
latency in message transmission

The instruction execution time can be measured by having one computational node execute
conventional instructions and measuring the average time. The floating point rate is measured
similarly, but depending on the application, a mix of regular instructions may be executed also but
not counted. The message send or receive time is measured by having every computational node
send messages and measuring the average time. Note that on some multiprocessors, the message
time will be limited by system software and on others by the bandwidth of the interconnect. The
message latency is measured by having two nodes send a message back and forth continuously. L is
the average time between message transmissions (on two processors.>

Although the performance parameters may in theory take any values, the following relations are
true of any sensible system:

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

computational nodes
floating point slower than instructions
message time much slower than floating point
latency much greater than message time

cost of $4M for the CPU
2 MIP instruction rate
.5 MFLOP floating point rate
10,000 messages per second
J mS queuing delay in network

- 13 -

Assertion
2 ..,;; N ..,;; 100,000
F> I
M» F
L» M
End of Assertion

In this document the quality of multiprocessor algorithms is measured as an expression in terms
of the performance parameters. Unfortunately, such an expression, while being general, may not
provide the necessary insight into the parallel nature of the algorithm. To remedy this the execution
time is evaluated in terms of sample values of the performance parameters. These values, based on
a proposed design [DeBenediCtis 84J that uses expected 1987 technology.

Example Values
N - 4096
1- 500nS
F - 2uS
M - 100uS
L - ImS
End of Example Values

Given these sample performance measures, the mix of the various operations that matches the
design of the machine most effectively is:

Example Values
200
50
1
.1
End of Example Values

instruction executions
floating point operations
message transmissions and receptions
sequentially dependent messages

5. Programming

The overall program structure for adaptive finite elements uses heuristics that are currently a
research topic. Aside from the heuristics, however, well known algorithms are employed.

The heuristic techniques, not discussed further here, sets up two complementary finite element
problems representing upper and lower bounds of the actual solution. The heuristics also refine the
mesh based on the two solutions.

The computationally intensive part of the program is the solution of the matrix problem Ax - b,
where A is a matrix of the form described earlier. The equation Ax - b is solved by the ICCG
method [Cendes ??l.

AT&T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

- 14 -

Algorithm ICCG. (Incomplete Cholesky Conjugate Gradient.) Given iteration limit n,
matrix A, boundary conditions b, and accuracy limit E, compute x where Ax - b.

ICCG 1: [Initialize.] Set l' - I,
p-O,
x - arbitrary vector.

ICCG2: [Compute incomplete Cholesky.] Compute L where LV - A.

ICCG3: [Iterate.l Do ICCG4...ICCG6 for i-Ln.

ICCG4: [Compute.] Set 7- b-Ax.

ICCG5: [Terminate.llf normffi < E norm(b) terminate algorithm.

ICCG6: [Compute.] Set r - L-tr,
O-FT,

8
{3- -,

l'
1'-0,
r- L-lf,
p -r+fJP,
lJ-pAp,
a-.1...

lJ '
x-x+ap.

End of Algorithm

The matrix operations described above for one iteration of the ICCG, as a function of n, the
actual number of iterations, is:

Operation Number
Vector-Scalar Multiplication 5n

Vector Inner Product In

Matrix-Vector Multiplication 2n

Back Substitution 2n

Incomplete Cholesky 1

5.1 Vector-Scalar Multiplication

To compute x where x - cb, x and b are vectors and c is a scalar, the elements of x are
defined by Xn - cbn•

The operations can be carried out in any order or all at once. In practice, all the computational
nodes operate in parallel, doing their operations serially in any convenient order.

AT &T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

./

- 15 -

Algorithm V-Uniprocessor. (Vector-Scalar Multiplication.> Given a scalar c, and vectors
xand b defined by points Pj ...P",compute x- cb.

VU1: [Iterate on points.J Do VU2 for i - L.p.

VU2: [Multiply.J Set Xi -cbi .

End of Algorithm

The distribution of the information directing all the computational nodes to do a vector-scalar
multiplication, as well as the scalar, is an issue. The required sequence of events is: (I) the decision
to do a vector-scalar multiplication. and the scalar is generated at a centralized location. (2) this
command is distributed to all computational nodes. (3) the nodes do the multiply in parallel, (4)
information indicating that the operation has been completed in all nodes is delivered back to the
centralized location.

(A notational comment on multiprocessor algorithms: These algorithms typically have several
parts. There is usually one instantiation of a control part, and many instantiations of a node part.
When the data structures are set up. a process is started on each node containing data. These
processes execute the node parts of the algorithms.>

Algorithm V-Control. (Vector-Scalar Multiplication.> Given a Command type
distributed variable S, and the scalar c, direct other computational nodes to compute
x- cb.

VCl: [Distribute scalar.J Write c to S.

VC2: [Wait.] Wait for S to acknowledge write.

End of Algorithm

Algorithm V-Node. (Vector-Scalar Multiplication.> Given a Command variable S.
points p.oo.Pp• containing vectors xand b. compute x where x- cb.

VN 1: [Get scalar.J Read c from S.

VN2: [Do uniprocessor algorithm.J Do algorithm V-Uniprocessor.

VN3: [Acknowledge.J Acknowledge reading from S.

End of Algorithm

The time required to distribute a command and acquire information about its completion in a
system with n computational nodes, is asymptotically log2n. For both the time is 210g2nL, where L
is the message latency time.

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

- 16 -

Measure Parameterized Example Timings

Distribution 210g2NL 24 mS

Operation PF 1.6 mS

Total 26 mS

Total not including distribution 1.6 mS

Performance figures show that the time is dominated by the time to distribute the command to
all the processors. It is, however, often possible to eliminate the command distribution delay by
overlapping the execution of one command with the distribution of the next. Command distribution
delay will not be included in the future.

5.2 Vector Inner Product

The dot product, x - a'b, where x is a scalar, a and b are vectors with n elements, is defined
n

to be: x - Dibj
i-I

The multiprocessor algorithm first computes the dot product of the elements in each
computational node and stores the result in a temporary. The second phase adds all the
temporaries.

Phase I: Tj - ~ ajb i
point i in node j

Phase 2: x - ~Tj
all j

The phase I operations are straightforward. All the data necessary for the operations in each
computational node are already there. The time to complete phase I in each computational node is
related to the quantity of points and, since all the nodes operate in parallel, the efficiency of the
operation will approach 100%.

The phase 2 operations involve a distributed sum that is done by a Sum type distributed variable.
The main program declares and initializes a variable of type Sum and then passes this variable to
each of the computational nodes. Each time a distributed sum is done the nodes write a value into
the Sum variable, and the main program reads the sum of all these values.

Algorithm I-Control. Onner product.> Given a sum type distributed variable I, direct
computation of an inner product.

ICI: [Start nodes running.} Run I-Node on nodes.

IC2: [Get answer.} Read answer from I.

End of Algorithm

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

• 17 -

Algorithm I-Node. (Inner product.) Given a set of points P1 ...Pp, with vector elements
for a and b, help compute x - a·b.

IN 1: [Initialize.] Set S - 0.0.

IN2: [Iterate on points.] Do IN3 and IN4 for i - 1...p.

IN3: [Local summation'] Set S - S+ajbj.

IN4: [Write to distributed variable.] Write S to I.

End of Algorithm

Measure Parameterized Example Timings
Local summation 2PF 3.2 mS

Distributed summation log2NL 12 mS

Total 15 mS

5.3 Matrix- Vector Multiplication

The uniprocessor algorithm for calculating x- Ab, where x is the unknown vector, b is a
vector, and A is a matrix, is straightforward.

Algorithm M-U..Eiprocessor. (Matrix-vector multiplication.) Given a set of points, PJ ...Pp•

compute x - Ab. (Initially x-O'>

MU]: [Iterate on arcs,] Do MU2 and MU3 for all i and j such that Ajj exists.

MU2: [Compute.] Set Xi - xj+bjAij'

MU3: [Symmetric arcs.] Set Xj - xj+bjAjj.

End of Algorithm

The difficulty in programming this algorithm on a multiprocessor is that some of the point data
structures are duplicated between computational nodes. Fortunately, the uses made of these
duplicated points is straightforward, and the multiprocessor code is best described as a variation of
the uniprocessor code'.

The result of executing the uniprocessor code on a multiprocessor is correct except for duplicated
boundary points. The vector elements represented by boundary points would be incorrect in each
copy. The correct value for the vector elements is the sum of all the values in the duplicated points.

The multiprocessor algorithm executes the uniprocessor algorithm and then sums the boundary
vector elements. The correct boundary vector elements are distributed to every duplicated point.

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

x floating point

b floating point

pntsum type Sum distributed variable

- 18 -

Algorithm M-Multiprocessor. (Matrix-vector multiplication.) Given a set of points,
Pj ...Pp, some of which are boundary points, and a set of arcs, Aj ...Aa, compute x - Ab.

MM I: [Do uniprocessor algorithm.] Do M-Uniprocessor.

MM2: [Iterate on boundary points.] Do MM3 for all i such that Pi is a boundary point.

MM3: [Summation output.) Write Xi to pntsum(P j).

MM4: [Iterate on boundary points.] Do MM5 for all i such that Pi is a boundary point.

MM5: [Summation inputJ Read from pntsum(Pj). put result in Xi'

End of Algorithm

The code above uses the new attribute called pntsum of the point structure to do a summation of
the various partial sums associated with boundary vector values. The new definition of the point
structure is shown below. When the mesh is created corresponding pntsum attributes must be
initialized to the same instance of the distributed variable.

point data structure
attribute type

vector element

vector element

connects duplicate points

Execution of the code illustrated is efficient, because the fraction of points requiring
communication is small. Performance measures:

Measure Parameterized Example Timings
Multiply-add 2AF 48 mS

Communication 4..JPM II mS
Latency L I mS

Total 60 mS

5.4 Back Substitution

Concurrency in back substitution is derived mostly from the block numbering described
earlier. Recall the conventional algorithm for solving Lx - b:

The block numbers assigned to points in an earlier section partition the points into sets that can
be computed concurrently. The multiprocessor iterates on block numbers; first all elements of x with
block number I are computed, then block number 2, etc.

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

• 19 -

Consider computing Xj for a point with block number 1. By the assignment of block numbers, no
point has an arc to another point with the same block number. Since block number 1 is the lowest
block number, all Ljj arcs have the property that i > j, and the Ljj value is zero since it is above the

b
main diagonal. The computation of these Xj is simply Xj - L~" These computations are

lJ
independent.

Now consider the computation of the Xj with block number n > 1. Again, no arc connects to a
point with the same block number. Some of the Ljj arcs connect to points with a higher block
number, but the value of these arcs is zero. The rest of the arcs connect to points with a lower
block number, the xj values for these points are required, but their values have already been
computed. These computations are independent.

Algorithm B-Node. iBack Substitution'> Given a set of points, PI ...P", and a set of arcs,
A1 ...A., solve Ax - b for x. (Initially "i-O).

BNI: [Iterate on block numbers'] Do BN2...BNII for n-1...B.

BN2: [Iterate on selected arcs.] Do BN3 for all i and j such that Aij exists, i ¢ j, and Pi
is in block n.

BN3: [Compute.) Set Xi - xj+Lijxj'

BN4: [Iterate on boundary arcs.] Do BN5 and BN6 for all i such that Pi is a duplicated
point and Pj is in block n.

BN5: [Summation output.l Write bi-Xi to pntsum(PJ

BN6: [Summation output.l Write Lji to pntsum(PJ

BN7: [Iterate on selected arcs.] Do BN8...BNII for all i and j such that Ajj exists,
i ¢ j, and Pi is in block n.

b·-x'
BN8: [Check for boundary poind If Pi is not a duplicated point, set Xi - -L'.. ' and

1)

skip BN9...BN 11 and continue the iteration.

BN9: [Summation input.] Read from pntsum(Pj), put result in A.

BNIO: [Summation inpud Read from pntsum(P), put result in B.

A
BNll: [Compute.] Set Xj - "B'

End of Algorithm

The algorithms restructures the computation of Xj as shown below. When a vector element Xj is
duplicated between several nodes, the numerator and denominator of the expression for Xj are

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

- 20 -

computed separately based on the Oocally consistant) data in each node. The numerators and
denominators are then added and divided (redundantly) on each node.

~ [bj- ~ XiLij]
all nodes local

Xj - =-==-~---:[~L=':'jj]"---

all nodes

BN2 and BN3 compute ~xiLij,
local

BN4...BN6 start the two distributed summations of bj- ~ XiLij and Ljj,
local

BN7...BN 10 complete the distributed summation, and

BN II computes the quotient.

Measure Parameterized Example Timings

Summation 2~F 2.4 mS
B

Communication 4v'P M 560 uS
B

Latency for above L I mS

Definition 2E.F 160 uS
B

Total 4.1 mS

Total 20 iterations 82 mS

5.5 The Incomplete Cholesky Decomposition

The Cholesky decomposition of a matrix A is the matrix L where A - LLt. L is derived by
equating the elements of A with the product of a row of L and a column of Lt. The incomplete
Cholesky decomposition of a sparse matrix A has the same sparsity pattern as the matrix A by
definition.

Like back substitution, the incomplete Cholesky involves an iteration; unlike back substitution,
the incomplete Cholesky updates values associated with arcs, not points.

A new notation is used to describe the Lij arcs. In this algorithm, Lij represents an L arc
between a point in block i and another point in block j. There may be more than one arc satisfying
this description (say there are m arcs), and these arcs are named LiJ ...Lij.

During the n'th iteration in the computation, of the incomplete Cholesky, the q ...Lij elements
are computed where n - i+j. (Iteration 1 does not exist, iterations are numbered from 2, where L11

is computed.) To illustrate, the table below shows the Lij elements computed during the first few
iterations:

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

• 21 -

Iteration number Lij computed

2 L II (i.e. Ll1 ...LrJ)

3 L21
4 L31 Ln
5 L.u Ln
6 LSI L42 L33
7 L61 LS2 L43

Recall the two formulas for computing the Cholesky:

Note that the iterative order described above is valid for the incomplete Cholesky; the
computation of any Lij only involves other LkJ's where i+j > k+l.

The summations in the Cholesky equations have a graph interpretation. The summation to
calculate the L for an arc between two endpoints is the product along all paths through an
intermediate point. Specifically, the product is used of any two arcs with tails on the endpoints of
the arc and heads on an intermediate point. The calculation of Ljj elements, where the endpoints
are the same, uses the square of any arc from the endpoint to any other point.

Figure 7 illustrates three points and their L arcs. The only product in figure 7 is the product of
L21 and L31 ; the product is needed to commute Ln. The task is to form all products of the L values
that have tails at a common point. The product is added to the L arc between the two points that
are at the heads of the two original L arcs.

Note the following about the computations for an Lij arc: All the Lin Ljn pairs that must be
multiplied are resident on the same computational node, and there is a (duplicated) copy of the Lij
arc on each of these computational nodes.

A variation of the back substitution strategy works acceptably. Sums are formed conventionally
for all redundant copies of an arc. Following this a distributed sum is formed of the quantities
Aij-~ and Lij. These sums are distributed back to all the duplicated arcs, which do the division.

The algorithm requires a temporary in the point data structure, called Lij. Also required is a
Sum type distributed variable connecting arcs between two duplicated points.

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

'.,

- 22 -

Figure 7: Block Structure for Incomplete Cholesky

point data structure
attribute type

x floating point

b floating point

pntsum type Sum distributed variable

L jj floating point

vector element
vector element
connects duplicate points
temporary

arc data structure
attribute type

head pointer to point

tail pointer to point

a floating point

I floating point

arcsum type Sum distributed variable

point at head of arc
point at tail ofarc
matrix element
lower triangular matrix element
connects arcs between duplicate arcs

AT&T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.L 2,2

- 23 -

Algorithm C-Node. <Incomplete Cholesky,) Given a set of points p\ ...Pp, solve LL1
- A

for L. <Initially all Ljj - 0,)

CN1: [Iterate on block numbers.J Do CN2...CNI2 for n-1...2B.

CN2: [Iterate on selected arcs.J Do CN3...CN7 for all i and j such that Ljj exists and
block(Pj)+block(P} - n.

CN3: [Iterate on paths of length 2.J Do CN4 for all k where both Lti and Lkj exist.

CN4: [Compute.J Set Ljj - Lij+LtiLkj.

CN5: [Check for boundary point.J If either Pj or Pj is not a boundary point, skip CN6
and CN7 and continue the iteration.

CN6: [Summation outpuLl Write Ajj-Lij to arcsum(Ljj).

CN7: [Summation outpuLl If i - j write Ljj to arcsum(Ljj).

CN8: [Iterate on selected arcs.J Do CN9...CNI2 for all i and j such that ~j exists and
block(P;)+block(P} - n.

CN9: [Non-boundary arcs.l If either Pj or Pj is not a boundary point. set X - Aij-Ljj•
and if i - j set Y - Lji- Go to CNI2.

CN I0: [Boundary arcs.l Read from arcsum (Ljj). put result in X.

CN II: [Arcs of form Ljj.l If i - j read from arcsum (Ljj) put result in Y.

CNI2: [Compute.l If i - j then set Ljj - JX. otherwise set Lij - ~ .

End of Algorithm

Measure Parameterized Example Timings

Local products (CN2...CN4) 7~F 8.4 mS
B

Communication (CN5...CN7) 8~M 110 uS
B

Latency for CN6 and CN7 to CNIO and CNII L 1 mS

Computation (CN8...CNI2) ~F 1.2 mS
B

Total II mS
Total 2B (40) iterations 470 mS

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.1. 2.2

- 24 -

6. Conclusions

It is informative to measure the performance of a multiprocessor on an entire ICCG iteration.
The table below summarizes the ICCG algorithm in terms of the matrix operations discussed
earlier.

The ICCG procedure is iterative, requiring o.(n·2) iterations. When ICCG is used in a adaptive
mesh, changes in the solution are minimal as the mesh is refined. In the table below, the number of
iterations, n, is a constant 5 for the ICCG.

Operation Quantity Time
Vector-Scalar Multiplication 5n - 25 40 mS

Vector Inner Product In - 5 60 mS
Matrix-Vector Multiplication 2n - 10 600 mS

Back Substitution 2n - 10 820 mS
Incomplete Cholesky 1 470 mS

Total 2.0 S

It is interesting to observe the correlations between changes in the hardware parameters (F, M,
U and the overall rate of adaptive iterations. In the table below, the total time per iteration (2.0 S
in the above table) was expressed as a function: T(F, M, U. The table below shows derivatives with

respect to F, M, and L. Specifically, the coefficient of parameter X is T(F~,U a~ T(F,M,U

(Instruction executions, the coefficients of I were not evaluated in this document.>

Parameter Correlation coefficient
I (instruction executions) not measured (0)

F (floating point) .71
M (messages) .13

L (sequential messages) .15

The table indicates that the performance of the machine on the whole problem is most sensitive
to changes in the floating point rate (F). A 1% increase in the floating point time would result in a
.71% increase in the execution time on this problem. A 1% increase of M or L would slow down the
machine by .13% and .15% respectively.

The example hardware running this application is somewhat overdesigned for communication.
This conclusion is based on the assumption that the incremental cost associated with changing the
speed of communication and floating point is about equal, whereas the application is severely
floating point limited. Were these costs known more accurately, a mathematical optimization
problem could be set up. This conclusion is also reasonable considering that the example hardware
was intended for general purpose programming, whereas matrix manipulations are unusually
computation intensive.

The table below describes the algorithms discussed here with the conventional multiprocessor
measures. The total floating point is the coefficient of F in the function T(F, M, U.

AT" T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

(

)

- 25 -

Measure Value
Total Floating Point per Adaptive Iteration 2.9 G

Time per Iteration 2.0 S

Million Floating Point Operations per Second (MFLOPs) 1450

Speedup 2969

Efficiency 72%

A comparison of the program discussed here with similar programs for a conventional
supercomputer (CRAY-}) is helpful. Programs for both computers require the programmer to
design bottom-up from the hardware structure of the computer. The program described here
requires the programmer to identify concurrency; CRAY -I code requires the programmer to
explicitly identify the vectors in the problem.

This multiprocessor approach has the following advantages over a vector processor approach:

(I) With appropriate selection of hardware, the ~cost ratio can be less, or the speed can
per ormance

be greater, or both.

(2) The finite element mesh can be arbitrary. A vectorized program would restrict the mesh in
various ways, such as requiring the mesh to be rectangular.

(3) Multiprocessors can be constructed over a wider range of sizes than a vector processor.

Programs for vector processors are irregular in their performance. Vectorized algorithms run
fast, and the rest run at the much slower scalar speed. One algorithm discussed here, computation
of the incomplete Cholesky, cannot be vectorized. We believe this is because the vector concept is
less general than the MIMD concept. Vector processors win, however, because they can be
programmed as a scalar processor when necessary, whereas a MIMD machine can never be
programmed as a single computer.

MIMD multiprocessors are widely recognized as having a superior computing potential, but
examples of interesting programs have been lacking. This document presents one example of an
interesting program; indeed finite elements is an important application area for present
supercomputers. If a dozen documents of this type, each addressing a different problem, could be

produ<cd, gone"l acceptan" of MIMD pa"Uel~PA~A

E. P. DeBenedictis

D. N. Shenton
Att.
References

AT & T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

' ..

- 26 -

7. References

[Cendes 77], "Notes on a ICCG Matrix Solution Package", Z. J. Cendes, unpublished
document, Carnegie-Mellon University.

[Cendes 82), "Magnetic Field Computation Using Delaunay Triangulation and Complementary
Finite Element Methods", Z. J. Cendes, D. Shenton, H. Shahnasser, journal article.

[DeBenedictis 84), "A Distributed Switch for Multiprocessor Computing Systems", E.
DeBenedictis, in preparation, Bell Telephone Laboratories.

[Jordan 82), "A Guide to Parallel Computation and Some Cray-l Experiences", T. L. Jordan, in
"Parallel Computation", Garry Rodrigue, ed., Academic Press, 1982.

AT" T BELL LABORATORIES - PROPRIETARY
Use pursuant to G.E.I. 2.2

	TM39394-i
	TM39394-ii
	TM39394-iii
	TM39394-iv
	TM39394-001
	TM39394-002
	TM39394-003
	TM39394-004
	TM39394-005
	TM39394-006
	TM39394-007
	TM39394-008
	TM39394-009
	TM39394-010
	TM39394-011
	TM39394-012
	TM39394-013
	TM39394-014
	TM39394-015
	TM39394-016
	TM39394-017
	TM39394-018
	TM39394-019
	TM39394-020
	TM39394-021
	TM39394-022
	TM39394-023
	TM39394-024
	TM39394-025
	TM39394-026

