REVIEW	Approval	_					
Prepare Request Search Requests	Search Detail						
Generate Reports Approvals		Submittel	Detaile				
Help		Submittal	Details				
Wizard	Document Info Title : Completing the Journey of Moore's Law						
Search Requests New Search Refine Search	Document Number : 5: Review Type : El Sandia Contact : De Requestor : De	221651 S ectronic BENEDICTIS,ERIK P. Su BENEDICTIS,ERIK P.	AND Number : 2004- Status : Approv Ibmittal Type : Viewg Submit Date : 04/23	1728 P ved raph/Presentatior /2004			
Search Results	Author(s) DEBENEDICTIS,ERI	К Р.					
Edit Request Cancel Request	Event (Conference/Journ Name : Presentation City : Austijn Start Date : 04/23/2	nal/Book) Info at IBM Austin Resea State 2004 End Date	rch Center : TX Cour : 04/23/2004	ntry : USA			
	Partnership Info Partnership Involve Partner Approv	ed : No al : Agreem	ent Number :				
	Patent Info Scientific or Techni Tech	cal in Content : Yes nical Advance : No SD Number :	TA Form Filed	: No			
	Classification and Sensit	tivity Info					
	Title : Unclassified-Unlimited Abstract : Document : Unclassified-Unlimited Additional Limited Release Info : None.						
	DUSA : None.						
		Routing Details					
	Role	Routed To	Approved By	Approval Date			
	Derivative Classifier Approver Conditions:	YARRINGTON, PAUL	YARRINGTON, PAUL	04/24/2004			
	Classification Approver Conditions:	WILLIAMS, RONALD L.	WILLIAMS, RONALD L.	04/27/2004			
	Manager Approver Conditions:	PUNDIT,NEIL D.	PUNDIT,NEIL D.	04/27/2004			
	Administrator Approver			06 /08 /2004			

Administrator Approver ABEYTA, RAMONA D. ABEYTA, RAMONA D. 06/08/2004 Please use current funding statement on future review and approval requests. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000 Printed 6/8/2004 (ra)

Created by WebCo Problems? Contact CCHD: by email or at 845-CCHD (2243).

For Review and Approval process questions please contact the Application Process Owner

1

SAND2004-1728P

Completing the Journey of Moore's Law

Presentation at IBM Austin

Erik P. DeBenedictis Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Outline

Applications of the Future

- Limits of Moore's Law
- How to Reach the Limit
 - Aerogel model
 - Applications Modeling
- No Need For a Breakthrough
- Architecture
- Government-Vendor Issues

Roles of Applications?

- Drives funding
 - Government funds supercomputers because applications provide benefit to society
 - "There ought to be" a document for our Government describing supercomputer benefits over the next 50 years
 - No so, see later

- Drives architecture
 - I think we should design supercomputers to run classes of applications well
 - Alternate view: computer should be easy to use
 - This talk is about the class "simulating physics on a computer"
 - We need to know about the applications to build the computer right

Applications

Example Application: Earthquake Mitigation

- Simulation of ground motion due to earthquakes can be useful in deciding where it is safe to build structures
- Until available data cari be analyzed, there will be unnecessary loss of life and property

number 1, in press (2004)

 Required compute power for sufficient analysis of existing data: 1 Exaflops

Earthquake Risk Mitigation

- Forward Simulation
 - Spectral elements code written
 - Runs well on Earth
 Simulator (vectorizes)
 - Earth Simulator can do to ~.1 Hz
 - Seismographs collect data to ~100 Hz; scaling to 100 Hz would require ~3 Petaflops

- Reverse, "Imaging"
 - Adjoint method code written
 - Uses multiple instances of the forward simulation model, one for each measurement station (hundreds)
 - Scaling to image to the limit of collected data would require ~1 Exaflops

Earthquake Risk Mitigation

- Algorithms: Written
- Code: Runs
- Input Data: Exists
- Consequence of Not Proceeding: People Die
- Required FLOPS: 1E = 1000P = 1,000,000T
 - 25,000 × Earth Simulator

Global Climate

- There is intense political debate about whether indisputable changes in Earth's climate are natural and should be ignored or human-induced and should be a big concern
- Supercomputer simulation could be asked to
 - Answer question about what causes climate change
 - Explore mitigations

Supercomputers to Mitigate Climate Change

- Current status
 - Fairly large supercomputer codes can model climate
 - Conclusion: Results not accurate
 - Camp 1: Increase spatial resolution
 - Camp 2: Increase physics

- Possible future need for a big computer
 - Simulate climate with high spatial resolution,
 - lots of physics, and
 - repeat for 1000 possible candidate mitigations
- Expected result: something humans could do to keep climate habitable
- Required FLOPS: ?

The Class of Applications I'll Talk About

- Space is divided into cells, each with computer variables representing the physical state of the volume represented by the cell
- The computer updates the state of a cell for successive time intervals ∆T based on some physical laws
- I. e. S_{ijk}' = f(S_{ijk}, states of nearby cells)

Outline

Applications of the Future

- Limits of Moore's Law
- How to Reach the Limit
 - Aerogel model
 - Applications Modeling
- No Need For a Breakthrough
- Architecture
- Government-Vendor Issues

*** This is a Preview ***

	Best-Case Logic	Microprocesson Architecture	r	Physical Factor	Source of Authority
2.5×10 ²⁶ ops/s				Landauer limit 500KW/(k _B T log _e 2)	Esteemed physicists
	10 5 Zataflana			Derate 20,000 convert logic ops to floating point	Properties of double precision floating point
				Derate limit 150 to achieve e ⁻¹⁰⁰ error rate	Current logic circuit properties
Expert Opinion	100 Exaflops	800 Petaflops		Derate for manufacturing margin (4×)	Estimate
Estimate	25 Exaflops	200 Petaflops		Uncertainty (6×)	Gap in chart
	4 Exaflops	32 Petaflops		Improved devices (4×)	Estimate
	1 Exaflops	8 Petaflops		Projected ITRS	TRS committee of experts
Assumption: Supercomputer consumes 2 MW wall power = 500 KW to chips		00 Toroflopo		improvement to 22 nm (100×)	
				Lower supply voltage (2×)	TRS committee of experts
		40 Teraflops	~	Red Storm	contract

Thermal Noise Limit

Metaphor to FM Radio on Trip to Dallas

- You drive to Dallas listening to FM radio
- Music clear for a while, but noise creeps in and then overtakes music
- Why?
 - Signal at antenna weakens
 - Thermal electron noise constant at k_B T

- Analogy: You live out the next dozen years buying PCs every couple years
- Electrical effect
 - Moore's Law causes switching energy of gates to decrease at about 30% per year
 - Thermal electron noise constant at k_B T

Details: Erik DeBenedictis, "Taking ASCI Supercomputing to the End Game," SAND2004-0959

Driving away from FM transmitter \rightarrow less signal Noise from electrons \rightarrow no change

Increasing numbers of gates \rightarrow less signal power Noise from electrons \rightarrow no change

- What is the consequence of a computer making a spontaneous logic error?
 - We replace the computer
 - Worse than DRAM, where we would add ECC logic
 - Less severe than a heart-lung machine, where we would not build the machine in the first place
- A supercomputer operating at the physical limits a dozen years from now will perform 10³⁰-10⁴⁰ gate operations in its lifetime
- To avoid premature replacement, the probability of a glitch in a gate should be 10⁻³⁰-10⁻⁴⁰ per operation

Impact of Power on Reliability

- According to the ITRS roadmap, gates in 2016 and based on 22 nm transistors will be at 10× the power necessary to maintain reliable operation
- However, signal energy is lost for all sorts of reasons and manufacturing tolerances make it unwise to design to the limits
- End of road is on the map!

SNR (db)	Power Ratio	P _{error}
10	10	3.9×10 ⁻⁶
14	25	6.8×10 ⁻¹³
18	63	1.4×10 ⁻²⁹
22	160 Noise Limit	3.3×10 ⁻⁷¹
26	400	1.8×10 ⁻¹⁷⁵
30	1,000 2016	4.5×10 ⁻⁴³⁷
34	2,500	7.1×10 ⁻¹⁰⁹⁴
38	6,300	2.2×10 ⁻²⁷⁴³
42	16,000	1.8×10 ⁻⁶⁸⁸⁶
46	40,000	3.8×10 ⁻¹⁷²⁹³
50	100,000 Today	3.2×10 ⁻⁴³⁴³³
54	250,000	8.1×10 ⁻¹⁰¹⁹⁴
58	630,000	1.8×10 ⁻²⁷⁴⁰²⁵
62	1,500,000	9.6×10 ⁻⁶⁸⁸³¹⁵

Noise Levels

- 0 db Limit of hearing
- 20 db Rustling leaves
- 40-50 db Typical neighborhood
- 60-70 db Normal conversation
- 80 db Telephone dial tone
- 85 db City traffic inside car
- 90 db Train whistle @500'
- 95 db Subway train @200'
- 90-95 db Ear damage

- Today: 50 db
 - Thermal noise:Logic:: Rustling leaves:Talking
- 2016: 30 db
 - Thermal noise:Logic:: Talking:Train Whistle
- Reliability limit 20 db
 - Thermal noise:Logic::
 Outside
 neighborhood:Talking

- Generalization of Moore's
 Law
 - Projects many parameters
 - Years through 2016
 - Includes justification
 - Panel of experts
 - known to be wrong
 - Size between
 Albuquerque white and yellow pages

Semiconductor Roadmap

YEAR OF PRODUCTIONS	2010	2013	2016
DRAM & FIICH (am)	45	82	22
MPU / ASIC 45 FITCH (nm)	50		23
MPU PRINTED GATE LENGTH (mm)	25	18	13
MPU PHIMCAL GATE LENGTH (nut)	18	13	8
Physical gate length htgh-performance (EP) (nm) [1]	18	13	8
Equivalent physical oxide thickness for high-performance T_{m} (EOT)(nm) [2]	0.5-0.8	0.4-0.6	0.4-0.5
Gate depletion and quantum effects electrical thickness adjustment factor (nm) [3]	0.5	0.5	0.5
T _{ex} electrical equivalent (nm) [4]	1.2	1.0	0.9
Nominal power supply voltage (V _{ál}) (V) [5]	0.6	0.5	0.4
Nominal high-performance NMOS sub-threshold leakage current, I _{sdiest} (at 25°C) (UA/Jun) [6]	3	7	10
Nominal htgh-performance NMOS saturation drive current , Im (at V _{dd} , at 23° C) (MA/Am) [7]	1200	1500	1500
Required persent current drive "mobility/transconductance improvement" [8]	30%	70%	100%
Parasith source/drain resistance (Rad) (ohm 1000 500	110	90	80
Parasitir source/drain reststance (Red) pe 1 000 k T/tropoietor	25%	30%	35%
Parasitic capacitance percent of ideal gat 1,000 KB1/II ansistor	31%	36%	42%
High-performance NMOS device 4 (Cgate * 9dd/1asernaOoppe) [12]	0.39	0.22	0.15
Relative device performance [13]	4.5	12	10.7
Energy per (INE _{gate} =8) device evitability transition ($C_{gate}^{*}(\ell^{*}E_{gate})^{*}\mathcal{V}^{2}$) (EDevice) [14]	0.015	0.007	0.002
Static power dissipation per (WiLgate=6) device (Watte/Device) [13]	9.7E-08	1.4E-07	1.1E-07

White-Manufacturable Solutions Exist, and Are Being Optimized

Yellow-Manufacturable Solutions are Known

Red-Manufacturable Solutions are NOT Known

Limits for a Red Storm-Sized Computer

	Best-Case Logic	Microprocessor Architecture	•	Physical Factor	Source of Authority
2.5×10 ²⁶ ops/s		←		Landauer limit 500KW/(k _B T log _e 2)	Esteemed physicists
	10 5 Zeteflere			Derate 20,000 convert logic ops to floating point	Properties of double precision floating point
-				Derate limit 150 to achieve e ⁻¹⁰⁰ error rate	Current logic circuit properties
Expert Opinion	100 Exaflops	800 Petaflops		Derate for manufacturing margin (4×)	Estimate
Estimate	25 Exaflops	200 Petaflops		Uncertainty (6×)	Gap in chart
	4 Exaflops	32 Petaflops		Improved devices (4×)	Estimate
	1 Exaflops	8 Petaflops		Projected ITRS	TRS committee of experts
Assump	otion:	90 Toroflopo		improvement to 22 nm (100×)	
Superco consum wall poy	omputer les 2 MW ver =	ou reranops		Lower supply voltage (2×)	TRS committee of experts
500 KW to chips		40 Teraflops	~	Red Storm	contract

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
 - Aerogel model
 - Applications Modeling
- No Need For a Breakthrough
- Architecture
- Government-Vendor Issues

Can We Reach the Limit?

- Method: Compare modeled running time on perfect computer to real computer
- Application: Local calculations with global time step (SOR)
- Technology comparison:
 - 22 nm transistors with 3D atom-by-atom assembly
 - Our best shot at an architecture
- Definition of Success: Our best shot comes within a constant factor of the theoretical peak

Aerogel Computer

- Devise algorithm for a hypothetical aerogel computer
 - Cell may be gate
 - Cell may be memory
 - Is space for cooling, but no cooling
- Model application runtime
- Engineer real computer
- Model application runtime
- If runtimes similar, you succeeded

Aerogel Cooling

- Inflate aerogel computer to point where heat emerging from faces is less than capacity of a designated cooling system
 - Air 45KW/m²
 - Water 62MW/m²
 - Pulse ∞ W/m²

Architecture Target

Neighbors in Mesh

Global Synchronization

Application Modeling

- Sample Problem
 - 3D finite difference equation with global synchronization
 - SOR method

$$T_{\text{Step}} = \frac{K \times F_{\text{cell}}}{\text{floprate}} + T_{\text{Global}}$$

- where
 - K is memory size

 Global synchronization limited by speed of light

$$T_{Global} \ge rac{2 \sqrt{3 \times L_{Edge}}}{c}$$

- where
 - L_{Edge} is edge dimension of cube
- $\mathbf{6} \times \mathbf{L}_{\mathsf{Edge}}{}^{2} \times \mathbf{C}_{x} \leq \mathbf{Power}$

Actual Applications Modeling

- Actual code was several hundred lines of C++
- Theoretical limit covered
 - Coolant
- Realistic covered
 - Layout on a 2D surface of a particular size
 - Heat sink limits
 - I/O bandwidth from chip
 - Coolant

// Physical Constants		
double kB = 1.3806503e-23; // Boltzmann's constant J/K		
double T = 300; // room temperature K double c = 200702459; // room temperature K		
double c = 299192456, h speed of light m/s double MetersPerFoot = 2.54*12/100;	30	
// Parameters that could be static double HSSGBits = 40e9, // HSS speed (bits/s) double ChipArea = 0.2* .02; // Nominal area of a chip = 2 cm x 2 cm = 400mm^2 (m^2) //double ChipArea = 572e-6; // ASIC maximum chip size at production per ITRS 1j 2002 (m^2) //double ChipArea = 572e-6; // ASIC maximum chip size at production per ITRS 1j 2002 (m^2) double GrindFLOPS = 9; // number of this per floating point number (bits) double GrindFLOPS = 9; // number of this per floating point number (bits) double GrindFLOPS = 9; // number of this per floating point number (bits) double CostPerChip = 1000; // purchase price per chip in a system (\$) double CostPerChip = 1000; // purchase price per chip in a system (\$) double CostPerChip = 1000; // purchase price per chip in a system (\$) double FracSpeedOfLight = 1; // signal propagation velocity as fraction of c double FracSpeedOfLight = 1; // signal propagation velocity as fraction of c double FracSpeedOfLight = 1; // signal propagation velocity as fraction of c	5	
<pre>// Formulas double TotalNodes = n*n*n/K; double System/CPUGates = FloatBits*n*n*n; double System/CPUGates = FloatCells*TotalNodes; double TotalCells = System/MemoryBits + System/CPUGates; double MeshUpdate Time = GnndFLOPS*K*FloatFloatUragicProcess Tau; double PropagationVelocity = Magic ? c : FracSpeedOtLight*c; // speed of signal propagation // FLEETZero branchmerge // properties for the branch-merge circuit down to WordsPerMemory word memories double FranchMergePerNode = cell(K/WordsPerMemory)-1; double FarsthFranchMergePerNode = min(BranchMergePerNode, 31); double SystemFastBranchMergeGates = TotalNodes* 30*FastBranchMergePerNode*FloatBits; // 30 ; per bit * 64 bits</pre>):
ComputerInstance Test = "this		
<pre>// Fraction of chip area occupied, rest will be left empty Test FractionChipOccupancy = tTransistorsPerChip/MaxTransistorsPerChip,</pre>		
double $v5 = c6 + v4$		
00000 yo - 00 - ya,		
Test FacePowerDensity = Test SystemPower/6/Test LEdge/Test LEdge,		
Test FacePowerDensity = Test.SystemPower/6/Test LEdge/Test LEdge; double SquareFeetFloor = SystemVolumeCubicFeet/8*2;		
Test FacePowerDensity = Test.SystemPower/8/Test LEdge/Test LEdge; double SquareFeetFloor = SystemVolumeCubicFeet/8*2;		

Performance on Sample Problem

Memory/Node

Cost Efficiency

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
 - Aerogel model
 - Applications Modeling
- No Need For a Breakthrough
- Architecture
- Government-Vendor Issues

Example of Computer at Physics Limit

- Sandia is often approached by people who say we need some elaborate technology in order to run our applications at the Petaflops level
 - Do we need elaborate technology?
 - Is the person just looking for research funding?
- Question: can we make a computer that runs at the limits out of inexpensive components?
 - Yes, subsequent slides are example

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
 - Aerogel model
 - Applications Modeling
- No Need For a Breakthrough
- Architecture
- Government-Vendor Issues

Which Microarchitecture?

- Task: Pick a winner
 - Candidates μP, PIM, vector, FPGA, reconfigurable, streaming, maybe more
 - Each has advantages
 - Not clear which is best
 - Government gets bad press for picking winners too early

- Why do we pick winners
 - Logic is a scarce resource
 - But hang on a minute, don't we have more transistors than we know what to do with, and even turn some off at times?
- Can we change the rules of the game to make NOT picking a winner a virtue?

Multi-Architecture Idea

- Architecture to comprise
 - μP and accelerator architectures 1 and 2
 - Power control Vdd
 circuit so only one is
 turned on at a time
- Benefit
 - Can expect support from cluster community and advocates of architectures 2 and 3
- Arch2=Vector, Arch3=PIM?

Outline

- Applications of the Future
- Limits of Moore's Law
- How to Reach the Limit
 - Aerogel model
 - Applications Modeling
- No Need For a Breakthrough
- Architecture
- Government-Vendor Issues

Ideas on Govt.-Vendor Expectations

- The will be applications requiring arbitrarily large FLOPS rates
- Some of these applications will approach the limits of CMOS microprocessors and some will reach into more powerful computing classes
 - Probably in 12-24 years
- Somebody will build these machines

- Software may have a lifespan of 20 years or more
 - Maturity of Moore's Law before software obsolescence
- Can vendors show that their architectures will be viable over the entire lifetime of the software written for it?

Ideas on Govt.-Vendor Expectations

- From Govt. perspective, some architecture may be headed to a dead end, others may have a role in the end game solution
- How to Tell?
 - Roadmap exists for taking the architecture forward in time
 - Power consumption under control

 Some plausible story exists for describing how well applications will run in the distant future

Extreme Computing

- I define Moore's Law as smaller transistors applied to similar logic circuits
 - 2N transistors for a N-input gate
 - However, some people believe Moore invented the exponential (explain joke)
- Moore's Law limited to 100 k_BT energy per op
 - Doesn't matter how small the line width
- Can recover and recycle energy
- Reversible logic
- Non-FLOPS computing neural nets, molecular...

Reversible Logic

- Reversible logic dissipates energy through "friction"
- If you run reversible logic at speed \propto 1/n, it will dissipate power \propto 1/n²
- However, any design will have a parasitic power loss, so actual loss is not $\propto 1/n^2$, but

$$Power = \frac{P_0}{n^2} + P_{parasitic}$$

• Measured power down 4×, limit 2000×

Reversible Multiplier Status

- 8×8 Multiplier Designed, Fabricated, and Tested by IBM & University of Michigan
- Power savings was up to 4:1

Reversible Microprocessor Status

Status

- Subject of Ph. D. thesis
- Chip laid out (no floating point)
- **RISC** instruction set
- C-like language
- Compiler
- Demonstrated on a PDE
- However: really weird and not general to program with +=, -=, etc. rather than =

Thought Model for Reversible Red Storm

- Replace each Red Storm node with chips constructed from n²≅1000 layers of reversible logic operating 1/n≅1/30 speed
- Overall system 30× faster, same power, 1000× nodes

Active Area O(1μm) thick

Substrate

• Will become feasible for small "line width"

Active Area n² ≅1000 Layers

Conclusions

- There exists at least one application that gives a valuable result to society and requires Exaflops of computing (more work needed here)
- Supercomputers may increase in power exponentially for a very long time (100 years?)
 - But CMOS driven by Moore's Law will flatline in 1-2 dozen years
- We can predict the end of Moore's Law with reasonable certainty (I gave a table with numbers)
- We can reach the limits of Moore's Law without major breakthroughs
- Applications modeling can be applied to distant future devices to yield quantitative information on computer architectures

Backup

General Specifications at Physics Limit

	Red Storm	Limit µP Mode	Limit Turbo Mode
Nodes	10,000	200,000	2,000,000
Node Type	μΡ	μΡ	TBD – say 10 vector pipes
Clock	2 GHz	20 GHz	20 GHz
Flops/node	4 GFLOPS	40 GFLOPS	400 GFLOPS
Sys. Peak	40 TFLOPS	8 PFLOPS	800 PFLOPS
MPI Latency	2.5 μ S	100 ns	N/A – no MPI
Power	2 MW	2 MW	2 MW

- Basic Module
 - 2 Nodes
 - Each node is an ASIC
 System On Chip
 Processor In Memory
 - Each node has memory under ASIC
 - Each module includes a power module
 - Six mesh Interconnects
- Modules connect end-toend in "Shish Kabobs"

- Entire supercomputer is a single structure
- All mesh network wires are of constant length (8" max)
- Air flows front to back
 - General approach will work for liquid cooling as well

Nearest-Neighbor Interconnect

- X Dimension
 - From one board to another laying in the same plane – 2"
- Y Dimension
 - 8" from one board to another spaced above or below - 8"
- Z Dimension
 - Along the Shish Kabob
 4"
 - Name courtesy Monty-Denneau IBM

Maintenance

- Each "Shish Kabob" can be removed for maintenance
- Connects via side-connect technology
 - Similar to Cray shuttle connectors on T3E and X1
- Each Shish Kabob can be composed of segments to avoid limits on PC board technology
- Depth should be OK to 6'

- Landauer makes three arguments in his 1961 paper
 - Kintetics of a bistable well
 - Entropy generation
- We review the second \rightarrow

 Entropy of a system in statistical mechanics:

> S = k_B log_e(W) W is number of states

• Entropy of a mechanical system containing a flip flop in an unknown state:

 $S = k_B \log_e(2W)$

• After clearing the flip flop:

 $S = k_B \log_e(W)$

Difference k_B log_e(2)

Backup: Landauer's Arguments II

- Second law of thermodynamics says entropy of universe must increase
 - Entropy is disorder
- Say you clear a computer memory of n bits. The computer's memory is initially disordered (arbitrary bits) but becomes ordered (all zero). Entropy goes down.

- However, entropy of universe must increase.
- Resolution is that the material of the memory chip becomes more disordered (hotter), offsetting the information in the memory
- A logic gate with multiple inputs but one output has fewer output states than input states: same idea

Backup: k_BT Should Not Be A Surprise

Backup: Floating Point

- A floating point unit has about 100,000 gates
- About 20,000 gates will switch for each operation
- Therefore,

E_{FLOP} ≈ 20,000 E_{gate} ≈ 2,000,000 k_B T

- Landauer limit is: 100 TFLOPS/watt
- Accounting for engineering losses, more realistic:

10 TFLOPS/watt

 If a μP is 1% efficient, the probable limit for a microprocessor is:

10 TFLOPS/watt chip

- Minimum power per logic op 100 k_BT
- Minimum power per FLOP $2 \times 10^6 k_B T$
- Analysis
 - At any T, performance may depend on cooling
 - Cutting T won't save power because of offsetting power in refrigerator, but may make cooling system more efficient
- However
 - Applications modeling indicates DOE apps aren't especially dependent on cooling
- Conclusion: Use room temperature

Cubic

Floure 10: Peak Cooling for a Cube

Backup: Authority on \muP Efficiency

Data parallelism realizes full potential of increased transistor count

Backup: Authority on \muP Efficiency

Data parallelism realizes full potential of increased transistor count

Backup: Languages

- For many years, computer languages have targeted higher programmer productivity, trading easy programming for higher resource consumption during execution. This was believed to be OK because Moore's Law would cut the excess cost over time. Not so anymore
- Need to study languages for mature "irreversible logic" computers that are both easy to use and avoid excessive use of resources

- Floating Point Energy/Op
 - 20,000×100×k_BT=
 - 2×10⁶ k_BT
- Analog Energy/Op
 - k_BT log_e("# states")
 - k_BT log_e(2⁶⁴)
 - 64 k_B T log_e2
 - $-44 k_{B}T$
- Analog 45,000 more efficient

- Heisenberg Uncertainty
 Principle
 - $\Delta E \Delta t \ge h/(2\pi)$
- Waiting Time $-\Delta E = 2^{-64} \times 64 k_B T \log_2 2$

$$-\Delta t \ge \frac{h}{2\pi \times 2^{-64} \times 64 k_{B} T \log_{e} 2}$$

- $\Delta t \ge \mathbf{\sim} \mathbf{3}$ hours
- Analog really slow

Conclusions

- When we look into the future of supercomputing
 - We see some haze
 - However, the end of the road is becoming visible through the haze
- Knowing the end of the road helps now
 - What applications should we anticipate solving?
 - Some software written today will run on end-ofroad supercomputers. What architectures will/will not be around?
- Other roads follow

