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ABSTRACT

This is a submission for the Gordon Bell Award for multiprocessor speedup ill the general
purpose category. The entry is for the Hypercube architecture.

Program PEs Speedup

QCD Simulation 512 458
Circuit Simulation 128 39
LU Decomposition 128 98

1. Introduction

Reporting the speedup of a multiprocessor on three different programs is a remarkably
objective method of measuring progress in parallel processing by a single number. To the extent
that we are given the opportunity to write freely here, we would like to expand upon this
concise metric with some subjective issues that confront the Hypercube industry.

It seems that the desire for cost-effective computing is the ultimate driving force behind this
award. Advancing microelectronic technology is pushing progress toward this goal at a rapid
clip -- but there are other approaches. To separate the other approaches from technology, we
look for a machine architecture where performance is proportional to cost over a large range.
Speedup measures this range. We have indeed seen reported speedup figures climb as parallel
architectures have improved. Speedup is not the ultimate measure, however. There are now
architectures where performance is sufficiently proportional to cost that speedup can be
obtained either by a large monetary investment or by skillful work. To separate brute force
from skillful design, we hope that the judges will temper their reliance on speedup in favor of
consideration of the potential of the architecture for cost-effective computation.

The generality of multiprocessor systems is an issue we are very concerned about. It seems
the real goal is to "fix" the Von Neumann Bottleneck while creating as little disruption as
possible in the rest of the computer industry. There are, however, important milestones beyond
the inventor himself writing three programs. A milestone is passed when people without a
vested interest in the architecture become its users and advocates. Also, it is possible for a
system that runs an infinite number of programs to only be able to run an infinitesimal fraction
of the world's applications. Try writing a compiler with a relational database system, for
example. The milestone here is to shift emphasis from increasing the number of applications
that run on a system to reducing the number of applications that will not. Finally, the
computer industry has a superstructure of mechanical tools, such as compilers and performance
optimizers, which only work with the Von Neumann architecture. To avoid disrupting the
industry, these tools must be adapted to parallel architectures.

Our approach is to submit three programs and their speedup figures that not only address
different applications, but which were programmed in fundamentally different ways. One
program is representative of the programming style supported by the Hypercube vendors, and
which has generated hundreds of published papers on solutions of computationally intensive
numerical applications. A second program is written for a different machine model which allows
the programmer to use some of the same programming skills as are used for regular computers.
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The third program is based on a compiler that takes definitive control over spatial and temporal
concurrency.

The first and third programs achieve performance proportional to the cost of the
multiprocessor, and we have run them on the biggest machines we can afford. All three
programs require larger input data sets to achieve high speedup, but input for the second
program is exorbitantly expensive for multiprocessor research purposes. The second program
gets good speedup for those inputs we can provide.

1.1. Architecture

A Hypercube consists of processors and as little stuff as possible to connect them together.
Where the intellectual competitors to Hypercubes might be described as "processors with shared
memory" or "processors with fetch-and-add objects;" a Hypercube would be "processors with
more processors." Figure 1 is a excellent illustration of Hypercube technology. The board
contains 64 processing elements, each consisting of one microprocessor chip (purple) and six
memory chips (black). The circuitry that interconnects the processors is within purple chips
along with a microprocessor. We believe these are Hypercubes' strong points, while its
message-based nature and hypercube topology are less important.

Figure 1: Hypercube Physical Design

The Hypercube is favored by technology even more than is apparent from speedup measures.
Figure 1 illustrates 64 Hypercube processing elements (PEs), with each PE having seven chips
and retailing for under $1500. Furthermore, one multi-layer PC board can form a backplane for
up to 1024 PEs of this design. The chips in this Hypercube consist entirely of IC memories and
VLSI microprocessors -- both flagships of modern technology. There are a minimal number of
connectors and wire -- which are undesirable overhead. The future is bright also. While
retaining a physical design with about a half dozen chips, more advanced microprocessor
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architectures and larger memories can be incorporated easily. Scalability is good; the limits are
not understood now, but certainly lie in the 10K-lOOK PE range. In addition to having good
speedup, the Hypercube gets this speedup with a cost-effective design that is well positioned to
exploit cost/performance improvements made possible by advancing technology.

There is a significant subjective advantage of using the Hypercube architecture to study
parallel programming: it is virtually impossible to cheat. Since there are no unscalable
assumptions underlying the architecture, once a program works efficiently on a modest number
of PEs, it is likely to work efficiently on any number. It is said that it only takes 32 PEs to
develop Hypercube algorithms, indicating that this "modest number" is less than 32. This is not
necessarily true for other architectures: degradation of network latency in shared-memory
architectures may only appear when there are hundreds of PEs. There are examples where a
medium-size shared-memory machine will solve a problem with a method that appears to be
more efficient than a Hypercube can use. In many cases, such a method fails on larger shared
memory machines and a different method is required. Frequently, the new method is similar to
the method used for Hypercubes. AB a result, the best Hypercube work is often done on
machines with 32-128 PEs.

1.2. Hypercubes' Application Domain

One method of demonstrating the generality of Hypercubes is to identify potential
application areas and persuade practitioners in those areas to try the architecture. To be
successful not only requires good technology and programmability, but the tools must be well
developed and disseminated effectively. In the five years that an effort of this sort has been in
progress at Caltech, it has been demonstrated that the vast majority of science and engineering
problems can be run on Hypercubes. The rapidly growing Hypercube Conference represents the
effective dissemination of this information.

A paradigm for Hypercube programming was pioneered by Caltech and is now accepted by
most Hypercube users. In this paradigm the data associated with an algorithm resides in the
memory of the PEs. The data is manipulated in a series of steps, which may involve local
arithmetic, communication with other PEs, or both. Synchronization of the steps is either
through a host program, or done autonomously with other PEs. Between synchronization
points, the PEs run independently -- as is often required by irregularities and differences
between the data domains in the PE.

This paradigm has been studied extensively and appears to apply to problems with the
following two characteristics: First, the problem must be large. Larger problems have more
intrinsic parallelism, which for this paradigm is called the edge-over-area effect. Second, the
computation must be loosely synchronous. Loosely synchronous means that the algorithm has a
natural synchronism built into it, such as an iterative sequence that creates time
synchronization. It is perhaps a dangerous oversimplification but one could summarize the
lessons of the many years of the user oriented effort at Caltech by: "Large loosely synchronous
problems run well on Hypercubes and this success will extrapolate to future much larger
machines."

The three examples in this paper; high energy physics, circuit simulation, and LV
decomposition are all effectively loosely synchronous with Monte Carlo sweep number, time, and
"eliminated variable" respectively providing the necessary course grain synchronization. The
above condition is presumably a sufficient and not a necessary condition; applications such as
computer chess, transaction analysis, and event driven simulations do not fall into the loosely
synchronous class. It is probably unknown at present if any parallel architecture will give
scalable speedup to general cases of these non-loosely synchronous applications. We can
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usefully compare the Hypercube with machines like the Goodyear MPP, ICL DAP, and
Connection Machine. These use the same "data parallelism" as in the above Hypercube
paradigm but require fully synchronous problems instead of more general loosely synchronous
ones. Synchronous problems have a fine grain synchronization allowing lockstep operation of
their different components; loose synchronization only requires occasional rendezvous'.

Although this basic paradigm is well understood, the most appropriate or convenient
programming environment has not been established. Most of the work at Caltech has used a
rather brute force approach. This has lead to several ideas that could be part of future systems.
For instance, CUBIX is a parallel generalization of conventional UNIX I/O. The language
Coherent Parallel C (CPC), is a natural asynchronous generalization of the SIMD environments
for the DAP and Connection Machine; explicit message passing is not necessary and is supplied
by the operating system at the loosely synchronous rendezvous'. Neural network decomposition
and load balancing tools promise automation of the breakup of the data domain. The
sophisticated automatic compiler decomposition technology developed for shared memory
parallelization and vectorizations appears to be portable to the Hypercube. Further, the
object-oriented paradigm may well be a convenient implementation of the current methodology.
Although these improved environments are still at an early stage, industrial use of the
Hypercube, such as that at Bell Labs and Shell, has already begun and technology transfer is
expected to continue and grow.

In section 2, we concentrate on the speedup shown with one example, a Monte Carlo
calculation of a so-called lattice gauge theory. This application illustrates the essential points of
the Caltech paradigm, including near-unity efficiency on 512 PEs -- for a speedup of 458. In the
accompanying material, [Fox 87] and our book, "Solving Problems on Concurrent Processors,"
the general applicability of Hypercubes to loosely synchronous problems is fully reviewed.

1.9. Software Eng£neer£ng for Hypercubes

While programmers have used the Caltech paradigm to code a large number of applications,
there are applications for which it does not apply. The Bell Labs' contribution is to try to show
that a programmer can, in principle, code any application for a Hypercube.

The field of software engineering studies how applications are coded for a uniprocessor by
real people and with a moderate amount of human effort. Since uniprocessors are the
prototypical general purpose computer, we can give some evidence that Hypercubes are general
purpose by developing Hypercube analogies to the software engineering methods used for
uniprocessors.

Programmers are believed to reason mentally with Plans, or mini-programming scenarios. An
example for such a Plan might be to apply some function (another Plan) to every data item in a
set (or array). Such a Plan would likely be coded with a do-loop in Fortran. On a Hypercube,
where the data is resident on the PEs, the Plan could be coded as the host commanding the PEs
to execute the embedded Plan via a broadcast protocol. Other information is associated with
Plans: the execution time of a Fortran loop is the sum of the execution times of the embedded
Plan, whereas on a Hypercube, the total execution time is the maximum over the embedded
Plans. The important point is that programmers reason effectively with Plans and their abstract
complexity measures, and Plans are not biased for or against multiprocessors.

The Bell Labs' approach has been to identify Hypercube Plans and to develop system
software to allow them to be used efficiently. Plans are frequently coded as manipulations of
distributed objects (or hybrid objects), which are communication protocols that do data
distribution, combining, synchronization, or a similar function. To allow Plans to be combined
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in parallel or in a hierarchy with other Plans, it is necessary that some PEs of a Hypercube be
able to operate independently of other PEs. AB a result, the run time system supports
distributed objects executing ephemerally and asynchronously.

The second entered program is an IC circuit simulator that is in actual use in a research
laboratory at Bell Labs. In making the most effective simulator, several characteristics emerged
that are at odds with demonstrating high speedup. We use an algorithm that avoids
unnecessary transistor model calculations, reducing uniprocessor running time, but introducing
load imbalance on the Hypercube. We also use real circuits which each have a limited amount of
available parallelism. Finally, our circuit descriptions are up to 1.5 mByte of compressed binary
data, which introduces significant load time. The simulator nevertheless has moderate
efficiency for practical combinations of circuit and multiprocessor size. Several versions of the
simulator were originally coded on a Hypercube called "BTL Hypercube" using an experimental
operating system that supports "Protocols and Plans." It was later moved to an Ncube
Hypercube. Simulations of the 5K transistor control portion of a fuzzy logic chip yield a speedup
of 18 on the 64 PE BTL Hypercube, and 31 on a 128 PE Ncube. The entered speedup result is
39 on 127 PEs, (speedup of 43 derated by loading time) for simulating a 68K transistor circuit
that constitutes a variable length delay line. The largest chip simulated to date implements a
"neural net" and has 119K transistors. The application is described in more detail in section 3
and in [DeBenedictis 87]' which accompanies this submission.

L~. Compilers for Hypercubes

While the Caltech and Bell Labs' contributions have shown that programmers can code any
application for a Hypercube, Yale's contribution is to suggest that they need not do it at all.
The Crystal compiler takes control of the allocation of data and computations to PEs, and of
communications. This is analogous to a regular compiler, which takes control of the assignment
of memory addresses and the allocation of machine registers, thereby relieving the programmer
of a burden. Crystal has variables, but they are not localized to a particular PE in source code.
The compiler decides where a variable will be located and generates code to send its value to the
places where it is used. The compiler also decides on the order of computations and generates
synchronization events as necessary.

The Crystal compiler uses a symbolic representation of the data flow in a program. Heuristics
are used to generate symbolic mappings of data items and computations to PEs and time
sequence. The compiler then instantiates some of the symbolic representation to produce
behavior peculiar to particular PEs, and generates code to evaluate the rest of the program
within each PE at execution time.

The third entered program computes the LV decomposition of a matrix and was written in
the Crystal language, compiled by the Crystal compiler, and run originally on a Intel iPSC
Hypercube with 32 PEs. For this submission, the program was run on a 128 node Ncube
multiprocessor. The application is described in more detail in section 4 and in the
accompanying documents [Chen 86] and [Chen 87].

The compiler-generated program is presented to represent all programs that can be coded in
the Crystal language -- rather than as an engineering application. We believe the ability of
Hypercubes to run engineering applications has been established by the previous examples and
that Crystal makes an equally strong statement on the generality of Hypercubes in its own way.
AB a uniprocessor language, Crystal has been demonstrated on a wide variety of algorithms, and
has a flavor similar to APL. Compiling techniques for Crystal on parallel machines have been
studied extensively and reported in the literature. The Crystal Hypercube compiler has been
demonstrated on three algorithms to date.
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Hypercube compilers -- as well as Hypercube software engineering and Hypercube conferences
-- could be applied to other architectures, so why did we demonstrate these speedup figures on a
Hypercube? There seems to be an obvious answer: we own Hypercubes with many PEs, and not
other machines. This relates back to the technological argument presented in the beginning -
Hypercubes are unusually favored by technology. The large number of Intel iPSC machines
with 32-128 PEs in universities show that a significant parallel processor can be obtained with
modest funds. The Ncube/10 with 1024 PEs shows that, with a million dollars, you can build a
more powerful Hypercube than any other architecture.

2. Quantum Ghromodynamics by Domain Decomposition

2.1. Overview of Loosely Synchronous Problems on the Hypercube (The Hypercube Application in
Breadth)

In this section, we briefly review the general issues while in Sec. 2.2 we focus on lattice gauge
theory on the Hypercube and finally in Sec. 2.3, consider a particular code on a particular
Hypercube and its performance analysis.

The breadth of applicability of the Hypercube and its acceptance by the science and
engineering communities can be illustrated by the approximately 80 abstracts submitted to the
relevant applications and algorithm sessions at the Third Hypercube Conference (HCCA3) to be
held in Pasadena on January 19 and 20, 1988. Caltech has been a pioneer in the scientific use of
this architecture and we will concentrate on the work of the Caltech Concurrent Computation
Program (C3P), in the following. We can quantify the application breadth by figure 2 which
lists the projects currently under development by C3P. Further information on these will be
found in our annual report C3P-487 and a qualitative analysis of these, as of January 1987, will
be found in C3P-391. In figure 2, all the implementations are loosely synchronous except those
labeled 59 and 61 corresponding to computer chess and transaction analysis. Note that the
loosely synchronous classification depends on the particular algorithm used to solve a problem.
For instance, the branch and bound approach to optimization (such as the traveling salesman
problem) is not loosely synchronous and it is difficult to get good speedup; however, simulated
annealing or neural network methods for the same problem are loosely synchronous and
speedups scale to large machines.

Our early papers, [C3p-161, 255]' show that the performance of loosely synchronous problems
can be modeled by a communication overhead

f c=
constant tcomm

(2-1)

where n is the gram SIze and d is the system dimension. t eomm and tealc specify the nodal
communication and calculation performance. This quantifies the "edge over area" rule
mentioned earlier. Using an appropriate definition of d allows the formula to apply to general
systems when the natural geometric concept of "edge over area" is inapplicable. We have found
the Hypercube quite suitable for nonlocal problems such as those involving medium or long
range particle interactions. The value of n in equation (2.1) allows one to quantify the
"largeness" of problems already mentioned in Section 1.2. Typically, one would scale at
approximately constant n, so that the problem size increases linearly with the size (in terms of
number of nodes) of the machine.

The concept of loose synchronicity has only recently been introduced m [C3P-451] and our
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34 Applications from Callech Computation Pro&,Am u or No.ember 1981. (Labelled 28-61)
(1. In Progr.... B. Begin, e- Complete).

Engineering (See also Numerical Analysis)

Che.lstrr aad Chemical Eagln..rlng

BlnlO&y and CNS

Geophysics

42 I: Finite·DilTerence W"ave Propagation
43 I: Normal Modes of the E3Ith
44 I: Finite-Element Row Modelling (191)

Physics

45 I: Lattice Gauge Theory with (184)
Fermions on the Hypercube

46 D: Random Lattice Calculations (l8~)

47 C: Two Dimensional Melting (95)
4g D: Non Local Path Integral (177)

Montc Carlo for Helium
49 I: N log N Algorithm for (164)

Astrophysical Particle Dynamics
50 I: The Hypercube Cor Astronomical (215)

Data Analysis
51 I: Statistical Gravitational Lensing (184)

51A I: Multichannel SebrMinger Equation(15)

(207)

(16)

GeDeral Alaorltbau ud Numerical Aulylll

52 C: LU Decomposition of Banded M3trices (4)
and the Solution of Linear Systems

53 C: Optimal Matrix Algorithms (C·P-314.386)
and Communication Strategies for
Homogeneous Hypercubes

54 I: Adaptive Multigrid on the Mark III (159)

55 I: Finite Element Methods in Coherent (56)
Parallel C

(73) 56 C: Communication Strategies for (C·P·405)

(lOg) Network Simulations
57 C: A Concurrent Implementation of (6)

(131) the Prime Factor Algorithm
(468) 51 C: Concurrent Tracking Algorithms (186)

(3030) with Kalman Filters
59 I: Chess 00 a Hypercube 383

(189) 60 C: Shin Register Sequence Random Number (182)
Generators on the Hypercube

61 B: Transaction Analysis on the NCUDE

(C'P-404)

Ray Tracing on the Hypercube
Plasma Simulations on the Mark III
Hypercube Computer
Vortex Dynamics
Synthetic Aperture Radar (SAR)
Analysis on the Hypercube
Rux-Corrected Transport on the NCUDE
Parallel Free-Langrange Hydrodynamics
with a Distributed·Memory
Parallel Processor

Integration of Coupled Sets of Ordinary
Differential Equations on the Caltech Hypercubes:
Matrix Inversion
Polymer Simulations on the Hypercube
Concurrent Optimization and Dynamic
Simulation in Chemical EnginccrinB
Quantum Lattice System for High
T, Superconductivity
and Monte Carlo Simulation

Structural Simulations oC Neural Networks
Using a General·Purposc Neural Network
Simulator and a Hypercube Concurrent Computer
Periodic Orbil5 in the Piriform Cortex
Back Propagation Algorithms for
Character Recognition and Computer Games
Pattern Recognition by Neural Networks
on Hypercubes
Collective Stereopsis
M3pping the Human Genome
Modeling Complex Neurons

C:
t

t
I:

t
I:

D:
D:

D:

I:

D:
C:

I:
D:
D:

I:

33

36
37

31
32
32A

34
35

28A
29

31
39

40
41

35A

30

21

Figure 2: Caltech Applications

book; it ensures that communication and modest load imbalance fL dominate the overheads. In
the typical problem of figure 2, one finds that the speedup S is given in terms of the number of
nodes by:

N
s= (2-2)

1+(h+ f 0)

or

N
S= --Min (1,1/ f 0) (2-3)

l+h

depending on the presence (Eq. (2-3)) of absence (Eq. (2-2)) of overlap between communication
and calculation. Particular hardware and algorithms may lead to partial overlap with formulae
intermediate between Eqs. (2-2) and (2-3).

fa and fL are -- up to logarithms -- independent of N and only depend on the grain SIze n.
The success and simplicity of the model given in Eqs. (2-1, 2, 3) has lead us to cut back on our
earlier detailed performance evaluation which was a reflex with each new application; this is
"old hat" and we concentrate on other issues in our research.
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2.2. Lattice Gauge Theory on the Hypercube (Hypercube Applications in Depth)

Computational high energy physics was one of the original motivating forces behind the
original Cosmic Cube and has used much of the cycles on the Hypercubes at Caltech. Figure 3
lists the some sixteen calculations of this type that have used the Hypercube -- starting in 1982
with the original 4-node 8086-based prototype. The sixty-four node Cosmic Cube was used for
2500 hours on the computations reported in Ref. 3 of Table 2.2.

Gauge theories are ubiquitous in elementary particle physics: the electromagnetic interaction
between electrons and photons is described by quantum electrodynamics (QED) based on the
gauge group U(1), the strong force between quarks and gluons is believed to be explained by
quantum chromodynamics (QCD) based on SU(3), and there is a unified description of the weak
and electromagnetic interactions in terms of the gauge group SU(2) x U(1). The strength of
these interactions is measured by a coupling constant. This coupling constant is small for QED
so very accurate analytical calculations can be performed using perturbation theory. However,
for QCD the coupling constant appears to increase with distance so that perturbative
calculations are only possible at short distances. In order to solve QCD at longer distances,
Wilson [Wilson 74] introduced lattice gauge theory in which the space-time continuum is
discretized to provide a cut-off that regulates ultraviolet divergences non-perturbatively. This
discretization onto a lattice, which is typically hypercubic, also makes the gauge theory
amenable to numerical simulation by computer.

Most of the work on lattice gauge theory has been directed towards solving lattice QCD and
thus deriving the hadron mass spectrum from first principles. This would confirm QCD as a
theory of the strong force. Other calculations have also been performed, in particular, the
properties of QCD at finite temperature and/or finite baryon density have been determined.
Unfortunately, in order to simulate lattice QCD on a computer one must integrate out the
quark variables (because they are fermions i. e., anticommuting elements of a Grassmann
algebra rather than numbers) leaving a highly non-local fermion determinant for each flavor of
quark. Physically, this determinant arises from closed quark loops. The simplest way to proceed
is to ignore these quark loops and work in the so-called quenched approximation with no flavors
of quark present. (This may be valid for heavy quarks.) Current state of the art quenched QCD
hadron mass calculations are performed on lattices of size 163 x 32 (using ICL DAPs) [Bowler 86]
and 243 x 48 (using CRAY) [de Forcrand 86]. Other quenched QCD calculations include
determination of the scaling behavior of the deconfinement phase transition on a 193 x 14 lattice
(using CYBER) [Gottlieb 85] and measurement of the heavy qq potential on a 204 lattice (using
the Caltech 128-node Mark II Hypercube) [Flower 86].

However, to investigate the physically more realistic fully interacting QCD, with the inclusion
of dynamical quarks, one must go beyond the quenched approximation and tackle the problem
of the fermion determinant. One of the first methods invented for doing this was the
approximate method of pseudofermions [Fucito 81] and this has been used extensively. There
are also exact methods, for example, that of Weingarten and Petcher [Weingarten 81]' and the
block Lanczos algorithm [Barbour 85]. More recently, equation of motion methods -- using the
stochastic Langevin equation [Parisi 81] or the deterministic microcanonical method [Callaway
82] or a mixture, hybrid, or both [Duane 85] -- have been applied to lattice gauge theory. All of
these methods have been tested on small lattices. What one would like to do now is realistic
simulations of QCD (with quarks) on larger lattices, calculating the hadron mass spectrum, the
properties at finite temperature and/or finite baryon density, the qq potential, etc., to see the
effect of the quark loops.

To illustrate the needs of these current computations consider the hadron mass calculation
on a reasonable but probably still too small 243 x 48 lattice. This requires 1/4 gigabyte of
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This lists Caltech research using the hypercube for numerical Quantum field theory in
approximately chronological order.

Authon

Broou, Fox, Otto Glueball maN
Randeria, Athu
De Benedidia,
Newton, Seitl

Project Hypercube

Mk I
4 node

Reference

Otto, Randeria Glueball maN, modified action Mk I
4 node

Otto, Stack

Otto, Stolon

Static quark potential (Melon)
123 x 16 lattice

Glueball maN, enhanced atatiati""
123 x 16 lattice

Mk I
64 node

Mk I
64 node

3

4

Fucito,
Soloman

Chiral aymmet'1 bnaking I finite I paeudo Mk n
Deconfinement tranBition I temperatura I fermion 64 node
MaN apectrum I

5

5
6

Patel, Otto,
Gupta

Flower, OUo,
Martin

Flower, Otto

Flower, Otto

Kolawa,
Furmanski

Stolon, Otto

Flower

Flower

Flower

Monte Carlo renormalization
croup. Nonperturbative fJ-function

Finite temperature deconfinement
4 light quark flowen

Energy density, heavy meson

Static quark potential
(Meaon) 20' lattice.
Scaling

Glueball maN (au(2». Hamiltonian
'loop' formaliam

M.crocanonical renormaJization
Group

Restoration of rotational
aymmet'1

Static quark potential
(Baryon) 20' lattice

Energy denaity (Baryon)

Mk I
64 node

Langevin Mk n
32 node

Mkll
32 node

Mkll
128 node

Mkll
32 node

Mk I
64 node

Mkll
128 node

Mkll
128 node

Mkll
32 and 128 node

7

Unpubliohed

8

9

10

11

12

12

12

Flower, Otto, Static quark potential
Martin, Apootolakia (Meoon). Four light flavon

by Langevin method

MarkID
32 node

In progreso

Baillie, Ding,
Gupta

QeD with
fermion.

FPS T-oerieo
128-node

In progreaa

Figure 3: Quantum Physics Programs

memory and about a gigaflop-year of cycles. This would be possible on a dedicated Hypercube
of the power just becoming available from JPL (Mark IIIfp) or INTEL (iPSC2/VX). Future
machines of NCUBE would be applicable as we can estimate the current 1024 NCUBE/I0 at
about 200 mflops on this computation.

Lattice gauge theory can be used with the static domain decomposition although there are
some subtleties with the order of the Monte Carlo updates and the calculations of so-called
observables. These issues are reviewed in our book. Nevertheless, the ability to use high-level
languages has enabled the Caltech group to use the very best algorithms and not as in many
specialized machines, trapped into old or less efficient algorithms. This is again illustrated in
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figure 3 by the number of students and postdocs who have used the Hypercube for a rich variety
of different computations within this single application.

2.3. The Performance of the QCD Code on the NCUBE Hypercube

The pure gauge, lattice QCD code has been run extensively on the 512-node NCUBE at
Caltech. The performance of this code has been discussed in C3P-490. This code spends most of
its time updating the SU(3) matrices associated with each link of the lattice. The calculation
time to update the lattice once is:

(2-4)

where Nsites is the number of lattice sites per PE, t ca1c is the time to perform a single floating
point operation, A is a constant close to unity, N is the number of PEs, and beta is the coupling
constant. A Monte-Carlo technique is used in updating the lattice to generate random numbers
with a particular distribution. The function Nl(N, (3) is the average number of trials necessary
to generate each random number.

The time spent communicating when updating the lattice is given approximately by:

(2-5)

where L j is the number of sites per nodes in dimension i.

The overhead, f = NjS - 1, is therefore

(2-6)

where the first term is due to load imbalance and is small (for a 512-node Hypercube) compared
with the second term which is due to communications. We give timings and speedups below for
updating lattices of differing sizes on the 512-node NCUBE.

Total size N site.• T.')1£ T r Speedup Overhead

16x8x8x8 16 5.202 2037.033 391.7 0.308

16x16x8x8 32 10.123 4073.586 402.4 0.272

16x16x16x8 64 19.598 8146.693 415.7 0.232

16x16x16x16 128 37.995 16292.905 429.1 0.194

32x16x16x16 256 73.386 32585.330 443.9 0.153

32x32x16x16 512 144.493 65170.179 451.1 0.135

32x32x32x16 1024 284.819 130339.879 457.7 0.119

The maximum speedup of 457.7 was obtained for a 32x32x32x16 lattice. The overheads given
in the table above are plotted in figure 2.1, and the measured values agree with those predicted
by Eq. 2-5. We can be confident, therefore, that equation 2-5 can be used to predict the
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speedup obtainable for different sized lattices and Hypercubes. For example, for a 32x32x32x16
lattice on the largest available NCUBE (1024 nodes) we predict a speedup of about 915.

0.35
Concurrent UPDATE Routine on the NCUBE Hypercube

0.3

A

0.25

~ 0.2

.e
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A

0.1

0.05

2.01.81.61.40.8 1.0 1.2

Sum of IlL
0.60.40.2
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Figure 4: Update Phase Overhead on 512 Node Ncube

9. A Circuit Simulator Conceptualized By Programming Plans

Let us start by considering the way that people think about computer programming from a
psychological rather than the usual mathematical viewpoint [Soloway 86, Waters 85].

do 10 i = I, k
10 f(data(i))

The code shown above represents programming knowledge, or a Plan, called the Loop
Iteration Plan. The Plan sequences through an array and applies function f to each data item.

The Loop-Iteration Plan is an example of something that an experienced programmer has
used many times, but usually through variants and in combination with other activities. Here,
data values are stored in an array, whereas in a variant they might come from a linked list.

Figure 5 is a nearly identical Plan that is relevant to multiprocessor programming. The Plan
is called the Master-And-Slaves Plan (MS) and the action starts with the master, who picks a
task and makes the slaves work on the task. When the slaves are all done, the master is
notified and can do whatever action follows this Plan. Note that the activities performed by the
slaves are generally asynchronous and different, thereby distinguishing this Plan from the way a
SIMD computer operates.

An example of this Plan is a person running a multiprocessor program interactively. The
person is the master and uses the program by repeatedly typing a command to the program and
observing the output. The slaves are the PEs of the multiprocessor, and they repeatedly input
commands from the master, compute something with the other PEs, and collectively report
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Figure 5: Master-And-Slaves Plan

completion to the master. Of course, a multiprocessor is not restricted to having one master;
some parts can be master for other parts.

MS could be implemented by the master broadcasting commands to the slaves, and the slaves
participating in some sort of collective acknowledgement protocol with other slaves and the
master to indicate completion. We have a distributed object, called the MS primitive, which
does the distribution and collective acknowledge for this Plan.

Programs are decomposed recursively into Plans and manipulations of distributed
programming primitives. When only messages are used as distributed programming primitives,
a programming style identical to "loosely synchronous" results. The internal operation of the
distributed programming primitives is not, however, loosely synchronous. A little additional
power is gained through use of primitives different from messages, and considerably more power
is available if the programmer wishes to construct distributed programming primitives directly
as communication protocols. The Bell Labs' approach addresses the difficulty of asynchronous
programming by limiting it to the construction of the primitives that are used by the bulk of
the program. While programmer productivity may be low for asynchronous programming, little
time is actually used because the primitives are only a small part of the program.

The Bell Labs Hypercube operating system provides an efficient environment for common or
custom protocols. Protocols such as shared memory [Rudolph 84], RPC [Birrell 84], and f&a
based [Gottlieb 83] are possible. Since Hypercube communication hardware is not specific to
any particular programming primitive, the system designer is free to provide those that are
most useful in conceptualizing Plans. The Hypercube operating system at Bell Labs
simultaneously supports multiple independent instances of distributed programming primitives
with different behaviors described by state-transition functions.

9.1. Programming Example - A Oircuit Simulator

Integrated circuit simulation is an important computationally intensive application. Circuit
simulations which use exact transistor models and accurately model the analog functional and
timing behavior of integrated circuits are currently applied to portions of integrated circuits
with around 100 transistors. It is important to industry, however, that whole integrated
circuits, containing perhaps 1,000,000 transistors, be simulated. Whole integrated circuits can
currently be simulated only by abstracting the analog and timing behavior of many small
portions of the circuit and then functionally simulating the entire circuit with these
abstractions. Functional simulation is inaccurate at modeling timing and analog properties.
This section discusses a distributed algorithm for a simulator midway between circuit and
functional simulators. By bringing more computational power to bear on a simulation task, this
simulator [Ackland 86] permits more extensive simulation of chips during the design cycle, and
might therefore speed progress in the IC industry.
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3.2. Uniprocessor Circuit Simulation

The type of simulator discussed here divides the simulation into intervals (~t) and
repeatedly computes the voltage on each wire at time t+ ~t based on voltages at time t.

for each timestep
for each element

read V(t) from inputs, simulate, and write V(t+~t) to outputs

The Plan shown above must be merged with the Simultaneous Update Plan. This Plan
assures that the value computed for a wire at time t+ ~t is really based on voltages at the
input of the circuit element at time t. Simply associating a variable with each wire to hold its
voltage does not work. When a wire goes from the output of one element to the input of
another, and the first element happens to be updated first, then the second element is updated
using the new voltage value. A common uniprocessor version of the Simultaneous Update Plan,
shown below, associates two variables with each wire, one for an old value and one for a new
value. When each circuit element is updated values from the old variables are used to compute
values for the new variables. A second phase iterates over each circuit element a second time
moving the new variable to the old variable.

for each element
new voltage = update(old voltage)

for each element
old voltage = new voltage

3.3. Multiprocessor Circuit Simulation

Figure 6 illustrates a multiprocessor Plan for circuit simulation. The Simultaneous Update
Plan is managed by queues which are written by circuit elements with outputs and read by
circuit elements with inputs. During initialization, one voltage sample is put into each queue.
In a one-step simulation, the number of voltages in some queues would follow the sequence 1-2
1, and some 1-0-1. In an asynchronous simulation, a quickly simulating element might encounter
an empty input queue and have to wait.

ueue

ueue

ueue

Figure 6: Multiprocessor Simulator with Queues

Figure 7 illustrates the MS Plan in the context of the circuit simulator. The definition of the
circuit simulation problem requires that there be a person running the program issuing
commands such as "simulate for 100 ns." Such a command must be delivered to every slave
with circuit elements, which simulate until done, and then participate in a collective



- 14-

acknowledgement directed toward the master. The master then decides if more simulation is in
order or if the answer is to be printed.

Figure 7: Simulator Control Plan

9.4-. Variants of the Simulator

Several different versions of this circuit simulator have been studied at Bell Labs and are
summarized below. The algorithm described earlier suggests that each PE synchronize after
each simulation time step to avoid unbounded filling of the queues. The synchronization
necessary to separate timesteps is less general that provided by MS; specifically, no data needs
to flow for this synchronization. A special synchronization protocol was developed that has
higher performance than MS, and this version is called synchronous. A version of the simulator
was tried where each element asynchronously updates voltages when a new set of input voltages
are ready at the input queues and all the output queues have at least one empty location for a
new voltage. The asynchrony inherent in this version improves load balancing by allowing
temporarily compute-bound elements to fall behind the rest of the simulation without incurring
idle time on some PEs. This version is called asynchronous. A Linda tuple space [Lucco 87] was
implemented as a distributed object and formed a third version. Speedup figures are illustrated
as a guide only and are from the BTL Hypercube using different versions of the program on
different circuits.

synchronous asynchronous hnda
MS's 1 1 none

queues 3700 wjflow control 3700 datagram none

synchronizers 1 none none

tuple spaces none none 1

error message paths 1 1 1

speedup on 64 PEs 18 6 nja (17)

Figure 8 illustrates the efficiency degradation of the synchronous version of the simulator as
a function of circuit size and the number of PEs. Overall efficiency is further degraded by
communication cost, which for a Ncube is about 50%. The graph is based on a model which
assumes that elements (gates) are randomly distributed and require non-trivial computation for
simulation 20% of the time. If there are k elements on a PE, the number of element simulations
in a timestep will equal k trials of a 20% random variable. As the number of elements in each
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PE increases there are more random trials and the percentage variance decreases. Loss of
efficiency due to load balance occurs because all PEs must wait until the PE with the greatest
number of element simulations in the entire Hypercube completes. To maintain the same
efficiency on a multiprocessor with 10 times as many PEs, the graph indicates a circuit with
about 30 times as many transistors is required. While this is not perfect scalability, it shows
60% load balance efficiency (30% overall) for a lOOK element Ie (about 1M transistors) on a 1K
PE Hypercube (the largest Ncube). We have not tried a 1M transistor chip because we do not
have a circuit description, and a chip of that size will not be designed just to test the simulator!
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Figure 8: Load Balance Efficiency

The table below illustrates the measured speedups for the simulator running on a Ncube with
128 PEs. (One figure is included from a run on the 512 PE Ncube. Unstable hardware
prevented other runs.) Speedup was calculated by the running program based on the percentage
time executing the "inner loop" during actual simulation. A 100 Hz real time interrupt invokes
code that examines the stacked program counter, identifies which subroutine is executing, and
increments a counter for that subroutine. A particular subroutine which evaluates transistor
models, but is unrelated to the distributed aspect of the program, is designated as doing useful
work; everything else is designated as overhead. Stopwatch time for loading the program and
circuit description is factored into the column labeled 127 PEs* only. Load time is amortized
over the execution time of the simulation, and the simulation plot in figure 9 shows that
excessively long simulations were not used.



- 16 -

circuit name transistors 16 PEs 32 PEs 64 PEs 127 PEs 511 PEs 127"""-PEs

dly 68K ? ? 26 43 ? 39

fuzzy 6K 10 14 22 31 39 30

fu1l8 119K ? 18 32 39 ? 35

hwafl 46K 11 20 24 25 ? 25
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Figure 9: Simulation Plot

4. An LU-Decomposition Program Generated by the Crystal Hypercube Compiler

Crystal aims at providing an architecture-independent notation for programming: one or
multiple processors; shared-memory or message passing architectures; SIMD or MIMD machines;
and mesh or hypercube interconnections. The language is general purpose and its programs
resemble mathematical descriptions.

Crystal's Hypercube compiler divides a program into a collection of code and data partitions
automatically. Each partition is assigned to a single PE, and the computations are orchestrated
in time and space by distributed control. This control is achieved via interprocessor



- 17 -

communications on a message passing machine and synchronization on a shared-memory
machine. The strategies in task decomposition and data distribution are geared towards
minimizing communication overhead and maximizing efficiency.

Crystal's parallel programming space is multi-dimensional as opposed to the one-dimensional
space of sequential programming. In the multi-dimensional programming space, PEs and their
sequencing can be arranged in a variety of different ways. For instance, if a user program has
indices i, j, and k to express data access and loop sequencing, the Crystal compiler tries to find
an optimal time index among one of the original indices, or in a linear combination of these
indices.

Hence the number of possible solutions to a given problem can be different not only in the
algorithmic sense: also, the same algorithm can have many different realizations in multi
dimensional space and time. Each such realization has different control flow, data flow,
granularity, and space-time trade-offs. Each space-time realization is determined systematically
by an optimization procedure. In theory, integer programming is necessary to find the optimal
space-time tradeoff although faster heuristics may be effective also. In the demonstrated
program, the structure of the algorithm was used as a hint for a simple heuristic.

Among the many different possible (near) optimal realizations, the choice must be made on
the basis of target machine characteristics such as computation to communication ratio and
topology. Hence a program specified in a very-high-Ievel notation allows room for such
optimizations, and for maintaining the portability from one generation of the machine to the
next.

4.1. A Programming Example

The following is the Crystal program for computing LV-decomposition of a matrix AD. The
algorithm takes n (the dimension of the matrix) steps to complete. At each step k, a column of
the L matrix, and a row of the V matrix are obtained. Indices i, j, and k correspond to
subscripts (e.g. indices of matrix elements) and superscripts (e.g. indices for iterations) in the
standard linear recurrence notation. In Crystal, the ranges of these indices are defined by the
domains D, Dl, D2, and D3 as shown in figure 10

4.2. Dependency Analysis and Granulization

A Crystal program consists of a set of equations. These equations define a data dependency
graph where nodes correspond to index tuples as shown in figure 11.

A directed edge from node u to node v indicates that the computation of v depends on u; or u
precedes v. A node with no incoming edge, or no predecessor, is a source node. This graph is a
finite degree, directed acyclic graph (DAG), where any path must originate from some source
node (well-foundedness). Thus the nodes and arcs of the graph represent computations and
communications, respectively. The well-foundedness insures that the computation is physically
realizable, in other words, always starts with some well-defined initial conditions.

Directed edges of a DAG constrain the order in which the nodes of the graph can be
executed. Computation of a node cannot be started until its predecessor has finished. Thus,
the maximum path length over all paths in the DAG gives the lower bound of the logical time
steps it takes to complete the computation. For any given node, the maximum path length over
all paths leading to it from some source node is called its wave number. It gives a lower bound
of how soon the node can be computed. Obviously, those nodes with the same wave number are
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LU_decomposition(AO) = [L_matrix, U_matrix]
where (
n = IIAOII, ! dimension of the square matrix

a(i, j, k) over D3 =
< < k = 0 -> AO[i-l, j-l],

(0 < k) and (k <= n) -> a(i, j ,k-l) - (L(i, k) * (U(k, j)))
»,

L(i, k) over Dl =
«(1 <= i) and (i < k)-> 0,

i=k->I,
k < i-> a(i, k, k-l) % U( k, k)

»,

U(k, j) over D2 =
«(1 <=j)and(j < k)-> 0,

k <= j -> a(k, j, k-l)
»,

! define a 3-dimensional domain
D = {(i,j,k) 11 <= i < n+l, 1 <= j < n+l, 1 <= k < n+l},
! projection of D along the 1'st axis
Dl = D proj 1,
! projection of D along the O'th axis, then transpose the domain
D2 = transpose(D proj 0),
! join of two domains into one
D3 = {(i,j,O) I (i,j) in (D proj 2)} + D

L_matrix = [L(i,k) I (i,k) in Dl],
U_matrix = [U(k,j) I (k,j) in D2]
)

Figure 10: LU-Decomposition in Crystal

independent. Hence, they can be computed in parallel. We call the number of nodes that have
the same wave number its width of parallelism. Thus the upper bound of the number of PEs
required to achieve maximum parallelism is the maximum width over all wave numbers. For a
so-called "embarrassingly parallel" problem, its width might be close to the total number of
nodes in the graph.

With a symbolic representation of a dependency graph in hand, the computational task and
data structure that correspond to each node of the DAG is determined. One can view the
original computation as being decomposed into a parallel computation with the finest possible
grain. Thus this process is called granulization.

4.3. Gomp£ler Techn£ques

Compiler techniques described below are based on the analysis of the above-mentioned
dependency graph. Four major techniques are discussed here. The overall structure of the
compiler is illustrated in figure 12.
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Figure 11: The Data-Dependency Graph of LU-Decomposition

4.3.1. Aggregation

The first technique is for the purpose of granularity control. A collection of DAG nodes are
aggregated into an "execution quantum" with no communications within a given execution
quantum. A new directed graph can be formed as follows: let each execution quantum be a node
and let there be a directed edge from quantum p to quantum q if there exists an edge from a
node u in quantum p to a node v in quantum q in the original DAG. The aggregation is chosen
to have enough granularity and to satisfy the condition that the new directed graph is acyclic.
Since no communication is allowed in a given quantum, a cyclic graph results in deadlock.
Thus we call the new directed acyclic graph a QDAG.

For the target LU decomposition program, a single quantum contains a block of n_i rows, n_j
columns, and n_k steps. Let the quanta be indexed by three indices i', j', and k'.
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Figure 12: Block Diagram of Crystal Compiler

4.9.2. Mapping Generation

The second technique is space-time mapping. Two types of space-time mappings are used:
one is a mapping from the set of quanta to a space of processors S and a linearly ordered logical
time domain T. Then other mapping is from the set of nodes D_q within a given quantum q to
nested levels of linearly ordered logical time domains (sequential loops). Optimal or near
optimal mappings are rarely unique and the choices depend on particular objectives. A given
target code may best use two different mappings mentioned above. The former is aimed at
minimizing inter-processor communication overhead while the latter aims at minimizing the
sequential computation time.

For the target LV decomposition program, two mappings are used. Within each quantum,
the indices i, j, and k are mapped to three nested loop indices where i is the innermost level
while k the outermost. In between the quanta, the indices i' and j' are mapped to those for a
two dimensional array of processors. The time index for the target program, however, is
i'+j'+k'.

4.9.9. Communication Methods

The third technique is the determination of communication methods for processors. How
data should be distributed, by broadcasting or pipelining? What kind of network embedding
shall be used? How can hot-spots be avoided? Data distribution affects performance and
scalability of the target code in an essential manner.

For the target LV decomposition program, data produced by each virtual processor are
pipelined in both directions on the two dimensional virtual network.

4.9.4. Virtual Processor Management

Finally, the virtual processors must be mapped to physical PEs. This technique IS geared
toward optimizing load balancing.
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4.4. Performance Results

The Crystal compiler and LU decomposition program were written at Yale and using a 32 PE
iPSC Hypercube and the adapted to a 128 PE Ncube Hypercube at Bell Labs. (The program also
ran on the 512 PE Ncube, but much to our dismay, unstable hardware prevented the answer
and timing statistics from being printed.) Performance figures are given below from the Ncube.
A 50 Hz real time interrupt on the Ncube samples PC values and increments counts associated
with various parts of the code. The compiler output was hand-edited to identify the
computational part of the algorithm to this interrupt routine; all other code is designated as
overhead. Stopwatch time of 6 seconds is added for program loading in the column labeled 128
PEs·.

Matrix Size· 32 PEs 64 PEs 128 PEs 127 PEs

300x300 26 51 96 88

500x500 ? ? 101 98
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