
Review & Approval System - Search Detail https://cfwebprod.sandia.gov/cfdocs/RAA/templates/index.cfm

1 of 1 1/2/2008 3:32 PM

 New Search
Refine Search
Search Results

Clone Request
Edit Request
Cancel Request

 Search Detail

Submittal Details
Document Info

 Title : Issues for the Future of Supercomputing: Impact of Moore's Law and
Architecture on Application Performance

 Document Number : 5225758 SAND Number : 2005-6499 P
 Review Type : Electronic Status : Approved
 Sandia Contact : DEBENEDICTIS,ERIK P. Submittal Type : Viewgraph/Presentation
 Requestor : DEBENEDICTIS,ERIK P. Submit Date : 10/12/2005

 Comments : This is a release for a Tutorial. The tutorial will comprise
viewgraph presentations and other material.

 Peer Reviewed? : N
Author(s)
 David Keyes DEBENEDICTIS,ERIK P. DEBENEDICTIS,ERIK P.
 Peter M Kogge
Event (Conference/Journal/Book) Info
 Name : Supercomputing 2005 -- Tutorial Session
 City : Seattle State : WA Country : USA
 Start Date : 11/14/2005 End Date : 11/14/2005
Partnership Info
 Partnership Involved : Yes
 Partner Approval : Yes Agreement Number :
Patent Info
 Scientific or Technical in Content : Yes
 Technical Advance : No TA Form Filed : No
 SD Number :
 Classification and Sensitivity Info

 Title : Unclassified-Unlimited Abstract : Document : Unclassified-Unlimited

 Additional Limited Release Info : None.

 DUSA : DIS-CS

Routing Details
Role Routed To Approved By Approval Date

Manager Approver PUNDIT,NEIL D. PUNDIT,NEIL D. 10/13/2005
Conditions:

Administrator Approver LUCERO,ARLENE M. KRAMER,SAMUEL 09/05/2007
Please add the funding statement: Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company for the United States Department of
Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

Created by WebCo Problems? Contact CCHD: by email or at 845-CCHD (2243).

For Review and Approval process questions please contact the Application Process Owner

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
1

Issues for the Future of Supercomputing:
Impact of Moore's Law and Architecture on

Application Performance

Extended Outline

SC|05 Tutorial M09

Erik DeBenedictis

David Keyes

Peter Kogge

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
2

Tutorial Goals

• Explore key issues in future of supercomputing
– Algorithms, technology, architecture

•Motivate changes based on problem space

•Drive discussion based on “Moore’s Law”

• Explore meaning of silicon’s endpoints

•Discuss potential alternatives

•Use concept of scaling throughout

•Combine with “hands-on” participant-based
projections

• Provide an overview of successor technologies

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
3

Definitions of Scaling

•A dry thin flake of epidermis shed from the skin

• To remove in layers or scales

• (Australian): To ride … without paying the fare.

•A progressive classification, as of size, amount,
importance, or rank

• To alter according to a standard or by degrees;
adjust in calculated amounts

• the act of arranging in a graduated series

From dictionary.com

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
4

Schedule

• 8:30 Introductory Comments

• 8:45 Algorithm Scalability

– Review from Scales

– Mesh Example

• 10:00 Break

• 10:30 Silicon Scaling

– ITRS Roadmap

– Microprocessors and
Alternative Architectures

• Noon Lunch

• 1:30 System Scaling

– End of the Roadmap

– Projecting Applications
Performance on Future
Supercomputers

• 3:00 Break

• 3:30 Hands-On Exercises

• 4:30 Beyond Transistors

• 5:00 Conclusion

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
5

Review of Applications from SCaLeS

• Large-scale simulation going through phase change

• Complementary roles of algorithmic and architectural
advances

• Lessons from recent Gordon Bell prizes

• Some simulation priorities and opportunities at and beyond
the terascale

– Magnetic fusion energy

– Combustion

– Climate

– Astrophysics

– Accelerator design

– Lattice QCD

David Keyes

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
6

Algorithm Scalability – Mesh-based Example

• Application Models

– Mesh-based algorithms
• Discretizations

• Solvers

• Software

– Resource scaling for mesh-based applications

– Mesh-based kernels and architectural stress points

• Architectural Models

– Key parameters
• Processor

• Memory system

• Communication network

– Estimating performance scalability

– Opportunities for improving algorithm-architecture impedance
match

David Keyes

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
7

ITRS Roadmap and Device Scaling

•MOSFET Geometry

– Gates

– Memory cells

•CMOS Scaling Laws (a la Mead and Conway)

• Scaling examples

– µµµµPs

– Memories

– Memory Bandwidth

– Node-to-node communications rate

Peter Kogge

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
8

Scaling of µµµµPs and Advanced Architectures

•Multi-Core Processors
– Trading IPC for explicit parallelism

– Core scaling

– Bandwidth scaling

•Multi-threading Architectures

– Latency hiding

– Introducing locality-awareness & latency avoidance

• Processor in Memory Architectures

– Latency and bandwidth scaling

– PIM Bump and implications to inner loop memory
requirements

Peter Kogge

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
9

End of the Roadmap

• ITRS: Uniform exponentials or something else?
– SPEC processor numbers and implications

– Total power off track

– Some hint of clock rate problems

•Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling

Erik DeBenedictis

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
10

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

Erik DeBenedictis

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
11

Hands-On Exercises

• Organization

– Leaders will go through a sample problem with the group first

– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and applications
reference materials

– Specific problems will be determined by the interests of the
groups, with some sample problems given below:

• Problem #1: Project parameters of a $10M supercomputer in year
2016

• Problem #2: Project performance of supercomputer above on a
legacy application

• Problem #3: Performance on mesh application

• Problem #4: Project parameters of a PIM architecture
supercomputer

Erik DeBenedictis

David Keyes

Peter Kogge

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
12

Beyond Transistors

• Applications Requirements

• Upside potential for µµµµP/thermodynamic limits to total power

– Cooling technologies

• Upside potential of advanced architectures/PIM

• Reversible logic may defeat thermodynamic limitations

• Some nanotech technologies on the horizon

• Superconducting logic

– Carnot cycle

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

– Some examples of possible quantum devices

Erik DeBenedictis

Tutorial 123: Impact of Moore’s
Law and Architecture on

Application Performance, Session I:
Opportunities to Advance Science

through Supercomputer Simulation

David Keyes, Columbia University

Role of presentation
n Remind ourselves of some prime science and engineering

customers
n Look anecdotally at a few demanding applications

� SciDAC: climate, QCD, accelerator design, magnetic fusion
energy, combustion, astrophysics

� Bell: mechanics, seismology, aerodynamics
� Race through the picture gallery – no time for the science, itself

n Look generically at PDE-based simulation and the basis of
continued optimism for its growth – capability-wise

n Look at some specific hurdles posed by high-end architecture

Technical aspects of presentation
n Introduce a parameterized highly tunable class of

algorithms for parallel implicit solution of PDEs
� understand the source of its “weak scalability”
� ignore other numerical analysis aspects, here

n Note some algorithmic “adaptations” to architectural
stresses

Philosophy of presentation
n Applications are given
n Architectures (hardware and software) are given
n Algorithms must be created to bridge to hostile

architectures for the sake of the applications
n Knowledge of algorithmic capabilities can usefully

influence
� the way applications are formulated
� the way architectures are constructed

Context: recent reports promote simulation
n Cyberinfrastructure (NSF, 2003)

� new research environments through cyberinfrastructure
n Facilities for the Future of Science (DOE, 2003)

� “ultrascale simulation facility” ranked #2 in priority (behind ITER only)
n High End Computing Revitalization Task Force (Interagency, 2004)

� strategic planning on platforms
n Future of Supercomputing (NAS, 2005)

� broad discussion of the future of supercomputing
n PITAC (Interagency, 2005)

� challenges in software and in interdisciplinary training
n Simulation-based Engineering Science (NSF, 2005)

� opportunities in dynamic, data-driven simulation and engineering design
¾ SCaLeS report, Vol 1 (DOE, 2003) & Vol 2 (DOE, 2004)

� implications of large-scale simulation for basic scientific research
¾ Capability Computing Needs (DOE, 2004)

� Profiles of leading edge DOE codes in 11 application domains

z Chapter 1. Introduction

z Chapter 2. Scientific Discovery
through Advanced Computing: a
Successful Pilot Program

z Chapter 3. Anatomy of a Large-scale
Simulation

z Chapter 4. Opportunities at the
Scientific Horizon

z Chapter 5. Enabling Mathematics
and Computer Science Tools

z Chapter 6. Recommendations and
Discussion

www.pnl.gov/scales

315
contributors

Volume 2 (2004):

z 11 chapters on applications

z 8 chapters on mathematical methods

z 8 chapters on computer science and
infrastructure

Gedanken experiment:
How to use a jar of peanut butter

as its price slides downward?
n In 2005, at $3.20: make sandwiches
n By 2008, at $0.80: make recipe

substitutions for other oils
n By 2011, at $0.20: use as feedstock

for biopolymers, plastics, etc.
n By 2014, at $0.05: heat homes
n By 2017, at $0.0125: pave roads ☺

The cost of computing has been on a curve much better than this
for two decades and promises to continue for at least one more.
Like everyone else, scientists should plan increasing uses for it…

Gordon Bell Prize “price performance”

Year Application System $ per Mflops
1989 Reservoir modeling CM-2 2,500
1990 Electronic structure IPSC 1,250
1992 Polymer dynamics cluster 1,000
1993 Image analysis custom 154
1994 Quant molecular dyn cluster 333
1995 Comp fluid dynamics cluster 278
1996 Electronic structure SGI 159
1997 Gravitation cluster 56
1998 Quant chromodyn custom 12.5
1999 Gravitation custom 6.9
2000 Comp fluid dynamics cluster 1.9
2001 Structural analysis cluster 0.24

Four orders
of magnitude
in 12 years

Price/performance has stagnated and no new such prize has been given since 2001.

Gordon Bell Prize “peak performance”

Year Type Application No. Procs System Gflop/s
1988 PDE Structures 8 Cray Y-MP 1.0
1989 PDE Seismic 2,048 CM-2 5.6
1990 PDE Seismic 2,048 CM-2 14
1992 NB Gravitation 512 Delta 5.4
1993 MC Boltzmann 1,024 CM-5 60
1994 IE Structures 1,904 Paragon 143
1995 MC QCD 128 NWT 179
1996 PDE CFD 160 NWT 111
1997 NB Gravitation 4,096 ASCI Red 170
1998 MD Magnetism 1,536 T3E-1200 1,020
1999 PDE CFD 5,832 ASCI BluePac 627
2000 NB Gravitation 96 GRAPE-6 1,349
2001 NB Gravitation 1,024 GRAPE-6 11,550
2002 PDE Climate 5,120 Earth Sim 26,500

Four orders
of magnitude
in 13 years

With 100 Tflop/s in 2005, peak performance on real applications continues on its trajectory!

Gordon Bell Prize outpaces Moore’s Law

Four orders
of magnitude
in 13 years

Gordon Moore

Gordon Bell

<<Demi Moore>>

CONCUR-
RENCY!!!

The power of optimal algorithms
n Advances in algorithmic efficiency can rival advances

in hardware architecture
n Consider Poisson’s equation on a cube of size N=n3

n If n=64, this implies an overall reduction in flops of
~16 million

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann &
Goldstine

n5 n7

1950 Optimal SOR Young n3 n4 log n

1971 CG Reid n3 n3.5 log n

1984 Full MG Brandt n3 n3

∇2u=f 64

64 64

*Six-months is reduced to 1 s

*

year

relative
speedup

Algorithms and Moore’s Law
n This advance took place over a span of about 36 years, or 24 doubling times for

Moore’s Law
n 224≈16 million ⇒ the same as the factor from algorithms alone!

“Moore’s Law” for MHD simulations

“Semi-implicit”:

All waves treated
implicitly, but still
stability-limited by
transport

“Partially implicit”:

Fastest waves
filtered, but still
stability-limited by
slower waves

Figure from SCaLeS report, Volume 2

“Moore’s Law” for combustion simulations

0

1

2

3

4

5

6

7

8

9

10

1980 1990 2000 2010

Calendar Year

Lo
g

Ef
fe

ct
iv

e
G

ig
aF

LO
PS

High Order

Autocode

ARK integrator
complex chem Higher

order
AMR

NERSC
RS/6000

NERSC
SP3

Cray 2

AMR

Low Mach

Figure from SCaLeS report, Volume 2

Terascale simulation can be pitched as
an alternative to experimentation

Experiments prohibited
or impossible

Simulation is an important complement
to experiment in many areas

Lasers & Energy
combustion

ICF

Engineering
aerodynamics
crash testing

Environment
global climate
groundwater

Biology
drug design
genomics

Applied Physics
radiation transport

supernovae

Scientific
Simulation

Experiments
controversial

Experiments
dangerous

Experiments difficult
to instrument

Experiments
expensive

ITER
$5B

Heretofore difficult apps are now parallelized
n Unstructured grids
n Implicit, as well as explicit, methods
n Massive spatial resolution
n Thousand-fold concurrency
n Strong scaling within modest ranges
n Weak scaling without obvious limits

See, e.g., Gordon Bell “special” prizes in recent years …

2004 Gordon Bell “special” prize

Cortical
bone

Trabecular
bone

n 2004 Bell Prize in “special category” went to an implicit, unstructured
grid bone mechanics simulation
� 0.5 Tflop/s sustained on 4 thousand procs of IBM’s ASCI White
� 0.5 billion degrees of freedom
� large-deformation analysis
� employed in NIH bone research at Berkeley

c/o M. Adams, Columbia

2003 Gordon Bell “special” prize
n 2003 Bell Prize in “special category” went to unstructured grid

geological parameter estimation problem
� 1 Tflop/s sustained on 2 thousand processors of HP’s “Lemieux
� each explicit forward PDE solve: 17 million degrees of freedom
� seismic inverse problem: 70 billion degrees of freedom
� employed in NSF seismic research at CMU

reconstruction

target

c/o O. Ghattas, UT Austin

1999 Gordon Bell “special” prize
n 1999 Bell Prize in “special category” went to implicit, unstructured grid

aerodynamics problems
� 0.23 Tflop/s sustained on 3 thousand processors of Intel’s ASCI Red
� 11 million degrees of freedom
� incompressible and compressible Euler flow
� employed in NASA analysis/design missions

Transonic “Lambda” Shock, Mach contours on surfaces

to s

What would scientists do with 100-1000x?
Example: predict future climates

n Resolution
� refine atmospheric resolution from 160 to 40 km
� refine oceanic resolution from 105 to 15km

n New “physics”
� atmospheric chemistry
� carbon cycle
� dynamic terrestrial vegetation (nitrogen and sulfur cycles

and land-use and land-cover changes)
n Improved representation of subgrid processes

� clouds
� atmospheric radiative transfer

What would scientists do with 100-1000x?
Example: predict future climates

Resolution of Kuroshio Current: Simulations at various resolutions have
demonstrated that, because equatorial meso-scale eddies have diameters ~10-200
km, the grid spacing must be < 10 km to adequately resolve the eddy spectrum.
This is illustrated in four images of the sea-surface temperature. Figure (a) shows a
snapshot from satellite observations, while the three other figures are snapshots
from simulations at resolutions of (b) 2°, (c) 0.28°, and (d) 0.1°.

What would scientists do with 100-1000x?
Example: probe structure of particles

n Resolution
� take current 4D quantum chromodynamics models from

32×32×32×16 to 128×128×128×64
n New physics

� “unquench” the lattice approximation: enable study of the
gluon structure of the nucleon, in addition to its quark
structure

� obtain chiral symmetry by solving on a 5D lattice in the
domain wall Fermion formulation

� allow precision calculation of the spectroscopy of strongly
interacting particles with unconventional quantum numbers,
guiding experimental searches for states with novel quark
and gluon structure

What would scientists do with 100-1000x?
Example: probe structure of particles

Constraints on the Standard Model parameters ρ and η. For the Standard Model to
be correct, these parameters from the Cabibbo-Kobayashi-Maskawa (CKM) matrix
must be restricted to the region of overlap of the solidly colored bands. The figure on
the left shows the constraints as they exist today. The figure on the right shows the
constraints as they would exist with no improvement in the experimental errors, but
with lattice gauge theory uncertainties reduced to 3%.

η η

What would scientists do with 100-1000x?
Example: design accelerators

n Resolution
� complex geometry (long assemblies of damped detuned structure

(DDS) cells, each one slightly different than its axial neighbor)
requires unstructured meshes with hundreds of millions of
degrees of freedom

� Maxwell eigensystems for interior elements of the spectrum must
be solved in the complex cavity formed by the union of the DDS
cells

n Novel capability
� PDE-based mathematical optimization will replace expensive and

slow trial and error prototyping approach
� each inner loop of optimization requires numerous eigensystem

analyses

What would scientists do with 100-1000x?
Example: design accelerators

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given Geometry

Omega3P

S3P

T3P

Tau3P

DDS CELL

Next generation accelerators have complex cavities. Shape optimization is required
to improve performance and reduce operating cost.

c/o K. Ko, SLAC

What would scientists do with 100-1000x?
Example: design and control tokamaks

n Resolution
� refine meshes and approach physical

Lundquist numbers
n Multiphysics

� combine MHD, PIC, and RF codes in a
single, consistent simulation

� resolve plasma edge
n Design and control

� optimize performance of experimental
reactor ITER and follow-on production
devices

� detect onset of instabilities and modify
before catastrophic energy releases from the
magnetic field

Noise
Detection

Need More
Flights?

Blob
Detection

Compute
Puncture

Plots

Island
detection

Out-of-core
Isosurface
methods

Feature
Detection

Portal
(Elvis)

XGC-ET Mesh/Interpolation M3D-L
(Linear stability)

Stable?

XGC-ET Mesh/Interpolation M3D

∆t Stable?
B healed?

Mesh/Interpolation Yes

Yes

No

No

Start (L-H)

Distributed
Store Distributed

Store

Distributed
Store

TBs GBs

MBs

I D A V E

What would scientists do with 100-1000x?
Example: design and control tokamaks

c/o S. Klasky, ORNL

What would scientists do with 100-1000x?
Example: control combustion

n Resolution
� evolve 3D time-dependent large-eddy simulation (LES) codes to

direct Navier-Stokes (DNS)
� multi-billions of mesh zones required

n New “physics”
� explore coupling between chemistry and acoustics (currently

filtered out)
� explore sooting mechanisms to capture radiation effects
� capture autoignition with realistic fuels

n Integrate with experiments
� pioneer simulation-controlled experiments to look for predicted

effects in the laboratory

What would scientists do with 100-1000x?
Example: control combustion

Instantaneous flame front imaged by density of inert marker Instantaneous flame front imaged by fuel concentration

Images c/o R. Cheng (left), J. Bell (right), LBNL, and NERSC
2003 SIAM/ACM Prize in CS&E (J. Bell & P. Colella)

What would scientists do with 100-1000x?
Example: probe supernovae

n Resolution
� current Boltzmann neutrino transport models are vastly under-

resolved
� need at least 5123 spatially, at least 8 polar and 8 azimuthal, and at

least 24 energy groups energy groups per each of six neutrino
types

� to discriminate between competing mechanisms, must conserve
energy to within 0.1% over millions of time steps

n Full dimensionality
� current models capable of multigroup neutrino radiation are

lower-dimensional; full 3D models are required

What would scientists do with 100-1000x?
Example: probe supernovae

Stationary accretion shock instability defines shape of supernovae and direction of
emitted radiation. Lower dimensional models produce insight; full dimensional
models are ultimately capable of providing radiation signatures that can be
compared with observations.

c/o A. Mezzacappa, ORNL

“The partial differential equation entered theoretical physics as a
handmaid, but has gradually become mistress.” – A. Einstein

PDEsPDEs

are are
densedense

in the in the
CS&ECS&E

portfolioportfolio

model, mesh,
discretize, partition,

solve, adapt,
visualize, optimize
probe sensitivity,

probe stability

It’s not about the solver

CS

Math

Applications

Applications
drive

Enabling
technologies
respond

It’s all about the solver (at the terascale)
n Given, for example:

� a “physics” phase that
scales as O(N)

� a “solver” phase that
scales as O(N3/2)

� computation is almost all
solver after several
doublings

n Most applications groups have not
yet “felt” this curve in their gut
� BG/L will change this
� 64K-processor machine

delivered in 2005

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes
97% time on
64K procs

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

problem size

Solver takes
50% time
on 64 procs

A central concept: solver toolchain
n From solutions to sensitivity, stability,

optimization
n Nested modules
n Leveraged implementation of distributed data

structures
n Hiding of communication and performance-

oriented details so users deal with mathematical
objects throughout

Solver software toolchain
n Design and implementation of

“solvers”
� Linear solvers

� Eigensolvers

� Nonlinear solvers

� Time integrators

� Optimizers

n Software integration
n Performance optimization

0),,,(=ptxxf &

0),(=pxF

bAx =

BxAx λ=

0,0),(..),(min ≥= uuxFtsux
u

φ

Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer

(w/ sens. anal.)

(w/ sens. anal.)

Two definitions of scalability
n “Strong scaling”

� execution time decreases in
inverse proportion to the number
of processors

� fixed size problem overall

n “Weak scaling”
� execution time remains constant,

as problem size and processor
number are increased in
proportion

� fixed size problem per processor
� also known as “Gustafson

scaling”

poorlog T

log p
good

N constant

Slope
= -1

T

p

good

poor

N ∝ p

Slope
= 0

n Algebraic multigrid a key algorithmic technology
� Discrete operator defined for finest grid by the application, itself, and

for many recursively derived levels with successively fewer degrees of
freedom, for solver purposes

� Unlike geometric multigrid, AMG not restricted to problems with
“natural” coarsenings derived from grid alone

n Optimality (cost per cycle) intimately tied to the ability to coarsen
aggressively

n Convergence scalability (number of cycles) and parallel efficiency also
sensitive to rate of coarsening

Preview: Algebraic multigrid on BG/L

• While much research and development
remains, multigrid will clearly be
practical at BG/L-scale concurrency

Figure shows weak scaling result for AMG out
to 16K processors, with one 30× 30×30 block
per processor (from 27K dofs up to 422M dofs)

0
2
4
6
8

10
12
14
16
18

1 512 1728 4096 8000 12167 15625

Default
PMIS

procs

se
c

c/o U. M. Yang, LLNL

Contraindications of scalability
n Fixed problem size

� Amdahl-type constraints
� “fully resolved” discrete problems (protein folding, network

problems)
� “sufficiently resolved” problems from the continuum

n Scalable problem size
� Resolution-limited progress

� explicit schemes for time-dependent PDEs
� suboptimal iterative relaxations schemes for equilibrium PDEs

� Nonuniformity of threads
� adaptive schemes
� multiphase computations (e.g, particle and field)

Amdahl’s Law
n Fundamental limit to strong scaling due to small overheads
n Independent of number of processors available
n Analyze by binning code segments by degree of exploitable

concurrency and dividing by available processors, up to limit
n Illustration for just two bins:

� fraction f1 of work that is purely sequential
� fraction (1-f1) of work that is arbitrarily concurrent

n Wall clock time for p processors
n Speedup

n Applies to any performance enhancement, not just parallelism

pff /)1(11 −+∝
]/)1(/[1 11 pff −+= p 1 10 100 1000 10000

S 1.0 9.2 50.3 91.0 99.0[Table shows example for f1 of 1%]

Resolution-limited progress
d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h mesh cell size
τ time step size
τ=O(hα) bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ ∝ hα = 1/nα = 1/Nα/d = 1/(PS)α/d)

n Illustrate for CFL-limited
time stepping

n Parallel wall clock time

n Example: explicit wave
problem in 3D (α=1, d=3)

n Example: explicit diffusion
problem in 2D (α=2, d=2)

dd PST //1 αα+∝

Domain 103× 103×103 104× 104×104 105× 105×105

Time 1 day 10 days 3 months

Domain 103× 103 104× 104 105× 105

Time 1 day 3 months 27 years

Thread nonuniformity
n Evolving state of the simulation can spoil load balance

� adaptive scheme
� local mesh refinement
� local time adaptivity

� state-dependent work complexity
� complex constitutive or reaction terms
� nonlinear inner loops with variable convergence rates

� multiphase simulation
� bulk synchronous alternation between different phases with

different work distributions

…
P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M

Often neglected possibilities for scalability
n Parallelization in the time (or generally causal)

dimension, particularly in nonlinear problems after
spatial concurrency is exhausted

n Creating independent ensembles for asynchronous
evaluation (parameter exploration or stochastic model)
after space-time concurrency is exhausted on the direct
problem

n Trading finely resolved discretizations (very sparse) for
higher-order discretizations (block dense), or other
algorithmic innovations that alter the granularity of bulk
synchronous work between data movements

From generalities to a case study
n In the balance of this session, we focus in detail on the

limits to performance of a prototypical unstructured mesh-
based implicit computation

n With no dependence on numerical analysis other than to
inform us about the essential kernels, we study the balance
of computation and data motion (within a processor’s own
memory system and between the memory systems of
different processors)

n We find that different kernels lead to different stresspoints
among the architectural parameters of a hierarchical
distributed memory machine

n Our study motivates the attention to architecture and the
importance of extrapolating architectural parameters in the
other sections of the tutorial

Case Study Model and Experiments
on High-end Platforms:

Achieving High Sustained Performance in
an Unstructured Mesh CFD Application

David Keyes, Columbia University

Acknowledgments for this section:
Kyle Anderson, NASA Langley Research Center & UT

William Gropp, Argonne National Laboratory
Dinesh Kaushik, Argonne National Laboratory

Barry Smith, Argonne National Laboratory

Motivation
n No computer system is well balanced for all computational tasks,

or even for all phases of a single well-defined task, like solving
nonlinear systems arising from discretized differential equations

n Given the need for high performance in the solution of these and
related systems, one should be aware of which computational
phases are limited by which aspect of hardware or software.

n With this knowledge, one can design algorithms to “play to” the
strengths of a machine of given architecture, or one can
intelligently select or evolve architectures for preferred algorithms.

Four potential limiters on scalability
in large-scale parallel scientific codes

n Insufficient localized concurrency
n Load imbalance at synchronization points
n Interprocessor message latency
n Interprocessor message bandwidth

“horizontal aspects”

Four potential limiters
on arithmetic performance

n Memory latency
� Failure to predict which data items are needed

n Memory bandwidth
� Failure to deliver data at consumption rate of processor

n Load/store instruction issue rate
� Failure of processor to issue enough loads/stores per cycle

n Floating point instruction issue rate
� Low percentage of floating point operations among all

operations

“vertical aspects”

Plan for balance of Session I
n Background of 1999 Bell Prize winner in “Special” category

� application
� algorithm

n General characterization of PDE requirements
� identification of common algorithmic building blocks
� simple complexity analyses (computation, communication, inter-

processor motion)
n Identification and illustration of bottlenecks on some of yesterday's

important platforms
� ASCI Red (Intel Pentium), ASCI Blue Mountain (SGI MIPS),

ASCI Blue Pacific (IBM Power), Cray T3E (DEC Alpha)
n … and some of today’s

� IBM BlueGene/L, NSF Teragrid, VaTech System X
n Speculation on useful algorithmic research directions

Euler simulation
n 3D transonic flow over ONERA M6 wing, at 3.06º

angle of attack (exhibits λ-shock at M = 0.839)

n Solve

where

0)ˆ(1
=Ω⋅+

∂
∂

∫
Ω

dnF
Vt

Q

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

E
w
v
u

Q
ρ
ρ
ρ
ρ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

=⋅

UpE
pnUw

pnUv
pnUu

U

nF

z

y

x

)(
ˆ

ˆ
ˆ

ˆ

ρ

ρ
ρ
ρ

wnvnunU zyx ˆˆˆ ++=

()
⎥
⎦

⎤
⎢
⎣

⎡ ++
−−=

2
)1(

222 wvuEp ργ

ρ = density
U = velocity
p = pressure
E = energy
density

Background of FUN3D application
n Tetrahedral vertex-centered unstructured grid code developed by W. K.

Anderson (NASA) for steady compressible and incompressible Euler and
Navier-Stokes

n Used in airplane, automobile, and submarine applications for analysis and
design

n Standard discretization is second-order Roe scheme for convection and
Galerkin for diffusion

n Newton-Krylov solver with global point-block-ILU preconditioning, with
false timestepping for nonlinear continuation towards steady state;
competitive with FAS multigrid in practice

n Legacy implementation/ordering is vector-oriented

Features of FUN3D application
n Based on “legacy” (but contemporary) CFD application with significant

F77 code reuse
n Portable, message-passing library-based parallelization, run on NT boxes

through Tflop/s ASCI platforms
n Simple multithreaded extension between processors sharing memory

physically
n Sparse, unstructured data, implying memory indirection with only modest

reuse
n Wide applicability to other implicitly discretized multiple-scale PDE

workloads
n Extensive profiling has led to follow-on algorithmic research

Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

n Decomposition of computation in tasks
n Assignment of tasks to processes
n Orchestration of data access, communication, synchronization
n Mapping processes to processors

c/o Culler et al, UC Berkeley

SPMD parallelism w/domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

(volume) work to (surface)
communication is preserved
under weak scaling

DD relevant to any local stencil formulation
finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices

J=

node i

row i
• However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
• Want to solve in subdomains only, and
use to precondition full sparse problem

Algorithm: Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable

Merits of NKS algorithm/implementation
n Relative characteristics: the scaling “exponents” are naturally good

� Convergence scalability
� weak (or no) degradation in problem size and parallel granularity (with use

of small global problems in Schwarz preconditioner)
� Implementation scalability

� no degradation in ratio of surface communication to volume work (in
problem-scaled limit)

� only modest degradation from global operations (for sufficiently richly
connected networks)

n Absolute characteristics: the “constants” can be made good
� Operation count complexity

� residual reductions of 10-9 in 103 “work units”
� Per-processor performance

� up to 25% of theoretical peak
n Overall, machine-epsilon solutions require as little as 15 microseconds per

degree of freedom!

Additive Schwarz preconditioning
for Au=f in Ω

n Form preconditioner B out of (approximate) local solves on (overlapping)
subdomains

n Let Ri and Ri
T be Boolean gather and scatter operations, mapping between a

global vector and its ith subdomain support

∑=

= −

i i

ii
T
ii

BB
RARB 1

= T
iii ARRA

~

Iteration count estimates from Schwarz theory
[ref: Smith, Bjorstad & Gropp, 1996, Camb. Univ. Pr.]

n Krylov-Schwarz iterative methods typically converge in a number of iterations
that scales as the square-root of the condition number of the Schwarz-
preconditioned system

n In terms of N and P, where for d-dimensional isotropic problems, N=h-d and
P=H-d, for mesh parameter h and subdomain diameter H, iteration counts may be
estimated as follows:

Ο(P1/3)Ο(P1/3)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi

Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Time-implicit
Newton-Krylov-Schwarz method

For nonlinear robustness, NKS iteration is wrapped in time-stepping.

for (l = 0; l < n_time; l++) {

select time step

for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian

for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {

solve subdomain problems concurrently

}

perform preconditioned Jacobian-vector product

enforce Krylov basis conditions

update optimal coefficients

check linear convergence

}

perform DAXPY update

check nonlinear convergence

}

} Steps in red involve global communication.

Key features of implementation strategy
n Subdomain partitioning by one of the MeTiS graph algorithms
n SPMD “owner computes” PETSc implementation under the dual objectives of

minimizing the number of messages and overlapping communication with
computation

n Each processor “ghosts” its stencil dependences in its neighbors
n Ghost nodes ordered after contiguous owned nodes
n Domain mapped from (user) global ordering into local orderings
n Scatter/gather operations created between local sequential vectors and global

distributed vectors, based on runtime connectivity patterns
n Newton-Krylov-Schwarz operations translated into local tasks and communication

tasks
n Profiling used to help eliminate performance bugs in communication and memory

hierarchy

Background of PETSc
n Developed by Gropp, Smith, McInnes & Balay (ANL) to support research,

prototyping, and production parallel solutions of operator equations in message-
passing environments

n Distributed data structures as fundamental objects - index sets,
vectors/gridfunctions, and matrices/arrays

n Iterative linear and nonlinear solvers, combinable modularly and recursively,
and extensibly

n Portable, and callable from C, C++, Fortran
n Uniform high-level API, with multi-layered entry
n Aggressively optimized: copies minimized, communication aggregated and

overlapped, caches and registers reused, memory chunks preallocated,
inspector-executor model for repetitive tasks (e.g., gather/scatter)

n Now part of the Terascale Optimal PDE Simulations project (DOE SciDAC)

See http://www.mcs.anl.gov/petsc, http://www.tops-scidac.org

http://www.mcs.anl.gov/petsc
http://www.tops-scidac.org/

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Separation of concerns between
user code and PETSc library

User code PETSc code

Outline for PDE performance study
n General characterization of PDE requirements
n Identification of common algorithmic building blocks
n Simple complexity characterizations (computational work,

interprocessor communication, intraprocessor data motion)
n Identification and illustration of bottlenecks on some of

today's important platforms
n Experiments with a high-performance port of a NASA

aerodynamic design code and with a sparse unstructured
matrix-vector kernel

n Speculation on useful algorithmic research directions

Variety and complexity of PDEs
n Varieties of PDEs

� evolution (time hyperbolic, time parabolic)
� equilibrium (elliptic, spatially hyperbolic or parabolic)
� mixed, varying by region
� mixed, of multiple type (e.g., parabolic with elliptic constraint)

n Complexity parameterized by:
� spatial grid points, Nx
� temporal grid points, Nt
� components per point, Nc
� auxiliary storage per point, Na
� grid points in stencil, Ns

n Memory: M ≈ Nx • (Nc + Na + Nc • Nc • Ns)
n Work: W ≈ Nx • Nt • (Nc + Na + Nc • Nc • Ns)

Explicit solvers
)u(uu 11 −

•
− ∆−= llll ft

n Concurrency is pointwise, O(N)
n Comm.-to-Comp. ratio is surface-to-volume, O((N/P)-1/3)
n Communication range is nearest-neighbor, except for time-step

computation
n Synchronization frequency is once per step, O((N/P)-1)
n Storage per point is low
n Load balance is straightforward for static quasi-uniform grids
n Grid adaptivity (together with temporal stability limitation)

makes load balance nontrivial

Domain-decomposed implicit solvers
∞→∆

∆
=+

∆

− lt
t

f
t l

l
l

l

l ,

1u)u(u

n Concurrency is pointwise, O(N), or subdomainwise, O(P)
n Comm.-to-Comp. ratio still mainly surface-to-volume,

O((N/P)-1/3)
n Communication still mainly nearest-neighbor, but nonlocal

communication arises from conjugation, norms, coarse grid
problems

n Synchronization frequency often more than once per grid-
sweep, up to Krylov dimension, O(K(N/P)-1)

n Storage per point is higher, by factor of O(K)
n Load balance issues the same as for explicit

Resource scaling for PDEs
n For 3D problems, work is proportional to four-thirds power of memory,

because
� For equilibrium problems, work scales with problem size times

number of iteration steps -- proportional to resolution in single spatial
dimension

� For evolutionary problems, work scales with problems size times
number of time steps -- CFL arguments place latter on order of spatial
resolution, as well

n Proportionality constant can be adjusted over a very wide range by both
discretization (high-order implies more work per point and per memory
transfer) and by algorithmic tuning

n If frequent time frames are to be captured, other resources -- disk capacity
and I/O rates -- must both scale linearly with work, more stringently than
for memory.

Primary PDE solution kernels
(assumes vertex-based; dual statements for cell-based)

n Vertex-based loops
� state vector and auxiliary vector updates

n Edge-based “stencil op” loops
� residual evaluation
� approximate Jacobian evaluation
� Jacobian-vector product (often replaced with matrix-free form, involving

residual evaluation)
� intergrid transfer (coarse/fine)

n Sparse, narrow-band recurrences
� approximate factorization and back substitution
� smoothing

n Vector inner products and norms
� orthogonalization/conjugation
� convergence progress and stability checks

Illustration of edge-based loop
n Vertex-centered grid
n Traverse by edges

� load vertex values
� compute intensively

� e.g., for compressible flows,
solve 5x5 eigen-problem for
characteristic directions and
speeds of each wave

� store flux contributions at
vertices

n Each vertex appears in
approximately 15 flux
computations

Complexities of PDE kernels
n Vertex-based loops

� work and data closely proportional
� pointwise concurrency, no communication

n Edge-based “stencil op” loops
� large ratio of work to data
� colored edge concurrency; local communication

n Sparse, narrow-band recurrences
� work and data closely proportional
� frontal concurrency; no, local, or global communication

n Vector inner products and norms
� work and data closely proportional
� pointwise concurrency; global communication

Candidate stresspoints of PDE kernels
n Vertex-based loops

� memory bandwidth
n Edge-based “stencil op” loops

� load/store (register-cache) bandwidth
� internode bandwidth

n Sparse, narrow-band recurrences
� memory bandwidth
� internode bandwidth, internode latency, network diameter

n Inner products and norms
� memory bandwidth
� internode latency, network diameter

Previews of observations for PDE codes
n Processor scalability is no problem, in principle
n Common bus-based network is a bottleneck
n For fixed-size problems, global synchronization is

eventually a bottleneck
n Coarse grid in preconditioner can be a bottleneck
n Memory latency is no problem, in principle
n Memory bandwidth is a major bottleneck
n Load-Store functionality may be a bottleneck
n Frequency of floating point instructions may be a bottleneck

Observation #1:

Processor scalability no problem, in principle
n As popularized with the 1986 Karp Prize paper of Benner, Gustafson &

Montry, Amdahl's law can be defeated if serial (or bounded
concurrency) sections make up a decreasing fraction of total work as
problem size and processor count scale --- true for most iterative implicit
nonlinear PDE solvers

n Simple, back-of-envelope parallel complexity analyses show that
processors can be increased as fast, or almost as fast, as problem size,
assuming load is perfectly balanced

n Caveat: the processor network must also be scalable (applies to
protocols as well as to hardware); machines based on common bus
networks will not scale

Estimating scalability for
bulk-synchronized PDE stencil computations
n Given complexity estimates of the leading terms of:

� the concurrent computation (per iteration phase)
� the concurrent communication
� the synchronization frequency

n And a model of the architecture including:
� internode communication (network topology and protocol

reflecting horizontal memory structure)
� on-node computation (effective performance parameters including

vertical memory structure)
n One can estimate optimal concurrency and optimal execution time

� on per-iteration basis, or overall (by taking into account any
granularity-dependent convergence rate)

� simply differentiate time estimate in terms of (N,P) with respect to
P, equate to zero and solve for P in terms of N

Estimating 3D stencil costs (per iteration)

n grid points in each direction n,
total work N=O(n3)

n processors in each direction p,
total procs P=O(p3)

n memory per node requirements
O(N/P)

n concurrent execution time per iteration
A n3/p3

n grid points on side of each processor
subdomain n/p

n Concurrent neighbor commun. time
per iteration B n2/p2

n cost of global reductions in each
iteration C log p or C p(1/d)

� C includes synchronization frequency
n same dimensionless units for

measuring A, B, C
� e.g., cost of scalar floating point

multiply-add

3D stencil computation illustration
Rich local network, tree-based global reductions

n total wall-clock time per iteration

n for optimal p, , or

or (with),

n without “speeddown,” p can grow with n
n in the limit as

pC
p
nB

p
nApnT log),(2

2

3

3

++=

0=
∂
∂

p
T

,023 3

2

4

3

=+−−
p
C

p
nB

p
nA

CA
B

2

3

243
32

≡θ

[] [] n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθ

0→C
B

n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛=

3
1

3

Scalability results for domain-decomposed
bulk-synchronized PDE stencil computations

n With tree-based (logarithmic) global reductions and
scalable nearest neighbor hardware:
� optimal number of processors scales linearly with

problem size

n With 3D torus-based global reductions and scalable
nearest neighbor hardware:
� optimal number of processors scales as three-fourths

power of problem size (almost “scalable”)

n With common network bus (heavy contention):
� optimal number of processors scales as one-fourth

power of problem size (not “scalable”)

Surface visualization of test domain for
Euler flow over an ONERA M6 wing

n Wing surface outlined in green triangles, farfield blue, symmetry plane red
n 2.8 M vertices in the actual computational domain (9K in image below)

Fixed-size parallel scaling results (Flop/s)

Parallel performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

Fixed-size parallel scaling results
(time in seconds)

Parallel performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

P ro ce s so rs

E
xe

cu
tu

in
Ti

m
e

(s
ec

on
ds

)

1 0 2 1 0 3

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0
7 0 0
8 0 0
9 0 0

1 0 0 0

B lu e G e n e
T e ra G r id
S y s te m X

Parallel scaling results on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11

million unknowns) on up to 3072 ASCI Red nodes (each with dual Pentium Pro 333
MHz processors)

Observation #2 (for Fixed-Size Problems):

Synchronization eventually a bottleneck
n Percentage of time spent in communication phases on ASCI Red for NKS

unstructured Euler simulation
n Principal nonscaling feature is synchronization at global inner products and

norms, while cost of halo exchange grows slowly even for fixed-size problem
with deteriorating surface-to-volume

Number of
Processors

Global
reductions

Synchronizations Halo
Exchanges

128 5% 4% 3%
256 3% 6% 4%
512 3% 7% 5%
768 3% 8% 5%

1024 3% 10% 6%

Observation #2a:

Coarse grid can be a bottleneck
n Execution times for scaled 3D elliptic problem with various coarse grid

components of preconditioner, over 64-fold range of size and processor number
(NK= Newton-Krylov; NR = Newton-Richardson)

n Largest case has 2 million unknowns and 8x8x8 replicated coarse grid

Number of
Processors

1/h 1/H 2-level
NK

V-cycle
NK

F-cycle
NK

F-cycle
NR

1 32 2 21.5s 19.6s 19.6s 21.1s

8 64 4 26.0s 23.3s 24.3s 26.1s

64 128 8 36.5s 31.2s 30.8s 34.4s

Scaled
Efficiency

0.59 0.63 0.64 0.61

Observation #2a, continued:

Coarse grid can be a bottleneck
n Algorithmic scalability (linear iteration count per Newton step) for scaled 3D

elliptic problem with various coarse grid components of preconditioner, over
64-fold range of size and processor number

n Largest case has 2 million unknowns and 8x8x8 replicated coarse grid

Number of
Processors

1/h 1/H 2-level
NK

V-cycle
NK

F-cycle
NK

F-cycle
NR

1 32 2 4.3 3.0 2.3 3.8

8 64 4 4.7 3.0 2.5 4.0

64 128 8 5.6 3.3 2.3 4.0

Scaled
Efficiency

0.77 0.91 1.00 0.95

Observation #3:

Memory latency no problem, in principle
n Regularity of reference in static grid-based computations can be

exploited through memory-assist features to cover latency
n PDEs have simple, periodic workingset structure that permits effective

use of prefetch/dispatch directives, and lots of slackness (process
concurrency in excess of hardware concurrency)

n Combined with coming processors-in-memory (PIM) technology for
gather/scatter into densely used block transfers and multithreading for
latency that cannot be amortized by sufficiently large block transfers, the
solution of PDEs can approach zero stall conditions

n Caveat: high bandwidth is critical to covering latency

Workingset characterization of memory traffic
n Smallest: data for single stencil
n Largest: data for entire subdomain
n Intermediate: data for a neighborhood

collection of stencils, reused as many times
as possible

Gedanken experiment: cache traffic for PDEs
n As successive workingsets “drop” into a level of memory, capacity (and

with effort conflict) misses disappear, leaving only compulsory, reducing
demand on main memory bandwidth

BW-stretching strategies based on workingsets
n No performance value in memory levels larger than subdomain
n Little performance value in memory levels smaller than

subdomain but larger than required to permit full reuse of most
data within each subdomain subtraversal (middle knee, prev.
slide)

n After providing L1 large enough for smallest workingset (and
multiple independent copies up to desired level of
multithreading, if necessary all additional resources should be
invested in large L2

n Tables describing grid connectivity are built (after each grid
rebalancing) and stored in PIM --- used to pack/unpack dense-
use cache lines during subdomain traversal

Three types of locality enhancements
n Edge-reordering for maximal vertex reuse
n Field interlacing for maximal cache-line reuse

� use U1, V1, W1, U2, V2, W2, …, Un, Vn, Wn
� rather than U1, U2, …, Un, V1, V2, …, Vn, W1, W2, …, Wn

n Sparse Jacobian blocking for minimal integer metadata in
manipulating a given amount of floating point physical data

Improvements from locality reordering

8.01626274221.0200200Pent. Pro

333

400

400

400

360

300

600

450

332

120

120

200

250

Clock
MHz

6.32136406018.8333Pent. Pro

7.83149497819.5400Pent. II/NT

8.33347528320.8400Pent. II/LIN

2.5203647718.9800Ultra II/HPC

3.52547549413.0720Ultra II

3.01835427512.5600Ultra II

1.3163747917.61200Alpha 21164

1.6143239758.3900Alpha 21164

2.3153143669.9664604e

3.115405911724.3480P2SC (4 card)

2.713355110121.4480P2SC (2 card)

4.032688716320.3800P3

5.226597412725.4500R10000

Orig.
% of Peak

Orig.
Mflop/s

Interl.
only

Mflop/s

Reord.
Only

Mflop/s

Opt.
Mflop/s

Opt.
% of
Peak

Peak
Mflop/s

Processor

Observation #4:

Memory bandwidth a major bottleneck
Execution times for NKS Euler Simulation on Origin 2000:
(standard) double precision matrices versus single precision

106s122s16s31s120

181s205s34s60s64

331s373s67s117s32

657s746s136s223s16

SingleDoubleSingleDouble

OverallLinear Solve

Computational Phase
Number of
Processors

Note that times are nearly halved, along with precision, for the BW-limited linear solve
phase, indicating that the BW can be at least doubled before hitting the next bottleneck!

ASCI memory bandwidth bottleneck
n Per-processor memory bandwidth versus rate of work

� approximately 10-15 flops per word transferred from memory
� fairly constant across machines, and fairly poor without extensive reuse

Peak
(M F/s)

BW /proc
(M W /s)

(M F/s)/
(M W /s)

W hite 1500 125.0 12.0

Blue M tn 500 48.8 10.2

Blue Pac 666 45.0 14.8

Red 333 33.3 10.0

Implications of bandwidth limitations
in shared memory systems

• The processors on a node compete for the available memory
bandwidth
• The computational phases that are memory bandwidth limited will
not scale and may even run slower due to arbitration
• Stream Benchmark on ASCI Red MB/s for the Triad Operation

1521571E07
1411451E06
1441401E05
2381375E04

12966661E04
2 Threads1 ThreadVector Size

Larger vectors in last three rows do not fit into cache and are bandwidth-limited

BW-stretching strategies
based on multivectors in sparse matvecs

n The sparse matrix-vector multiply (matvec) is one of the most common
kernels in scientific computing
� Same data access considerations as stencil-op kernel in explicit methods

for PDEs
� Same as Krylov kernel and similar to preconditioner application kernel in

implicit methods for PDEs
n When multiplying a single vector, each element of the sparse matrix is used

exactly once per matvec
n If the matrix is large, none of its elements will remain in the cache from one

matvec to the next
n If multiple vectors, say N, are multiplied at once, each element of the matrix is

reused N times
n A simple complexity model for the sparse matrix-vector product illustrates the

issues

Matrix-vector multiplication
for a single vector

do i=1, n

fetch ia(i+1)

sum = 0

! loop over the non-zeros of the row

do j = ia(i), ia(i + 1)-1 {

fetch ja(j), a(j), x (ja(j))

sum = sum + a(j) * x(ja(j))

enddo

Store sum into y(i)

enddo

Matrix-vector multiplication for
N independent vectors

do i = 1, n

fetch ia(i+1)

! loop over the non-zeros of the row

do j = ia(i), ia(i + 1) - 1

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))

do N fmadd (floating multiply add)

enddo

Store y1(i) ..…yN(i)

enddo

This version performs A • {x1, …, xN}

Estimating the memory bandwidth limitation
n Assume ideal memory system apart from bandwidth

� Perfect cache (only compulsory misses; no overhead)
� No memory latency
� Unlimited number of loads and stores per cycle

n Specify number of rows and nonzeros, and sizes for
integers and floats

n Assume matrix blocking factor and vector blocking factor
n Compute data volume associated with sparse matvec
n Compute number of floating-point multiply adds (fmadd)
n Bytes per floating multiply-add combined with memory

bandwidth (bytes/second) give a bound on rate of
execution of multiply-adds

Sparse matvec performance summary
n Matrix size = 90,708; number of nonzero entries = 5,047,120, blocksize = 4
n Number of Vectors is either 1 or a block of 4
n On 250 MHz MIPS R10000
n Stream performance 358 MB/sec (triad vector operation) http://www.cs.virginia.edu/stream

Bandwidth MFlops Format Number of
Vectors

Bytes /
fmadd Required Measured Ideal Achieved

AIJ 1 12.36 3090 276 58 45
AIJ 4 3.31 827 221 216 120

BAIJ 1 9.31 2327 84 55
BAIJ 4 2.54 635 229 305 175

Bandwidth (GB/s) MFlops Format Number of

Vectors
Bytes /

flop Required Measured Ideal Achieved
AIJ 1 6.18 14.83 1.97 319 274
AIJ 4 1.66 3.98 1.97 1188 615

n On 2.4 GHz P4 Xeon
n Stream performance 1973 MB/sec (triad vector operation) http://www.cs.virginia.edu/stream

http://www.cs.virginia.edu/stream
http://www.cs.virginia.edu/stream

Comparison of domain-level parallelism
for MPI and OpenMP/MPI

• Table shows execution times of residual flux evaluation phase for W-cycle FAS Euler
simulation on ASCI Red (2 processors per node)
• Thread management imposes an overhead of 5% up to more serious levels, depending
upon the system
• In computational phases that are not memory bandwidth-limited, shared-memory
multithreading can be more efficient than MPI-mediated domain-based multiprocessing

Nodes On each node Sec./W-cycle

128 1 MPI process 14.01

128 2 MPI processes 7.98

128 2 OpenMP threads 7.56

256 1 MPI process 7.59

Observation #5:

Load-store functionality may be a bottleneck
• Table shows execution times of residual flux evaluation phase for NKS
Euler simulation on ASCI Red (2 processors per node)
• In each paradigm, the second processor per node contributes another
load/store unit while sharing fixed memory bandwidth
• Note that 1 thread is worse than 1 MPI process, but that 2-thread
performance eventually surpass 2-process performance as subdomains
become small

45s72s39s76s2560

40s62s33s66s3072

258s456s261s483s256

2 Proc1 Proc2 Thr1 Thr

MPIMPI/OpenMP
Nodes

Quantifying the load/store bottleneck
n Assume ideal memory system apart from load/store units

� All data items are ready in cache
� Each operation takes only one cycle to complete but multiple

operations can graduate in one cycle
n If only one load or store can be issued in one cycle (as is the case

on R10000 and many other processors), the best we can hope for is

n Other restrictions (like primary cache latency, latency of floating
point units etc.) need to be taken into account while creating the
best schedule

MFlops/sPeak *
Stores and Loads ofNumber

nsinstructiopoint floating ofNumber

Observation #6:

Fraction of flops may be a bottleneck
do i=1, m

jrow = ia(i+1) // 1Of, AT, Ld
ncol = ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN // N Ld
do j=1,ncol // 1 Ld
fetch ja(jrow), a(jrow), x1(ja(jrow)), ..…xN(ja(jrow))

// 1 Of, N+2 AT N+2 Ld
do N fmadd (floating multiply add) // 2N Flop

enddo // 1 Iop, 1 Br
Store sum1…..sumN in y1(i) ..…yN(i) // 1 Of, N AT, and St

enddo // 1 Iop, 1 Br

AT:address transln; Br: branch; Iop: integer op; Flop: floating point op; Of: offset
calculation; Ld: load; St: store

n Estimated number of floating point operations out of the total instructions (for
the unstructured Euler Jacobian)
� For N=1, If = 0.18
� For N = 4, If = 0.34; this is one-third of “peak” performance

Significance of multivectors
n Using multivectors can improve the performance of sparse

matrix-vector product significantly
n “Algorithmic headroom” is available for modest blocking
n Simple models predict the performance of sparse matrix-vector

operations on a variety of platforms, including the effects of
memory bandwidth, and instruction issue rates
� achievable performance is a small fraction of stated peak for sparse

matrix-vector kernels, independent of code quality
� compiler improvements and intelligent prefetching can help but the

problem is fundamentally an architecture-algorithm mismatch and
needs an algorithmic solution

Realistic Measures of Performance
Sparse Matrix Vector Product

single vector, matrix size = 90,708, nonzero entries = 5,047,120

0

200

400

600

800

1000

SP Origin T3E Pentium Ultra II

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Realistic measures of performance
Sparse Matrix Vector Product

one vector, matrix size = 90,708, nonzero entries = 5,047,120

0

50

100

150

200

250

300

SP Origin T3E Pentium Ultra II

Oper. Issue Peak Mem BW Peak ObservedPeak Perform
ance

Summary of observations for PDE codes
n Processor scalability is no problem, in principle
n Common bus-based network is a bottleneck
n For fixed-size problems, global synchronization is

eventually a bottleneck
n Coarse grid in preconditioner can be a bottleneck
n Memory latency is no problem, in principle
n Memory bandwidth is a major bottleneck
n Load-Store functionality may be a bottleneck
n Frequency of floating point instructions may be a bottleneck

Lessons for high-end simulation of PDEs
n Unstructured (static) grid codes can run well on distributed

hierarchical memory machines, with attention to partitioning,
vertex ordering, component ordering, blocking, and tuning

n Parallel solver libraries can give new life to the most valuable,
discipline-specific modules of legacy PDE codes

n Parallel scalability is easy, but attaining high per-processor
performance for sparse problems gets more challenging with
each machine generation

n The NKS family of algorithms can be and must be tuned to an
application-architecture combination; profiling is critical

n Some gains from hybrid parallel programming models
(message passing and multithreading together) require little
work; squeezing the last drop is likely much more difficult

Weighing in at the bottom line
n Characterization of a 1 Teraflop/s computer of today

� about 1,000 processors of 1 Gflop/s (peak) each
� due to inefficiencies within the processors, more practically

characterized as about 4,000 processors of 250 Mflop/s each
n How do we want to get to 1 Petaflop/s?

� 1,000,000 processors of 1 Gflop/s each (only wider)?
� 10,000 processors of 100 Gflop/s each (mainly deeper)?

n From the point of view of PDE simulations on quasi-static Eulerian
grids
� Either!

n Caveat: dynamic grid simulations are not directly covered in this
discussion
� but see work 2003 SIAM/ACM Prize

Four sources of performance improvement
n Expanded number of processors

� arbitrarily large factor, through extremely careful attention to load
balancing and synchronization

n More efficient use of processor cycles, and faster processor/memory elements
� one to two orders of magnitude, through memory-assist language features,

processors-in-memory, and multithreading
n Algorithmic variants that are more architecture-friendly

� approximately an order of magnitude, through improved locality and
relaxed synchronization

n Algorithms that deliver more “science per flop”
� possibly large problem-dependent factor, through adaptivity
� This last does not contribute to raw flop/s!

Source #1:

Expanded number of processors
n Recall Observation #1 and “back-of-envelope estimates”:

Scalability not a problem.
n Caveat: the processor network must also be scalable

(applies to protocols as well as to hardware)
n Remaining four orders of magnitude could be met by

hardware expansion (but this does not mean that fixed-size
applications of today would run 104 times faster)

Source #2:

More efficient use of faster processors
n Current low efficiencies of sparse codes can be improved if

regularity of reference is exploited with memory-assist features
n Recall Observation #3: PDEs have exploitable periodic workingset

structures that can overcome memory latency
n Caveat: high bandwidth is critical, since PDE algorithms do only

O(N) work for O(N) gridpoints worth of loads and stores
n One to two orders of magnitude can be gained by catching up to the

clock, and by following the clock into the few-GHz range

Source #3:

More “architecture friendly” algorithms
n Algorithmic practice needs to catch up to architectural demands

� several “one-time” gains remain to be contributed that could
improve data locality or reduce synchronization frequency, while
maintaining required concurrency and slackness

� “One-time” refers to improvements by small constant factors,
nothing that scales in N or P – complexities are already near
information-theoretic lower bounds, and we reject increases in
flop rates that derive from less efficient algorithms

� Caveat: remaining algorithmic performance improvements may
cost extra space or may bank on stability shortcuts that
occasionally backfire, making performance modeling less
predictable

n Perhaps an order of magnitude of performance remains here

Performance improvement from algorithms (1)
n Spatial reorderings that improve locality

� interlacing of all related grid-based data structures
� ordering gridpoints and grid edges for L1/L2 reuse

n Discretizations that improve locality
� higher-order methods (lead to larger denser blocks at each point than

lower-order methods)
� vertex-centering (for same tetrahedral grid, leads to denser

blockrows than cell-centering)
n Temporal reorderings that improve locality

� block vector algorithms (reuse cached matrix blocks; vectors in
block are independent)

� multi-step vector algorithms (reuse cached vector blocks; vectors

have sequential dependence)

Performance improvement from algorithms (2)
n Temporal reorderings that reduce synchronization penalty

� less stable algorithmic choices that reduce synchronization
frequency (deferred orthogonalization, speculative step selection)

� less global methods that reduce synchronization range by replacing
a tightly coupled global process (e.g., Newton) with loosely
coupled sets of tightly coupled local processes (e.g., Schwarz)

n Precision reductions that make bandwidth seem larger
� lower precision representation of preconditioner matrix

coefficients or poorly known coefficients (arithmetic is still
performed on full precision extensions)

Source #4:

Algorithms packing more science per flop
n Some algorithmic improvements do not improve flop rate, but lead to the

same scientific end in the same time at lower hardware cost (less
memory, lower operation complexity)

n Caveat: such adaptive programs are more complicated and less thread-
uniform than those they improve upon in quality/cost ratio

n Desirable that petaflop/s machines be general purpose enough to run the
“best” algorithms

n Not daunting, conceptually, but puts an enormous premium on dynamic
load balancing

n An order of magnitude or more can be gained here for many problems

Examples of adaptive opportunities
n Spatial Discretization-based adaptivity

� change discretization type and order to attain required
approximation to the continuum everywhere without over-
resolving in smooth, easily approximated regions

n Fidelity-based adaptivity
� change continuous formulation to accommodate required

phenomena everywhere without enriching in regions where
nothing happens

n Stiffness-based adaptivity
� change solution algorithm to provide more powerful,

robust techniques in regions of space-time where discrete
problem is linearly or nonlinearly stiff without extra work
in nonstiff, locally well-conditioned regions

Status and prospects for advanced adaptivity

n Metrics and procedures well developed in only a few areas
� method-of-lines ODEs for stiff IBVPs and DAEs, FEA for elliptic

BVPs
n Multi-model methods used in ad hoc ways in production

� Boeing TRANAIR code
n Poly-algorithmic solvers demonstrated in principle but rarely in the

“hostile” environment of high-performance computing
n Requirements for progress

� management of hierarchical levels of synchronization
� user specification of hierarchical priorities of different threads

Summary of suggestions for high performance

n Algorithms that deliver more “science per flop”
� possibly large problem-dependent factor, through adaptivity (but

we won't count this towards rate improvement)
n Algorithmic variants that are more architecture-friendly

� expect half an order of magnitude, through improved locality and
relaxed synchronization

n More efficient use of processor cycles, and faster processor/memory
� expect one-and-a-half orders of magnitude, through memory-

assist language features, PIM, and multithreading
n Expanded number of processors

� expect two orders of magnitude, through dynamic balancing and
extreme care in implementation

Reminder about the source of simulations
n Computational science and engineering is not about individual

large-scale analyses, done fast and “thrown over the wall”
n Both “results” and their sensitivities are desired; often

multiple operation points to be simulated are known a priori,
rather than sequentially

n Sensitivities may be fed back into optimization process
n Full CFD analyses may also be inner iterations in a

multidisciplinary computation
n In such contexts, “petaflop/s” may mean 1,000 analyses

running somewhat asynchronously with respect to each other,
each at 1 Tflop/s – clearly a less daunting challenge and one
that has better synchronization properties for exploiting “The
Grid” – than 1 analysis running at 1 Pflop/s

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
1

The International Technology

Roadmap for Semiconductors

and Its Effect on

Scalable High End Computing

Peter M. Kogge
McCourtney Prof. of CS & Engr, Concurrent Prof. of EE

Assoc. Dean for Research, University of Notre Dame

IBM Fellow (ret)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
2

Why Is Supercomputing

Really Hard?

• Silicon density: Sheer space taken up implies
large distances & loooooong latencies

• Silicon mindset:

– Processing logic “over here”

– Memory “over there”

– And we add acres of high heat producing stuff to
bridge the gap

• Questions:

– Where are we going with “business as usual”

– How far can we scale with a mindset (but not
technology) change?

• And is it enough? (to be answered later)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
3

Why Is Supercomputing Hard

In Silicon: Little’s Tyranny

Concurrency = Throughput

Latency

ILP: Getting tougher & tougher to increase

•Must extract from program

•Must support in very complex H/W

Getting worse fast!!!!

(The Memory Wall)

Much less than peak

and degradingdegrading rapidly

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
4

Technology Limits to Applications
(from NRC’s “Getting Up to Speed”)

S
to
c
k
p
il
e

In
te
ll
ig
e
n
c
e

D
e
fe
n
c
e

C
li
m
a
te

P
la
s
m
a

T
ra
n
s
p
o
rt
a
ti
o
n

B
io
-i
n
fo

H
e
a
lt
h
&
S
a
fe
ty

E
a
rt
h
q
u
a
k
e
s

G
e
o
p
h
y
s
ic
s

A
s
tr
o
p
h
y
s
ic
s

M
a
te
ri
a
ls

O
rg
a
n
.
S
y
s
te
m
s

Performance

Flops
1 X X X

Memory

Capacity
X 3 2 X

Memory

Bandwidth
X X X X 4

Memory

Latency
X X X X 4

Interconnect

Bandwidth
X X X X 4

Interconnect

Latency X X X X 4

1 Radar Cross section

2 Genomics

3 Automobile Noise

4 Biological Systems Modeling

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
5

Why Look at Technology Scaling

• What are the basic units of memory & logic

– In terms of functionality per sq. cm

• How will these change over time

• How with their individual performance

characteristics change

• When do real-world limits come into play

– Power and inter-chip bandwidth

• What’s the likely best “chip” architectures

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
6

What Seems to Be The Consensus

• Silicon will remain with us, but

– Power becoming dominating concern

– Individual CPU core complexity flattening

– Clock rate increases flattening

– Commodity memory bandwidths stagnant

– Chip-to-chip growing in importance

• Impact on building-block chip architecture

– Moore’s Law by other than clock rate

– Line between “Logic” and “Memory” chips blurs

– We will increase “threads per die” not IPC/core

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
7

Outline

• Silicon Fundamentals

• Scaling

• ITRS Roadmap

• Limits on Classical Chips

• Multi-threading & Multi-core

• Processing in Memory

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
8

Silicon Fundamentals

•MOSFET Transistor

• Simple Logic Circuits

• Variations of Memory

•Multiple Levels of Metal

• Off-Chip Interconnect

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
9

A MOSFET Transistor

Silicon Substrate

Metal

Polysilicon

Source Gate Drain

Diffusion Silicon Dioxide

An Electric field Here

Causes tunneling here

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
10

Key Device Parameters

t
ox

W

L

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
11

A Logic Inverter

Input

OutputGnd Vdd

N-Type Diffusion/Transistor

• electron rich

• Turns on with + gate

P-Type Diffusion/Transistor

• electron poor

• Turns on with - gate

Ground

Input

Output

Vdd (Positive)

N-Type

Transistor

P-Type

Transistor

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
12

4-input NAND Gate

In3

In1

In2

In4

In1 In2 In3 In4

VDD

Out

In1 In2 In3 In4

Vdd

GND

Out

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
13

Full Adder

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
14

Key Types of Memory Cells

• Commodity DRAM

• Embedded DRAM

• SRAM

• Non-Volatile RAM

– NAND Type

– NOR Type

Peak Bandwidth

L
a
te
n
cy

DRAM

EDRAM

SRAM

Better

Power

D
en
si
ty

DRAM

EDRAM

SRAM

B
etter

No single optimal choice!

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
15

Static RAM bit
(6 Transistors per bit)

• To Write

– Place data and ~data on Din & ~Din

– Raise Select

• To Read

– Raise Select to couple latch to outputs

– Sense output lines Dout & ~Dout

• In between, data stays latched in inverters

Select

Din/Dout ~Din/~Dout

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
16

Charge-Based DRAM Bit
(1 Transistor)

• To Write
– Place data value on Din

– Activiate Select

– Capacitor is charged/discharged

• To Read
– Activate Select

– Read value on capacitor from Dout

• But charge “leaks” away over time

Select (“Word Line”)

Din/Dout

(“Bit Line”)

Ground

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
17

Memory Arrays

1 out of 16

Decoder

Column Precharge Logic

Sense Amplifiers

Data0 Data1 Data2 Data3

Address (6 bits)

4

2

Sample 4 bit x

64 word array

Gnd
DRAM

Gnd

Vdd

Left

Column
Right
Column

Row Address

Column
Address

Row Select

SRAM

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
18

Compact DRAM Cells

for Memory Arrays

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode

Capacitor dielectric layer

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode

Capacitor dielectric layer

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode

Capacitor dielectric layer

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
19

Multiple Levels of Metal

Bonding

Pad

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
20

Off-Chip Interconnect:

Wire Bond

Wire Bond

Contacts available only from periphery of chip

Wire “welded”

to pad

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
21

Off-Chip Interconnect:

Solder Ball

C4 Solder Ball

Allows an array of contacts over entire chip surface

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
22

Scaling

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
23

Device Scaling

• Key parameters: Gate length L, width W

• “On” resistance prop. to L/W

• “Delay” in turning transistor on

– Function of capacitance of gate

– In turn proportional to area/tox = LW/tox
• Decreasing L thus a “good thing”

• But desirable to keep minimum devices with “square”
gates …. want to shrink W also

• Other “shrinkable” dimensions: tox, metal width, spacing
between wires, …

“Scaling:” shrink a dimension by factor S

t
ox

W

L

t
ox

W

L

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
24

What Can Scaling Affect?

• Chip area to perform some function
– If device & wire dimensions change by S

– Then area changes by S2

• Frequency of operation
– Decreasing gate area decreases capacitance

– Decreasing distance decreases R

• But decreasing wire cross-section increases R

• Power to perform some function ~ C x F x Vdd
2

– Decreasing gate area decreases aggregate capacitance C

– Decreasing L decreases threshold voltage, which decreases
needed Vdd

• Power density: power per unit area
– Limiting factor for cooling considerations

Bigger S factors are better

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
25

Approaches to Technology Scaling

• Full scaling: Ideal if possible

– Keep E-field within gate capacitor constant

– Requires scaling L, W, tox
– Also scales voltage

– Area shrinks, power drops, higher frequency

• Fixed Vdd Scaling: Common until late 1990s

– Scale only L, W

– Keep Vdd constant

– Same area shrink, very high clock, terrible power

• General Scaling: Typical today

– Different scale factors for different parameters

– Vdd does not drop as fast

– Lower peak clock, but better power & power density

0

1

2

3

4

5

6

1975 1980 1985 1990 1995 2000 2005

Year

V
d
d

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
26

10

100

1000

10000

1975 1980 1985 1990 1995 2000 2005

Year

F
e
a
tu
re
 S
iz
e

Feature Size of Past

Microprocessors

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
27

Approximate Scaling

Relationships

Parameter Full Fixed V General Full Fixed V General

W, L 1/S 1/S 1/S 1/S 1/S 1/S

tox 1/S 1/S 1/S 1/S 1/S 1/S

Vdd 1/S 1 1/U 1/S 1 1/U

Circuit Area 1/S^2 1/S^2 1/S^2 1/S^2 1/S^2 1/S^2

Clock S S^2 S^2/U S S S

Circuit Power 1/S^2 S S/U^3 1/S^2 1 1/U^2

Power Density 1 S^3 S^3/U^3 1 S^2 S^2/U^2

"Long Channel" Devices "Short Channel" Devices

Moore’s Law:

• 4X “functionality” every 3 years

• “Interpreted” as ~ S=2 every 3 years

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
28

ITRS

• The Process

• A Technology Node

• Key Technology Projections

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
29

International Technology

Roadmap for Semiconductors

• Goal: predict semiconductor scaling for
next 15 years

– Convert “Moore’s Law” into detailed
projections

– Identify technical roadblocks

• Result of a worldwide consensus

– U.S.A, Europe, Japan, Korea, and Taiwan

• Dating back to 1994

– Initially every three years

– But now significant yearly “updates”

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
30

Types of Chip Technologies

Discussed

• Logic: high speed transistor, lots of metal layers

– High Performance Microprocessors

– Cost Performance Microprocessors

– Low Power Microprocessors

– ASICS (Application Specific ICs)

• DRAM: high threshold transistors, few metal,

cheap fab processes

– High Volume Commodity Dense memory part

• Embedded DRAM: DRAM circuits made on logic

process (faster, but less dense)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
31

Trends Driven by Scaling

• Integration Level: Components/chip

• Cost: $ per function

• Speed: Microprocessor clock rate, GHz

• Power: Laptop or cell phone battery life

• Compactness: Small and light-weight

products

• Functionality: Nonvolatile memory, imager

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
32

Challenges Addressed

• System Drivers & Design

• Test & Test Equipment

• Process Integration, Devices, & Structures
– Including RF, mixed signal, emerging

• Front End Processes

• Lithography

• Interconnect

• Factory Integration

• Assembly & Packaging

• Environmental Safety & Health

• Yield Enhancement

• Metrology

• Modeling & Simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
33

Technology Node

• Goal: “Label” state of the art to allow quick

correlation to Moore’s Law scaling

• Technology Generation for Year X:

– Minimum feature size in any product in that year

• Technology Node:

– A year in which technology generation provides

~4X functionality growth over prior Technology

Node

– Typically tied to DRAM, as that is usually smallest

– Based on Year of Production

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
34

Interesting Feature Sizes

• ½ of minimum pitch between two
DRAM metal lines

• ½ of minimum pitch between two
microprocessor metal lines

• ½ of minimum pitch between two
microprocessor poly lines

• Gate length of a microprocessor
transistor gate “as printed”

• Gate length of a microprocessor
transistor gate “as physically
fabricated”

Pitch

Pitch

L

L
PHYSICAL

L
PRINT

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
35

Feature Size Projections

0

20

40

60

80

100

120

140

160
2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

F
e
a
tu
re
 S
iz
e
 (
n
m
)

Technology Node DRAM 1/2 pitch

MPU/ASIC Poly 1/2 pitch MPU/ASIC M1 1/2 pitch

MPU Physical Gate ASIC/low pwr Printed Gate

ASIC/low pwr Physical Gate

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
36

Projections as Scale Factors

Basic area scaling doubles every 3 years

1

10

100
2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

S
c
a
li
n
g
 v
s
 2
0
0
4
 -
 S
q
u
a
re
d

Technology Generation DRAM 1/2 pitch

MPU/ASIC Poly 1/2 pitch MPU/ASIC M1 1/2 pitch

MPU Physical Gate ASIC/low pwr Printed Gate

ASIC/low pwr Physical Gate

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
37

Comparison to Moore’s Law

• Moore’s Law: ~4X functionality per 3 years

• But feature scaling provides only 2X

• Difference for microprocessors

– Clock frequency increase

–More parallelism in microarchitecture

• Difference for DRAMs

– Denser cell design

– Bigger die area

• Both are reaching limits

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
38

Commodity DRAM Capacity

• Chip Capacity: Product of

– Cell area

– Chip area

– % of chip that is cell array

• Cell area factor:

– technology-independent area of one bit

– Decreasing slowly over time

• Cell Area: product of factor & feature size2

• Chip Area: now chosen to maximize yield

• Cell Array area: % of chip that is cell

– Constant at 63% in production

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
39

Memory Storage Density:

Cells Only

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

G
B
/s
q
.c
m
 (
C
e
ll
s
 o
n
ly
)

SRAM NOR NVM NAND NVM EDRAM DRAM

SRAM

EDRAM

DRAM

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
40

Change in DRAM Density Factors

0

1

10

100

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

R
e
la
ti
v
e
 t
o
 2
0
0
4

Cell Area Factor Tecnology Factor (Squared)

Chip Area Factor Net Density Factor/chip

DRAM is now $-Driven – not Density-Driven

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
41

Chip Capacity

0.001

0.01

0.1

1

10

100

1000

10000

100000

1970 1980 1990 2000 2010 2020

C
h
ip
 C
a
c
p
a
c
it
y
 (
M
b
it
s
)

Historical SIA Production SIA Introduction

Chip Capacity is No Longer Following Original Moore’s Law

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
42

Logic Chip Density Scaling

1

10

100

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

L
o
g
ic
 C
h
ip
 S
c
a
li
n
g
 F
a
c
to
rs
 o
v
e
r
2
0
0
4

Feature Size ̂2 Transistor Factor Logic Gate Factor

SRAM Cell Factor SRAM Cell Area Factor SRAM Memory Factor

Chip Size Factor

Logic functions per chip: ~2X every 3 years

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
43

1.0

10.0

100.0
2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

F
re
q
u
e
n
c
y
 (
G
H
z
)

On-chip local clock Chip-to-board

Logic Clock Rates

2004 Projection was 5.2 GHz - and we didn’t make it!!!

On-chip clock rates are flattening And then magic happens

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
44

Off Chip Bandwidth

• Upper limit = product of:

– # of off-chip pins/contacts

–% not used as power/ground

–Max signaling rate per pin

• Density & signal rate improve with time

–With 50% power/ground

– But they don’t match growth in performance

potential

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
45

Relative Off-Chip

Scale Factors

1

10

100

1000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Im
p
ro
v
e
m
e
n
t
R
a
ti
o

Off-Chip Clock On-chip local clock

Signal I/O Density Transistor Density

Signal I/Os x Off-Chip Clock Transistors x On-Chip Clock

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
46

The Way We Were:

A Brief Romp Thru

Single Chip Microprocessor Land

• Data from last 30 years of real chips

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
47

Historical Changes in Chip

Parameters

10

100

1000

10000

1975 1980 1985 1990 1995 2000 2005

Year

F
e
a
tu
re
 S
iz
e

10

100

1000

1975 1980 1985 1990 1995 2000 2005

Year
D
ie
 S
iz
e
 (
m
m
^
2
)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
48

Functionality = IPC x Clock

10

100

1000

10000

1975 1980 1985 1990 1995 2000 2005

Year

C
lo
c
k
 (
M
H
z
)

0.01

0.1

1

10

100

1000

1975 1980 1985 1990 1995 2000 2005

Year

T
ra
n
s
is
to
r
C
o
u
n
t
(M
il
li
o
n
s
)

• ~ 4X per die every 3 years

• But: Most in cache

• And partially due to larger die

• And off-chip clock rates lagging

• ~ 2.3X every 3 years

• But: increasing clock increases

memory wall

• And rates stagnating

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
49

How Are We Using These

Transistors

0

50

100

150

200

250

300

350

400

450

1970 1975 1980 1985 1990 1995 2000 2005

A
re
a
 (
s
q
.
m
m
)

CPU Die Area Eqvt. DP FPU

66 to 1:

Is This

State?

Crossover

*

36MB SRAM L3 chip

IBM P5 Dual Core Intel Single Core Family

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
50

Let’s Look at Transistor

Count

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1975 1980 1985 1990 1995 2000 2005

Year

%

T
ra
n
s
is
to
rs
 i
n
 S
R
A
M

• Still ~4X every 3 years

• But N-way superscalar at best

perhaps sqrt(N) IPC

• Again highly latency driven

•& hideously expensive to design

0.01

0.1

1

10

100

1975 1980 1985 1990 1995 2000 2005

Year

N
o
n
_
S
R
A
M
 T
ra
n
s
is
to
r
C
o
u
n
t
(M
il
li
o
n
s
)

•Most of uP die = SRAM

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
51

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1970 1980 1990 2000

E
s
ti
m
a
te
d
 S
ta
te
 (
k
 b
it
s
)

Total State Machine Supervisor

User Transient Latency Enhancing

Access Enhancing

Core CPU State vs Time

1.5
X C
om
po
un
d G
row
th
Ra
te p
er
Ye
ar

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
52

Power

0.1

1

10

100

1000

1975 1980 1985 1990 1995 2000 2005

Year

W
a
tt
s
 p
e
r
S
q
u
a
re
 c
m

1

10

100

1000

1975 1980 1985 1990 1995 2000 2005

Year

W
a
tt
s
 p
e
r
D
ie

Hot, Hot, Hot!

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
53

Relative Off-Chip Scale Factors
(Repeat of Earlier Chart)

1

10

100

1000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Im
p
ro
v
e
m
e
n
t
R
a
ti
o

Off-Chip Clock On-chip local clock

Signal I/O Density Transistor Density

Signal I/Os x Off-Chip Clock Transistors x On-Chip Clock

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
54

Does Logic Performance Match

Off-chip Bandwidth Potential?

100

1,000

10,000

100,000

100 1,000 10,000 100,000

Transistors per sq.cm *Clock

O
ff
-c
h
ip
 G
B
/s
s
 p
e
r
s
q
.
c
m

Actual Trend BW for constant ratio

No!

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
55

Classical DRAM

• Memory mats: ~ 1 Mbit each

• Row Decoders

• Primary Sense Amps

• Secondary sense amps & “page” multiplexing

• Timing, BIST, Interface

• Kerf

0.0001

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010 2020

D
e
n
si
ty
 (
M
b
it
s/
sq
.m
m
)

Chip: Historical Chip: SIA Production Chip: SIA Introduction

Cell: Historical Cell: SIA Production Cell: SIA Introduction

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1970 1980 1990 2000 2010 2020

%
 C
h
ip
 O
v
e
rh
e
a
d

Historical SIA Production SIA Introduction

45% of Die is non storage

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
56

Memory Interfaces

• Today: DRAM chips separated from uP

• Latency: sum of

– Time to get address from uP to DRAM

– Time to access internal DRAM arrays

– Time to pick out particular nibble

– Time to send back to CPU

• Bandwidth: Function of

– Number of pins off of uP die

– Max signaling rate to DRAM

– Ability of DRAM to overlap multiple operations

Remember: DRAM uses

slower transistors

Improving only 7%/yr

Which leaves less space for memory

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
57

The Brave New World:

Adding More Threads to a Single Die

•Multi-Threading

•Multi-Core

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
58

Multi-Threading

• Thread: execution of a series of inter-dependent
instructions in support of a single program

• Today’s single threaded CPUs
– Dependencies in program code reduce ability to keep function
units busy

– Limited in support for memory operations “in flight”

• Multi-threading: allowing multiple threads to take turns
using same CPU logic
– Typical requirement: multiple register sets

• Variations in terms of when/how instructions from all
active threads are issued
– Coarse-grained MT: Issue from one thread & change only at
some major event

– Fine grained MT: Change every few instructions

– Simultaneous Multi-threading (SMT): actually interleave
instructions from multiple threads

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
59

Advantages

• Hide long-latency memory operations by
switching to other threads

• Have larger pool of unrelated instructions
to use to feed function units

• Simplify scheduling of multiple activities
and still guarantee forward progress for
each

• In SMT designs: guaranteed independent
instructions in pipelines eliminates need for
expensive forwarding and reordering

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
60

Examples of Multi-Threaded

Designs

• 1960s: CDC 6600 I/O Processor

• 1970s: Space Shuttle I/O Processor

• 1980s: Denelcor HEP

• 1990s: Cray MTA

• Recent machines

– Intel Hyperthreading: 2 threads/core

– SUN MAJC chip

– POWER5 dual thread dual core

– PIM Lite: Multi-threading “at the memory”

– Sun Niagara 8 core 4-way multi-threaded chip

– Cray Coronado chip 32-way threading

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
61

Multi-Core

• More complex CPU cores no longer cost effective

– High complexity & design costs

– “Slow wires” make high clocks tough

– Decreasing efficiency due to relatively slower

memory

– Need bigger caches for latency but don’t use inherent

bandwidth

• Solution: “reuse” existing design in better

technology & place multiple cores on same die

– Combine with shared memory hierarchy

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
62

Scaling Today’s uP Chips

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

S
in
g
le
 C
o
re
 P
ro
je
c
te
d
 D
ie
 S
iz
e
 (
m
m
2
)

ITRS Projected 280 mm2 uP die

Cannot afford to

Design 100X

more complex CPUs

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
63

Potential Multi-core Dies

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

#
 o
f
u
P
 o
n
 a
 S
in
g
le
 D
ie

Assume we scale entire current single core chip & replicate to fill 280 sq mm die

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
64

Examples of Multi-Core

Designs
• Microprocessors

– 1993: EXECUBE

– IBM POWER4 dual-core

– Intel XEON dual-core

– Sun dual core UltraSPARC

– IBM CELL 9 way

– IBM Bluegene/L dual core with embedded DRAM

– Sun Niagara 8 way core

• Specialized chips

– Network processors (up to 100s of cores)

– Graphics & game processors

• Many multi-core designs also using multi-threaded cores

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
65

What is Today’s Multi-Core

Design Space

Cache/Memory

Cache

Core Core

. . .

. . .

Cache

Core Core

. . .

(a) Hierarchical Designs

C
O
R
E

C
O
R
E

C
O
R
E

M
E
M . . .

Cache/Memory

(b) Pipelined Designs

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Interconnect & Control

(c) Array Designs

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
66

Sample Chips

25.6GBInternal BW

200MB/s40Gbps16GB/sData B/W

10# Ports

8452,313Signal I/Os

44%23%41%Memory

1,2805,400Contacts

16MB=41%23%1.9MB=27%L2/Memory

200MHz200 MHz2GHzCore Clock

2D SIMDSystolicMT-SMPArch

256=14%200=68%2@19% eachCores

??114M/62L276MTransistors

ArrayPipelinedHierarchicalType

????389mm2Area

0.18 Logic

0.15 DRAM0.13 Logic0.13 LogicTechnology

200220032003Year

YukonX10qPOWER5

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
67

Multi-Core Projection Models

• Shrink: Take today & just shrink

• Shrink & Merge: replace L2/L3 SRAM

with DRAM (& reduce clock)

• Constant die size: Add cores to fill die

• Single chip type: merge with memory

– Ensure desired memory/performance ratio

• Consider for each model:

– How many pins needed for constant

bandwidth ratio

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
68

Shrink Model

0

100

200

300

400

500

600

2003 2005 2007 2009 2011 2013 2015 2017

T
o
ta
l
D
ie
 A
re
a
 (
s
q
.
m
m
)

Basic CPU die size Cache die size Revised CPU Chip

Revised Cache Chip Chip Area for Pins Minimum CPU Die

Total Node Die Area

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
69

Shrink & Merge Model

0

50

100

150

200

250

300

350

400

2003 2005 2007 2009 2011 2013 2015 2017

T
o
ta
l
D
ie
 A
re
a
 (
s
q
.
m
m
)

Merged CPU + DRAM L3 die Chip Area for Pins Total Node Die Area

Bandwidth Constrained!

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
70

Constant Die Model

0

20

40

60

80

100

120

2003 2005 2007 2009 2011 2013 2015 2017

N
u
m
b
e
r
o
f
C
o
re
s

Extra Cores based on area only Extra cores based on available pins

Total implementable number of cores

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
71

Single Chip Type Model

(With Constant Die Size)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

2003 2005 2007 2009 2011 2013 2015 2017

%
 U
ti
li
z
a
ti
o
n

% Area that is core - 1:1 case % Area that is memory - 1:1 case

% available pins that are used - 1:1 case % Area that is core - 1:20 case

% Area that is memory - 1:20case % available pins that are used - 1:20 case

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
72

Chip Count for a

Petabyte System

100,000

1,000,000

10,000,000

2003 2005 2007 2009 2011 2013 2015 2017

C
h
ip
 C
o
u
n
t

PB of Commodity DRAM Today's Approach Shrink Model

Shrink and Merge Model Constant Die Model Single Chip Type Model

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
73

Silicon Area for a

Petabyte System

10

100

1,000

10,000

2003 2005 2007 2009 2011 2013 2015 2017

T
o
ta
l
A
re
a
 (
s
q
.
m
)

PB of Commodity DRAM Today's Approach Shrink Model

Shrink and Merge Model Constant Die Model Single Chip Type Model

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
74

Silicon Alone is not the

Complete Story

• Only 20% of MCM is silicon

• And we haven’t accounted for the heat sink!

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
75

Observations

• Silicon growing irregularly in

– Memory density per square cm

– Performance possible per square cm

– Off-chip I/O bandwidth per square cm

• 99% of today’s logic chips

– Do no computation

– And are mostly memory

• And we pay a huge overhead when

– Densest memory technology not used

– Memory & logic on separate chips

• It’s the interconnect to memory, stupid!

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
76

A Contrarian’s View

Processing in Memory:

The Grand Synthesis

of Logic and Memory

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
77

How can we use a sq. cm?

(with no overhead)

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.010 0.100 1.000 10.000

GB per sq. cm (No overhead)

G
F
 p
e
r
s
q
.
c
m
 (
F
P
U
s
 o
n
ly
)

2003 2018

Tim
e

“Knee”: 50% Logic & 50% Memory

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
78

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.010 0.100 1.000 10.000

GB per sq. cm (No overhead)

G
F
 p
e
r
s
q
.
c
m
 (
F
P
U
s
 o
n
ly
)

Adding In

“Lines of Constant Performance”

1 GB
/GF

0.5 G
B/G
F

0.001
 GB/

GF

0.1 G
B/GF

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
79

Knee Curves with

Basic Overheads

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.010 0.100 1.000 10.000

GB per sq. cm (Basic Overhead)

G
F
 p
e
r
s
q
.
c
m
 (
C
o
re
s
)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
80

Knee Curves with

Today’s Overheads

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.010 0.100 1.000 10.000

GB per sq. cm

G
F
 p
e
r
s
q
.
c
m

Partitioning chips as we do today is hugely inefficient

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
81

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

A
re
a
 (
S
q
.
m
)

DRAM Alone FPUs Alone Football Field

Desk Peak POWER5 Sustained POWER5

• In terms of silicon area: “It’s the memory!”

•We extract little benefit from most of our high cost logic

Minimal Size for a

“Peta” System

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
82

“Processing-In-Memory”

• High density memory on same chip

with reasonable dense logic

• Very fast access from logic to memory

• Very high bandwidth

• ISA/microarchitecture designed to

utilize high bandwidth

• Tile with “memory+logic” nodes

Interconnect

incoming

parcels

outgoing

parcels

Parcel = Object Address + Method_name + Parameters

Performance Monitor

Wide Register File

Wide ALUs

Permutation Network

Thread State Package

Global Address Translation

Parcel Decode and Assembly

Broadcast Bus

R
o
w
 D

ec
o
d
e
L
o
g
ic

Sense Amplifiers/Latches

Column Multiplexing

Memory

Array

1 “Full Word”/Row

1 Column/Full Word Bit

“Wide Word” InterfaceAddress

A

S

A

P
A Memory/Logic Node

Tiling a Chip

Stand Alone

Memory Units

Processing

Logic

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
83

The PIM

“Bandwidth Bump”

1

10

100

1000

1.00E+00 1.00E+03 1.00E+06 1.00E+09

Reachable Memory (Bytes)

B
a
n
d
w
id
th
 (
G
B
/s
)

UltraIII CPU Chip Single PIM Node 32node PIM Chip

Complex RegFile

L1

L2

Off-Chip Memory

Local Chip

Memory

Simple 3Port

RegFile

32 Nodes

Between 1B & 1 GB,

Area under curve:

1 PIM Node = 4.3xUIII

1 PIM Chip = 137xUIII

Region of classical

Temporal Intensive

Performance

Advantage

Region of PIM

Spatially Intensive

Performance

Advantage (1 Node)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
84

PIM Chip

MicroArchitectural Spectrum

M

E

M

L

O

G

I

C

M

E

M

M

E

M

L

O

G

I

C

M

E

M

.. 8 Times ..

Word Drivers & Row Decoder

M

E

M

L

O

G

I

C

M

E

M

M

E

M

L

O

G

I

C

M

E

M

.. 8 Times ..

DRAM

DRAM

C

a

c

h

e

Mpy

CPU

Mem

I/F

C

a

c

h

e

DRAM

DRAM

16 Mbit

DRAM

Macro

512B Line

512B Line

512B Line

16 Mbit

DRAM

Macro

512B Line

512B Line

512B Line

..X16..
Simple

Micro

Sparc II

512B

Victim Cache

Memory

Coherence

Controller

Serial

Inter

Connect

Instructions

Data
32B

SIMD: Linden DAAM

Single Chip Computer:

Mitsubishi M32R/D

Tiled & Scalable:

BLUE GENE,

EXECUBE

Complete SMP Node:

Proposed SUN part

L2/Memory

L1

CPU

L1

CPU

Chip Level SMP:

POWER4, BG/L

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
85

PIM System Design Space:

Historical Evolution
• Variant One: Accelerator (historical)

• Variant Two: Smart Memory

– Attach to existing SMP (using an existing memory bus interface)

– PIM-enhanced memories, accessible as memory if you wish

– Value: Enhancing performance of status quo

• Variant Three: Heterogeneous Collaborative

– PIMs become “independent,” & communicate as peers

– Non PIM nodes “see” PIMs as equals

– Value: Enhanced concurrency and generality over variant two

• Variant Four: Uniform Fabric (“All PIM”)

– PIM “fabric” with fully distributed control and emergent behavior

– Extra system I/O connectivity required

– Value: Simplicity and economy over variant three

• Option for any of above: Extended Storage

– Any of above where each PIM supports separate dumb memory chips

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
86

TERASYS SIMD PIM

(circa 1993)
•Memory part for CRAY-3

• “Looked like” SRAM memory

•With extra command port

•128K SRAM bits (2k x 64)

• 64 1 bit ALUs

• SIMD ISA

• Fabbed by National

• Also built into workstation with

64K processors

• 5-48X Y-MP on 9 NSA benchmarks

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
87

EXECUBE: An Early MIMD

PIM (1st Silicon 1993)
• First DRAM-based Multi-Core with Memory

• Designed from onset for “glueless” one-part-type scalability

• On-chip bandwidth: 6.2 GB/s; Utilization modes > 4GB/s

8

Compute Nodes

on ONE Chip

MEMORY MEMORY MEMORY MEMORY

MEMORY MEMORY MEMORY MEMORY

CPU

CACHE CACHE

Include

“High Bandwidth”

Features in ISA

EXECUBE:

3D Binary Hypercube

SIMD/MIMD on a chip

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
88

RTAIS: The First ASAP

(circa 1993)

R
A
M

-0

8Bit

ALU

R
A
M

-1

8Bit

ALU

R
A
M

-...

8Bit

ALU

R
A
M

-3
0

8Bit

ALU

R
A
M

-3
1

8Bit

ALU C
o
n
tr
o
ll
er

Inter-ALU Exchange S
h
ar
ed

 M
em

o
ry

M
E
M
O
R
Y
 B
U
S

• Application: “Linda in Memory”

• Designed from onset to perform wide ops “at the sense amps”

• More than SIMD: flexible mix of VLIW

• “Object oriented” multi-threaded memory interface

• Result: 1 card 60X faster than state-of-art R3000 card

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
89

Mitsubishi M32R/D

DRAM

DRAM

C

a

c

h

e

Mpy

CPU

Mem

I/F

C

a

c

h

e

DRAM

DRAM

24 bit address bus16 bit data bus

Also two 1-bit I/Os

• 32-bit fixed point CPU + 2 MB DRAM

• “Memory-like” Interface

• Utilize wide word I/F from DRAM macro for cache line

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
90

DIVA: Smart DIMMs for

Irregular Data Structures

In
te
rc
o
n
n
ec
t

Memory

Stack

A

S

A

P

Memory

Stack

A

S

A

P

Memory

Stack

A

S

A

P

ADR

MAP

ADR

MAP

uP

Host

TLB

Cache

…. ….
Host issues Parcels

• Generalized

“Loads & Stores”

• Treat memory as

Active Object-

oriented store

Local

Prog.

CPU

DIVA Functions:

• Prefix operators

• Dereferencing & pointer

chasing

• Compiled methods

•Multi-threaded

•May generate parcels

CPU

C

A

C

H

E

Conventional

Motherboard

• 1 CPU + 2MB

•MIPS + “Wide Word”

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
91

Micron Yukon

• 0.15µµµµm eDRAM/ 0.18µµµµm logic

process

• 128Mbits DRAM

– 2048 data bits per access

• 256 8-bit integer processors

– Configurable in multiple

topologies

• On-chip programmable controller

• Operates like an SDRAM

SDRAM-like interface

FIFO

Task Dispatch UnitTask Dispatch UnitTask Dispatch UnitTask Dispatch Unit

FIFO FIFO

M16 PE M16 PE M16 PE M16 PE
sequencersequencersequencersequencer

DRAM DRAM DRAM DRAM
Control Control Control Control
UnitUnitUnitUnit

256 Processing 256 Processing 256 Processing 256 Processing
ElementsElementsElementsElements

R
e
g
is
te
r F
ile
s

16MBytes 16MBytes 16MBytes 16MBytes
Embedded Embedded Embedded Embedded
DRAMDRAMDRAMDRAM

HMIHMIHMIHMI

Synchronisation

Host
(remote)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
92

Berkeley VIRAM

• System Architecture: single

chip media processing

• ISA: MIPS Core + Vectors +

DSP ops

• 13 MB DRAM in 8 banks

• Includes flt pt

• 2 Watts @ 200 MHz,

1.6GFlops

4 “Vector Lanes”

MIPS

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
93

The HTMT Architecture &

PIM Functions

• Compress/Decompress

• Spectral Transforms

• Compress/Decompress

• ECC/Redundancy

• Compress/Decompress

• Routing

3D

Mem

DRAM

PIM

OPTICAL SWITCH

SRAM

PIM

RSFQ

Nodes

I/O FARM

• RSFQ Thread Management

• Context Percolation

• Scatter/Gather Indexing

• Pointer chasing

• Push/Pull Closures

• Synchronization Activities

• Data Structure

Initializations

•“In the Memory”

Operations

New Technologies:

• Rapid Single Flux Quantum (RSFQ) devices for 100 GHz CPU nodes

• WDM all optical network for petabit/sec bi-section bandwidth

• Holographic 3D crystals for Petabytes of on-line RAM

• PIM for active memories to manage latency

PIMs in Charge

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
94

Bluegene/L

• Two relatively simple cores with dense embedded

DRAM techology

• Designed to scale simply to bigger systems

• Basis for world’s fastest machine

4 MB EDRAM

L2 Cache

Interface Logic

L1I L1D

PPC 440

DP FPU

L1I L1D

PPC 440

DP FPU

Memory I/FNode-Node I/F

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
95

PIM Lite

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

• “Looks like memory” at Interfaces

• ISA: 16-bit multithreaded/SIMD

– “Thread” = IP/FP pair

– “Registers” = wide words in frames

• Designed for multiple nodes per chip

• 1 node logic area ~ 10.3 KB SRAM

(comparable to MIPS R3000)

• TSMC 0.18u 1-node 1st pass success

• 3.2 million transistors (4-node)

Thread

Queue

Frame

Memory

Instr

Memory
ALU

Data

Memory

Write-

Back

Logic

Parcel in (via chip data bus) Parcel out (via chip data bus)

Instruction Memory

(4 Kbytes)

Frame Memory (1 K)

ALU & Permute Net

Data Memory

(2 Kbytes)

Thread Pool

Write-Back Logic

2.9 mm

4
.5
 m

m

Instruction Memory

(4 Kbytes)

Frame Memory (1 K)

ALU & Permute Net

Data Memory

(2 Kbytes)

Thread Pool

Write-Back Logic

2.9 mm

4
.5
 m

m

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
96

One Step Further: Allowing the

Threads to Travel

• “Overprovision” memory with huge

numbers of anonymous processors

– Like PIM Lite, each multi-threaded

• Reduce state of a thread to ~ a cache line

• Make creating a new thread “near” some

memory a cheap operation

• Allow thread to “move” to new site when

locality demands

Latency reduced by huge factors

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
97

X

M

E

M

O

R

Y

X

M

E

M

O

R

Y

X

M

E

M

O

R

Y

X

M

E

M

O

R

Y

Vector Add via

Traveling Threadlets

Type 1

Y

M

E

M

O

R

Y

Y

M

E

M

O

R

Y

Y

M

E

M

O

R

Y

Y

M

E

M

O

R

Y

Type 2

Type 3

Accumulate Q

X’s in payload

Spawn type 2s

Fetch Q

matching Y’s,

add to X’s,

save in payload,

store in Q Z’s

Z

M

E

M

O

R

Y

Z

M

E

M

O

R

Y

Z

M

E

M

O

R

Y

Z

M

E

M

O

R

Y

Stride thru Q elements

Transaction Reduction factor:

•1.66X (Q=1)

•10X (Q=6)

• up to 50X (Q=30)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
98

Trace-Based “Threadlet” Extraction &

Simulation

• Applied to large-scale Sandia applications

over summer 2003
P: desired # concurrent threads

From Basic Application Data Through Detailed Thread Characteristics

Analysis

To Overall Concurrency

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
99

Next: An “All-PIM”

Supercomputer

PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM

Interconnection

Network

PIM Cluster
PIM Cluster

“Host”
PIM Cluster

I/O

A “PIM Cluster”

A “PIM DIMM”

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
100

Summary

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
101

Summary

• When it comes to silicon: It’s the Memory, Stupid!

• State bloat consumes huge amounts of silicon

– That does no useful work!

– And all due to focus on “named” processing logic

• Technology scaling progressing at uneven rates

– Clocks slowing

– Power limiting logic gate density

– Off-chip I/O becoming a killer

• Today’s solution: Multi-core, multi-threaded uP dies

– Increases # of threads per core

– But doesn’t solve bandwidth to memory problem

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
102

How Do We Make It Better?

• Focus on “cheap” logic in dense memory fab
process

– Don’t fret the clock rate

• Reduce thread state
– Cost of moving/copying state = line reference

• Simplify cores and “overprovision”
– “Pitch-match” to memory macro

• Relentless multi-threading execution models

• Change execution model from “named” core to
anonymous core “nearest” memory object

– A “Traveling Thread” need never “wait” for
processing resources

– Convert two way latencies to one way

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
103

A Question from Salishan:
How many Cores can Fit on the Head of A Pin?

• Area of a pin = .015 sq. cm.

• Assume Darkhorse 8051 @ 7 KT

• 2018: 4200 cores, @ 53 GHz

– = approx 20 TOPS

• But to make them dance we need

memory

• At 50/50 Memory & Logic

– 2100 Cores + 100MB

• New Term: PIMHEAD

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
104

The Future

Will We Design Like This? Or This?

Regardless of Technology!

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
105

PIMs Now In Mass

Production

• 3D Multi Chip Module

• Ultimate in Embedded Logic

• Off Shore Production

• Available in 2 device types

•Biscuit-Based Substrate

•Amorphous Doping for
Single Flavor Device Type

•Single Layer Interconnect
doubles as passivation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
1

Tutorial 123

Erik P. DeBenedictis

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
2

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
3

ITRS Construction Method and Limitations

• ITRS Looks Perfectly
Smooth

– Yes indeed, this is due
to the concept of
“targets”
• √√√√2 reduction in line

width every 3 years

• 17%/year increase in
clock rate

– Roadmap based on
Excel spreadsheet with
targets, inputs, and
dependent variables

• Limitations of ITRS
Approach

– System performance
involves dozens of
interrelated variables

– Smooth scaling is
targeted for the dozen
variables reported

– By tying a dozen
variables to a straight
line, other variables
become “dependent”

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
4

Technology Model

• Two or three year interval
between √√√√2 reductions in
line width

– Reducing line width by
√√√√2 doubles the number
of devices

• However, ability to predict
the future is imperfect ����

ITRS 2001 edition Executive Summary

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
5

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
6

Per Core SpecFP Data and Trends

• Plot of 785 SpecFP
submissions, considering
only one core

• 43% per year is an
important figure

– ITRS projection

– Excel’s trendline

– Erik’s plot of “top of
envelope”

• However, we are falling
short of 43% growth

0

500

1000

1500

2000

2500

3000

3500

4000

Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06

43%
growth/year

45%-25%-17%
growth/year

17% growth/year

Trendline

Data from Spec.org, per core numbers,
entered into Excel spreadsheet for graphing

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
7

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
8

ITRS Spreadsheet

• Review spreadsheet
interactively in Excel

• Points to make

– Illustrate role and
implementation of
“targets”

• Line width

• Clock rate

– Illustrate user inputs

• Sub threshold adjustment
factors rows 34 & 36

– Illustrate rows derived by
calculation

– Illustrate iteration to
target

– Illustrate HP LOP LSTP

• Draw conclusions

– Industry defines targets

– Table preparer adds
value by scheduling
innovations to meet
targets

– Validity depends on
innovations occurring
on schedule

• Limited example next slide

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
9

ITRS Spreadsheet Structure

Target is exponential
in “Years in Future”

Fprocessor is result of
96 rows of targets,
inputs, and iterative

calculation

Result usually
matches to one
decimal place!

Line Width
Scaling

ITRS 2003
supplementary
material

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
10

User Inputs

• Some factors will scale exponentially by
definition, yet others will scale based on
projections of engineers

• Supply voltage, doping levels, layer thicknesses,
leakage, geometry, mobility, parasitic capacitance

These values are
typed-in, based on

schedule in next slide

ITRS 2003 supplementary material

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
11

Schedule of Innovations

• To make the calculations
fit the projection of a
smooth “Moore’s Law,”
certain variables must be
adjustable

• The independent variables
are a “schedule of
innovations,” or
technology advances that
must enter production on
certain years

MOSFET Scaling Trends, Challenges, and Key Technology
Innovations through the End of the Roadmap, Peter M.
Zeitzoff

mid 2004 Strained Si
2008 Elevated S/D
mid 2007 High-k
mid 2007 Metal gate
mid 2008 Ultra-Thin Body (UTB)

SOI, single gate
mid 2008 Metal Gate
mid 2010 Multiple Gate
mid 2013 Quasi-ballistic

transport
Etc.

mid 2004 Strained Si
2008 Elevated S/D
mid 2007 High-k
mid 2007 Metal gate
mid 2008 Ultra-Thin Body (UTB)

SOI, single gate
mid 2008 Metal Gate
mid 2010 Multiple Gate
mid 2013 Quasi-ballistic

transport
Etc.

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
12

ITRS Transistor Geometries

ITRS 2003 Emerging Devices Section Pages 4 and 5

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
13

ITRS Technology Progression

ITRS 2003 Emerging Devices Section Page 12

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
14

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
15

Power Dissipation

• By targeting a smooth
exponential increase in
performance over time,
power dissipation
becomes a dependent
variable

• Power dissipation per µµµµP
chip is not a reported
parameter

• Chart shows result

MOSFET Scaling Trends, Challenges, and Key Technology
Innovations through the End of the Roadmap, Peter M.
Zeitzoff

See “MOSFET Scaling Trends,
Challenges, and Key Technology

Innovations through the
End of the Roadmap,”

Peter M. Zeitzoff

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
16

Processor Clock Rate

• Processor operating
frequency 10 gate delays
with 30% latch overhead

• Gate delay assumes FO3,
2×××× parasitic capacitance

• Gate delay assumes CV2

charging, hence supply
voltage dependence

• However, these are gate
level, not system level

ITRS 2003 supplementary material

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
17

ITRS Scaling Conclusions

• Optimism

– Density doubles every
three years

• 26% per year

– Clock rate rises 17% per
year

– Sum is 43%/year!

• Reasonably close to
the 41%/year of ideal
scaling!

• Limits of Applicability

– Power dissipation
partially covered

• However, power
dissipation per chip
rises

• Leakage power not
covered

– Timing based on gates,
not architecture

• Wiring delay
calculated, but not part
of timing model

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
18

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
19

Scaling of Microprocessor Performance

• For a given design,
performance proportional
to clock rate

• However, designs change
with technology

– More transistors lead to
architectures with more
“instructions per clock”

– Signal propagation
(wire) delays lead to
more pipelining

– More pipelining leads to
larger cache miss
penalty

– Cache miss penalty and
desire to run larger
programs (a. k. a. “code
bloat”) leads to larger
caches

• Question: What is the
roadmap for
microprocessor
performance?

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
20

How to Project Uniprocessor Performance

• Let’s assume industry
makes the innovations
called for by the ITRS on
schedule

• However, companies will
not be constrained to do
everything like the ITRS

– Engineers can choose
any power supply
voltage they like

– Doping levels can be
changed

• Evaluate

and report performance
and architecture as a
function of years into the
future

max(SpecFP)
engineering
 choices,
architecture

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
21

UT Austin Study (2000)

• The Study

– Clock Rate versus IPC:
The End of the Road for
Conventional
Microarchitectures,
Vikas Agarwal, M.S.
Hrishikesh, Stephen W.
Keckler, Doug Burger.
27th Annual
International
Symposium on
Computer Architecture

• Conclusions (to be
Explained)

– Modified ITRS roadmap
predictions to be more
friendly to architectures

– Concluded there would
be a 12%/year growth…

– However, recent growth
has been ~30%, with
industry’s maneuver to
cheat the analysis
instructive

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
22

Wire Delay Coverage in ITRS

• Wire delay added to ITRS
2002 edition

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
23

Modeling Wire Delay

• For some year in the future

– ITRS and other models
project a clock rate

– ITRS and other models
project a signal
propagation velocity

– Divide the two figures
to get d=distance
traveled in one clock
cycle

– Chip area/d2 is plotted
at right ����

• Figure 4 from “Clock Rate versus IPC: The
End of the Road for Conventional
Microarchitectures,” Vikas Agarwal, M.S.
Hrishikesh, Stephen W. Keckler, and Doug
Burger

See Figure 4 from
“Clock Rate versus IPC: The End
of the Road for Conventional

Microarchitectures”,
Vikas Agarwal, M.S. Hrishikesh,

Stephen W. Keckler, and Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
24

Cache Performance

• Authors used ECacti
cache modeling tool

• ECacti lays out caches in
terms of banks,
associatively, etc.

• As technology progresses,
size of cache accessible in
3 cycles decreases

• Remedy is obvious, but
has consequences:
increase depth of
pipelining

• Figure 5 from “Clock Rate versus IPC: The
End of the Road for Conventional
Microarchitectures Vikas Agarwal, M.S.
Hrishikesh, Stephen W. Keckler, and Doug
Burger

This graph for a
3 cycle cache access


tim

e

reduction in cache size
re
d
u
c
ti
o
n
 i
n
 a
c
c
e
s
s
 t
im
e

See Figure 5 from
“Clock Rate versus IPC: The End
of the Road for Conventional

Microarchitectures”,
Vikas Agarwal, M.S. Hrishikesh,

Stephen W. Keckler, and Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
25

Modeling Pipelined µµµµP

• Authors used
SimpleScalar, cycle
accurate simulator of a
DEC Alpha 21264

• However, actually models
hypothetical future µµµµPs
with parameterized

– Cache parameters

– Pipeline depth

– Branch prediction

– Technology (clock
speed)

• Authors used
SimpleScalar to model the
18 SPEC95 benchmarks
for 500 million instructions
each

– Adjustments to avoid
initialization

• Question to answer: What
is the best architecture,
and how well does it work?

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
26

Simulation Results

• Results shown at right ����
are noted by author to be
“remarkably consistent”

• If fact, the results are
almost the same as the
clock rate increase

• Conclusion: To first order,
SPEC ratings will increase
with speed of clock

– Noting that this analysis
is per µµµµP core, and
SPEC is for one core

• Figure 7 from “Clock Rate versus IPC:
The End of the Road for Conventional
Microarchitectures Vikas Agarwal,
M.S. Hrishikesh, Stephen W. Keckler,
and Doug Burger

Pipeline = caches same size
but more pipelining to keep
access rate same
Capacity = cut cache size so
access is possible without
cutting clock rate

See Figure 7 from
“Clock Rate versus IPC: The End
of the Road for Conventional

Microarchitectures”,
Vikas Agarwal, M.S. Hrishikesh,

Stephen W. Keckler, and Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
27

Study Conclusions and Discussion

• UT Austin study concluded
that µµµµP performance should
increase at about 12%/year

• However, it actually increased
at 30%/year

• What is the discrepancy?

– It is difficult to predict
future

– Vendors broke study
assumptions by
increasing power

– Study was before its time
(vendors went multicore
this year)

• Figure 8 from “Clock Rate versus IPC:
The End of the Road for Conventional
Microarchitectures Vikas Agarwal,
M.S. Hrishikesh, Stephen W. Keckler,
and Doug Burger

See Figure 8 from
“Clock Rate versus IPC: The End
of the Road for Conventional

Microarchitectures”,
Vikas Agarwal, M.S. Hrishikesh,

Stephen W. Keckler, and Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
28

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
29

Technology Scaling and Algorithms

• Assumptions

– You have a fixed budget to
buy and run computers

– Technology scales
according to ITRS

• Question

– How will the performance
of algorithms change as a
function of time?

• Solution Approach

– Find the scalability of an
algorithm as a function of
the “scaling” of the
computer’s technology

• Issues Generating Rules

– Thread speed &
parallelism

– Inner loop memory

– FLOPS/watt

– Devices per chip (or
whatever)

– Surface-to-area ratio

– Load balance

• App. Determined

• Stability

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
30

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
31

Thread Speed and Parallelism

• Runtime ≥≥≥≥ sequential
ops÷÷÷÷thread speed

• Single thread FLOPS rate
determined by

– Gate speed

• ITRS tell you this

– Architecture

• ~9 gate delays in a µµµµP

• Inflexible

– Communications speed

• Memory latency

• The best algorithms have
variable parallelism

– Each thread controls an
array of cells

– Size of the array can be
cut, but not below 1 cell

• Some algorithms have
fixed parallelism

– Tough luck

• Conclusion

– Optimization

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
32

Projected Clock Rate Increases

• 2004 Update shows clock
rates rising to 53 GHz by
2018

– Not based on
architecture

• The ITRS table projects
clock rates based on
inverter and latch delay,
not accounting for system
issues

• Recent historical
information suggests
much slower clock rate
increases

– Cancellation of certain
microprocessors and
shift to multi-core

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
33

Implications of Thread Speed & Parallelism

FLOPS from
ITRS

App with Fixed
Parallelism

Cell-based
App.

Years into the Future �

F
L
O
P
S
 �

Fo
llo
ws
 de

ns
ity
 in
cre

as
e

Follows clock increase

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
34

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
35

Inner Loop Working Set

• The application’s inner
loop will have a “cache
working set” of storage

– This working set will
take up d××××d chip area

• Minimum access time will
be 2d÷÷÷÷v

– v is signal propagation
velocity

– modulo constants

• Is this some hypothetical
architectural thing?

– Not necessarily, applies
to existing µµµµPs where
working set is in
existing cache

• Implication to algorithm

– Cutting working set size
can cut running time

– Physics supercedes
complexity theory

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
36

Implications of Inner Loop Working Set

• Runs against Area-Volume
Rule

– Fewer cells per CPU
increases
communications cost ����

– At some point cutting
cells per CPU lets all
cells fit in cache, or
other local memory ☺☺☺☺

• Impacts tables
• Option A: compute f(x)

when needed

• Option B: precompute
f(x), store in a x
Megabyte table

– Option B may cut clock
rate for everything else
• No universal answer

here

• Allocate data structures to
memories at different
distances?

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
37

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
38

FLOPS/Watt

• Thermodynamic limit at
kBT log 2

– Currently operating at
100,000 kBT

– ITRS goes to about 100
kBT

– Unexplored gulf
between 100 kBT and .7
kBT

• Thermodynamic limit can
be beat with reversible
logic and Quantum

• Implications

– Corollary: everything
proportional to power

• Mfg cost

• Operating cost

– Cost of running an
algorithm depends on
total FLOPS

• Cut FLOPS

• Running time is a
different story

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
39

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
40

Device Density Scaling

• Device density is projected to scale at 2×××× per
three years

• There is a lot of innovation

– Lithographic line width continues to shrink

– DNA self assembly

– Others

• We don’t seem close to theoretical limits

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
41

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
42

Bandwidth Scaling

• Overview: Bandwidth will
continue to scale

• Theoretically, the limit on
bandwidth is way out

• According to the ITRS
Roadmap

– Number of bonding
pads on a chip
becomes constant

– Bandwidth per bonding
pad equals internal
clock rate (?)

• However, there are
innovative solutions in the
works

– Optical interconnect

– Capacitive interconnect

• For long haul
communications

– Optics has practically
infinite bandwidth

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
43

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
44

Load Balance

Barrier Barrier

Workload

J
o
b
s

Average
completion

time

Actual
completion

time

If we don’t
know

anything
about running
time, assume
standard
distribution

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
45

Maximum IQ of a Class in Your Kids School

• Each child has average IQ
100 and std of 15

– Mean and std of task
runtime

• Each class has total IQ of
n××××100 and std of n½××××15

– Statistics of per node
time between barriers

• Max average is inverse of
cumulative normal
distribution evaluated at n

Classroom 1

Student
IQs

Classroom n

Student
IQs

∑ IQs will have
bell curve
as well

n-1
n

1
n

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
46

Efficiency Loss Due To Load Balance

• Load imbalance becomes
an issue when there are
less than 10s to 100s of
tasks per node

– Presuming mean≈≈≈≈std

• Implications

– This creates a ceiling to
the amount of
parallelism, unless

– tasks can be shared

• Plot Mean=Std

1 5

2
0

1
0
0

2
0
0
0

1
0
0
0
0

5
0
0
0
0

2
0
0
0
0
0

1
0
0
0
0
0
0

1

50

2000

100000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

Nodes

Cells

Efficiency

In
cre

a
sin

g
 P
a
ra
lle
lism

[Defining equations in PowerPoint notes]

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
47

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization
overhead

• Example

– Instructor led example of projecting performance of
a mesh algorithm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
48

Example Problem: Future Mesh Problem

• We are given year 20XX

• 1. Outer Loop of Process:
Pick Number of Cores

– Processors are likely to
be available with
different numbers of
cores – and there is no
obligation to use all the
cores on a chip

– Repeat the following
with 1, 2, 4… up to the
max cores that will fit
on a 20XX die

• 2. Look up 20XX in ITRS

– Note device density

– Note clock rate

• 3. Figure out how much
cache you should have

– Chip area goes to cores
and cache

– After taking out the area
occupied by cores, the
rest is cache

– Track heat production
(for use later)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
49

Example, Part 2

• 4. Using algorithmic
information and cache
size, figure out at what tier
the code will run, per
discussion earlier. The
level may strongly
influence performance

• Levels are

– Stencil in cache

– Vertices in cache

– Subdomain in cache

• 5. From level and “grind
time,” figure out B:F ratio
between CPU chip and
main memory

• 6. Figure out likely memory
bandwidth, either by using
pins per ITRS specs or
standard memory busses

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
50

Example, Part 3

• 7. Calculate interchip
communications rates

– This generally involves
sending and receiving
the “halo” from each
node

– Depending on
architecture, could be
from memory or CPU

– Also in B:F ratios

• 8. Overall throughput will
be minimum of

– FLOPS

– Memory bandwidth
divided by B:F ratio for
memory

– MPI bandwidth divided
by B:F ratio for MPI

– There has been some
discussion of throttling
chips due to excessive
power

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
51

Example, Part 4

• Note: All rates should be
adjusted for “percentage
of peak.” If nothing else is
known, use percentage of
peak numbers for similar
architectures

• 9. Iterate to best solution,
by going to step 1

– varying the number of
cores in a chip,
devoting all area not
occupied by cores with
cache

– turning off cores,
sharing their cache

– spreading problem over
more or fewer nodes

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
52

Example, Part 5

• 10. Final step: The process just described is a
mixture of analysis and design. The result will be
meaningless if a vendor doesn’t produce the
required chip. For example, if your ideal design
requires 2½ cores, you’re probably out of luck.

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
53

Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and
applications reference materials

• Problem #1: Project parameters of a $10M
supercomputer in year 2016

• Problem #2: Performance on an application
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture
supercomputer

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
54

Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and
applications reference materials

• Problem #1: Project parameters of a $10M
supercomputer in year 2016

• Problem #2: Performance on an application
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture
supercomputer

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
55

Problem 1: Hardware Projection

• Say you are in charge of buying a $10M
supercomputer in the year 2016

• Project parameters for the supercomputer you’d
like to buy, based on

– Extrapolations from cost, performance, and
configuration parameters of a recently constructed
supercomputer of your choice

• Instructors can provide information on Red Storm

– Roadmap documents distributed in the session

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
56

Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and
applications reference materials

• Problem #1: Project parameters of a $10M
supercomputer in year 2016

• Problem #2: Performance on an application
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture
supercomputer

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
57

Problem 2: Black Box Software

• A chemist runs CHARMM on a 32 node cluster, 8
jobs at a time (4 node jobs)

• The user can’t get scaling beyond 4 nodes, and
the user is a chemist uninterested in recoding

• Question: How much faster will each job run in
2016?

• Question: How many nodes will be required in
2016 to get 100×××× throughput increase?

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
58

Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and
applications reference materials

• Problem #1: Project parameters of a $10M
supercomputer in year 2016

• Problem #2: Performance on an application
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture
supercomputer

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
59

Problem 3: Mesh Application

• Your task is to solve a mesh-based application on
a billion point (10003) mesh

• Algorithm parameters

– 256 bytes data per mesh point

– 6 point stencil

– 5 global reductions per time step

• The year is 2014 and you have $20M to buy a
machine

• How much wall clock time can you expect per
time step?

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
60

Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and
applications reference materials

• Problem #1: Project parameters of a $10M
supercomputer in year 2014

• Problem #2: Performance on an application
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture
supercomputer

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
61

Problem 4: PIM Application

• You are to specify a supercomputer to solve a 100 million
molecule DSMC problem in 2010

• Each DSMC molecule has float parameters x, y, z, vx, vy, vz,
and may be one of 100 species

• Molecules spend about 3 time steps in a cell before moving
to an adjacent cell

• Calculating the interactions and/or chemical reactions takes
5000 floating operations per molecule per timestep

• Assume the region is a regular cubic mesh

• How many cores and how much RAM per PIM chip would
be required to solve the problem optimally

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
62

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
63

Applications and $100M Supercomputers

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System
Performance

2000 2010 2020 2030 Year �

↑ � Red Storm/Cluster

Technology

� Nanotech +
Reversible Logic µP

(green) best-case logic
(red) �

� Quantum Computing
Requires Rescaled

Graph (see later slide)

↑� Architecture: IBM
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

2000 20202010

No schedule provided by
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

Compute as fast
as the engineer

can think
[NASA 99]

↓ 100× ↑1000× [SCaLeS 03]

Full Global Climate
[Malone 03]

Plasma
Fusion

Simulation
[Jardin 03]

MEMS
Optimize

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
64

Simulation of Global Climate

Stott et al, Science 2000“Simulations of the response to natural forcings alone … do not
explain the warming in the second half of the century”

“..model estimates that take into account both greenhouse
gases and sulphate aerosols are consistent with observations
over this*period” - IPCC 2001

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
65

FLOPS Increases for Global Climate

1 Zettaflops

1 Exaflops

10 Petaflops

100 Teraflops

10 Gigaflops

Ensembles, scenarios
10×

Embarrassingly
Parallel

New parameterizations
100×

More Complex
Physics

Model Completeness
100×

More Complex
Physics

Spatial Resolution
104× (103×-105×)

Resolution

Issue Scaling

Clusters Now In Use
(100 nodes, 5% efficient)

100 Exaflops Run length
100×

Longer Running
Time

Ref. “High-End Computing in Climate Modeling,” Robert C. Malone, LANL, John B.
Drake, ORNL, Philip W. Jones, LANL, and Douglas A. Rotman, LLNL (2004)

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
66

Exemplary Exa- and Zetta-Scale Simulations

• Sandia MESA facility using
MEMS for weapons

• Heat flow in MEMS not
diffusion; use DSMC for
phonons

• Shutter needs 10 ����
Exaflops on an overnight
run for steady state

• Geometry optimization ����
100 Exaflops overnight run

– Adjust spoke width for
high b/w no melting

500 µm

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
67

FLOPS Increases for MEMS

10 Exaflops

30 Petaflops

600 Gigaflops

5 Gigaflops

Run length
300×

Longer Running
Time

Scale to 500µm2×12µm
disk 50,000×

Size

2D � 3D
120×

Size

Issue Scaling

2µm×.5µm×3µs 2D film
10 × 1.2 GHz PIII

100 Exaflops Optimize
10×

Sequential

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
68

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
69

Beyond Transistors

• Narrowing the Space

– We’ll assume this
audience is interested
only in programmable
digital computers

– We’ll assume this
audience wants
imperative
programming, not AI

– (I. e. ignore neural nets,
analog computers ,
biochemical reactions,
evolution of DNA, …)

• Options Within the Space

– Thread Speed &
Parallelism: it looks like
all paths to the future
will require the
programmer to expose
more parallelism, but
not equally

– Power and Heat: Cost of
electricity and danger of
overheating become
dominate issues

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
70

Landauer’s Arguments

• Landauer makes three
arguments in his 1961
paper

– Kintetics of a bistable
well (next slide)

– Entropy generation ����

• Entropy of a system in
statistical mechanics:

S = kB loge(W)

W is number of states

• Entropy of a mechanical
system containing a flip
flop in an unknown state:

S = kB loge(2W)

• After clearing the flip flop:

S = kB loge(W)

• Difference kB loge(2)
Sorry, I don’t have a cute
story (like the FM radio) for

Landauer’s argument

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
71

Landauer’s Limit

• The Landauer limit says
you can reduce power
dissipation for irreversible
functions below 100 kBT,
but not below kBT loge2

• In the diagram on the right,
when the energy barrier
drops to below about kBT,
the state will
spontaneously switch and
dissipate remaining energy
as heat

0 1

E
n

e
rg

y

State
(Position)

����

0 1

����
kBT

0 1

����

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
72

Thermal Limit

• The probability of a “logic
glitch” due to thermal
noise is approximately e-N,
where N=Esig/kBT

• To keep a multi Petaflops
supercomputer running for
several years without a
glitch requires 60 <<<< N <<<< 100

• Current logic design styles
thermalize all the signal
energy at the output of
every AND, OR, NOT gate

• Thus, it would be a
reasonable “rule of thumb”
that current design styles will
have a hard barrier at 60-100
kBT energy per gate
operation.

• ITRS predicts 30 kBT. While
Erik thinks such devices
might be manufacturable,
redundancy in logic design
should outweigh benefit

– Also, MPF observation
about information
representation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
73

Metaphor: FM Radio on Trip to Portland

• You drive to Portland
listening to FM radio

• Music clear for a while, but
noise creeps in and then
overtakes music

• Analogy: You live out the
next dozen years buying
PCs every couple years

• PCs keep getting faster

– clock rate increases

– fan gets bigger

– won’t go on forever

• Why…see next slide

Details: Erik DeBenedictis, “Taking ASCI Supercomputing to the End Game,”
SAND2004-0959

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
74

FM Radio and End of Moore’s Law

Driving away from FM transmitter�less signal
Noise from electrons � no change

Increasing numbers of gates�less signal power
Noise from electrons � no change

Shrink

Distance

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
75

Personal Observational Evidence

• Have radios become better able to receive distant
stations over the last few decades with a rate of
improvement similar to Moore’s Law?

• You judge from your experience, but the answer
should be that they have not.

• Therefore, electrical noise does not scale with
Moore’s Law.

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
76

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
77

Cutting Temperature

100 Watts

Thermo
Micro
100kBT,
T=300°K

100 Watts

Thermo
Micro
100kBT,
T=3°K

Motor

99 Watts 1 Watt

cold

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
78

Cutting Temperature

Carnot Efficiency ηc =
Tc

Th-Tc

Specific Power 1/ηc =
Th-Tc

Tc

Specific power is watts input power
required to remove one watt at the
cooling temperature

Idea:
To cut computer power, let’s cool
the active devices to 3° K. This will
cut minimum power per reliable
operation from 100kB×300 to 100kB×3,
cutting device power by 100 fold!

Specific Power 1/ηc =
Th-Tc

Tc

=
300 - 3

3
= 99

Thus, we cut device power to 1%
of original power at the price of a
refrigerator consuming 99% of the
original power, for resulting total
power consumption of 100% of
original power.

However, refrigerators are typically
<20% efficient, so we’re actually
in the hole by 5× …
but it is cheaper to dissipate power
in a big motor than an expensive
chip.

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
79

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
80

8 Petaflops

80 Teraflops

Projected ITRS
improvement to 22 nm

(100×)

Lower supply voltage
(2×)

ITRS committee of experts

ITRS committee of experts

Expert
Opinion

Scientific Supercomputer Limits

Reliability limit
750KW/(80kBT)2×1024 logic ops/s

Esteemed physicists
(T=60°C junction temperature)

Best-Case
Logic

Microprocessor
Architecture

Physical
Factor

Source of
Authority

Assumption: Supercomputer
is size & cost of Red Storm:
US$100M budget; consumes
2 MW wall power; 750 KW to
active components

100 Exaflops

Derate 20,000 convert
logic ops to floating point

Floating point engineering
(64 bit precision)

40 Teraflops Red Storm contract

1 Exaflops

800 Petaflops

 125:1 �

Uncertainty (6×) Gap in chart
Estimate

Improved devices (4×) Estimate
4 Exaflops 32 Petaflops

Derate for manufacturing
margin (4×)

Estimate

25 Exaflops 200 Petaflops

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
81

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
82

Transistors vs. Other Irreversible Devices

• Erik’s View

– My contacts on the ITRS staff tell me they believe
transistors will get to the ~30 kBT level. If this is so,
transistors will be difficult to beat in this domain.

– At 30 kBT, logic would have a spontaneous error
rate > e-30 (one error in a billion operations).

– I have no doubt that computing with a 10-9 error
rate is possible, but the overhead in error
correction would consume more than a factor of 3.
Remember Triple Modular Redundancy (TMR)
consumes 3×××× hardware!

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
83

Really Advanced Technology

• International Technology
Roadmap for
Semiconductors (ITRS)
Emerging Research
Devices (ERD) architecture
panel. All new devices are
inadequate except CNFET

• ITRS ERD [see below]

– Influential over
industrial and
government funding

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
84

ITRS Device Review 2016 + QDCA

Larger1 zJ10-100 nm100 as-1 fsQuantum

Smaller, faster,
cooler

1 yJ1-10 nm100 fs-10psQDCA

Slower+Larger.3 yJ6-50 µµµµm100 fs-100 µµµµsBiological

Slower+Larger1 zJ10-100 nm100 ns-1 msNEMS

Larger+Hotter1 pJ200 nm-2 µµµµm100 as-1 psOptical

Larger+Slower4 aJ100 µµµµm-1 mm100 µµµµs-1 msPlastic

Slower10 zJ1 nm- 5 nm10 ns-1 msMolecular

Larger2 aJ300 nm- 1µµµµm1 ps-50 psRSFQ

4 aJ8 nm-5 µµµµm30 ps-1 µµµµsCMOS

ComparisonEnergy per
gate-op

Dimension
(min-max)

Speed
(min-max)

Technology

Data from ITRS ERD Section, data from Notre Dame

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
85

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
86

Reversible Logic – Toffoli Gate

• The Toffoli gate is logically
complete

• Reversible logic notation
shown to right ����

– Bits shown as
horizontal lines

– Time nominally flows to
right, but reverses
naturally

• Function

– If A and B true, invert C

• Note: self-inverse

A

B

C

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
87

Reversible Logic Can Beat Landauer’s Limit

• Any function can be made reversible by saving its
inputs

• Diagram below outlines an asymptotically zero-
energy way to perform the AND function, in
composition with other logical operations

G(x) G-1(x)
A B C

Answer

Dissipation-less
Information ErasureF F-1

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
88

Reversible Logic Example

• One photon headed to a
glass plate goes through

• Two photons also go
through, but phase shift
each other a little bit

• By appropriate
recombinations, a
“controlled not” can be
created

• A glass plate needs no
power supply

• Measuring a Photonic
Qubit without Destroying
It. GJ Pryde, JL O’Brien,
AG White,
SD Bartlett, and TC Ralph.
Centre for Quantum
Computer Technology, ...

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
89

Today’s Universal Logic & Reliability Limit

• Today’s logic operates on
a simple principle

– Create a “1” by taking
charge from the
positive supply

– Create a “0” by sending
charge to the negative
supply

• Energy Consumption

– Each gate switch
generates Esw = ½ CV2 >
~100kBT heat

Vdd

Gnd

In Out

Signal energy must be
greater than ~100 kBT to

avoid spontaneous glitches.
To change a bit, convert

energy to heat.

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
90

“Recycling” Power

• The 100kBT limit appears
unbeatable, but the energy
can be “recycled”

• Diagram shows a “SCRL”
circuit with regular
transistors

• Power comes through a
largely loss less resonant
device (tuning fork)

• No apology offered for the
mechanical device; this is
the price of progress

φ1

φ2

In

Signal energy must be
greater than ~100 kBT to

avoid spontaneous glitches.
However, signal energy is

recycled by tuning fork

Out

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
91

Resonant Clocks

• Tuning Fork

– Nice idea but slow

• MEMs Resonator

– Moderate speed and
compatible with silicon
fabrication

• Carbon Nanotube

– Simulated to 50 GHz but
not known how to
fabricate at present

Ref.: M. Frank

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
92

A New Computing Device: Quantum Dots

• Pairs of molecules create a
memory cell or a logic gate

Ref. “Clocked Molecular Quantum-Dot Cellular Automata,” Craig S. Lent and Beth Isaksen
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 9, SEPTEMBER 2003

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
93

Upside Potential of Quantum Dots

Next Slide

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent,
JOURNAL OF APPLIED PHYSICS 15 JULY 2003

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
94

Upside Potential of Quantum Dots

>104 ××××

Improvement
@ 100 GHz

& 60°°°° K

100 GHz1 THz10 THz100 THz

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
n

e
rg

y
/E

k

“Reliability Limit”

1000 ××××

2004 Device Level

150 ××××

“Landauer Limit”

Dissipation for
reversible
operations

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent,
JOURNAL OF APPLIED PHYSICS 15 JULY 2003

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
95

Reversible Multiplier Status

• 8××××8 Multiplier Designed,
Fabricated, and Tested by
IBM & University of
Michigan

• Power savings was up to
4:1

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
96

Reversible Microprocessor Status

• Status

– Subject of Ph. D. thesis

– Chip laid out (no
floating point)

– RISC instruction set

– C-like language

– Compiler

– Demonstrated on a PDE

– However: really weird
and not general to
program with +=, -=, etc.
rather than =

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
97

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
98

Why Quantum Computing is Interesting

• A Superset of Digital

– Spin “up” is a 1

– Spin “down” is a 0

– Other spins

• Sidewise

• Entangled

• Phase

– Like wildcards

• 1011??????

• Up to 2N states ����
in “quantum parallel”

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
99

Ion Trap Quantum Gates

• Hyperfine (internal qubit)
frequencies are ωωωω0 and ωωωω1

• Vibrational center of mass
frequency is ωωωωc

• Laser at frequency ωωωω0 ±±±± ωωωωc

or ωωωω1 ±±±± ωωωωc couples qubit
from hyperfine state to
vibrational state and back

• Appropriate frequencies
selectively move qubits
based on data

• Works on superpositions

• Two ions in an ion trap

• Laser beam frequency ωωωω

ϕϕϕϕ1

θθθθ1

ϕϕϕϕ0

θθθθ0

Vibrational
“spring”

f= ωωωωc

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
100

Reliable Quantum Operations

• Microprocessors use ECC
for memory and crash
when logic errors occur

• QEC includes technology
for error detection and
correction on both
memory and operations

• Example on right performs
Toffoli operation on
protected blocks,
producing a protected
block

• Toffoli Gate

“Fault-Tolerant Logical Gate Networks for CSS
Codes,” Steane, A, Ibinson, B, quant-ph/0311014

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
101

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
102

Quantum “Algorithms”

• Category 1: No Speedup

– A quantum computer will
be able to execute
conventional computer
logic – with no advantage

• Category 2: Grover’s
Algorithm with Quadratic
Speedup

– Given an “Oracle”
function, a QC can search,
average, min, max,
integrate, in n1/2 steps to
same accuracy as a
classical computer gets in
n steps

• Category 3: Shor’s
Algorithm with Exponential
Speedup

– There are a series of
problems related to the
“hidden subgroup
problem” that can be
solved with exponential
speedup over a
classical computer.

– Includes code cracking
and physics simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
103

Emergence of Quantum Computing

• There appears to be an
engineering case for
quantum computers of
1-100 Q-FLOPS

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

2000 20502020 204020302010

• One would expect an
exponential growth rate
for quantum computers
similar to Moore’s Law,
but the rate constant is
impossible to predict,
so three possibilities
have been graphed

O
pt
im
is
tic
: 1
00
 Q
FL
O
P
S
 +
 3
x/
ye
ar

To
p5
00
: 1
0 Q

FL
OP

S
+
2x
/ye
ar

Moo
re’s

Law
: 1 Q

FLO
PS +

 1.3x
/yea

r

Clus
ter P

rojec
tion

“Adv
anc

ed A
rchi

tect
ure”

Ref. “How to build a 300 bit, 1 Gop quantum computer,” Andrew M. Steane, Clarendon Laboratory, UK, quant-ph/0412165

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
104

Quantum Applications

• Consider the classical
computer equivalent to
a Quantum Computer

• First use believed to be
factoring in crypt-
analysis, with expo-
nential speedup over
classical computers (blue)

E
xp
o
n
e
n
ti
a
l

S
p
e
e
d
u
p

C
ry
p
ta
n
a
ly
s
is

E
.
g
.
F
a
c
to
ri
n
g

• Second, a quantum
computer can also be
used for other
applications (pink) with
quadratic speedup (e. g.
Actinide chemistry)

Q
ua
dr
at
ic
 S
pe
ed
up

A
S
C
-R
el
ev
an
t

E
. g
. P
at
h
In
te
gr
at
io
n

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

2000 20502020 204020302010

Clus
ter P

rojec
tion

“Adv
anc

ed A
rchi

tect
ure”

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
105

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
106

One Slide Taxonomy of Quantum Algorithms

• Exponential speedup for

– Period finding (see ����)

– Hidden subgroup
problem

• Factoring

• Discrete logarithms

• Algorithms for
problems I never heard
about except for QC

• Quadratic speedup for

– Searching

– Average, min, max

• Feynman asserted that a
QC could combat low
efficiency of classical
computer for simulating
quantum problems

– This assertion has been
repeatedly proven, but
there are few concrete
algorithms

– This could be a “killer
app” domain for
supercomputing

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
1

Nanotech, Architecture, and Memory Wall

• There are many paths to

future architectures, yet

one looks especially likely

to appear in a ~5 years

– Logic per ITRS roadmap

for transistors

– Nanotech memory

• Cleverly embedded

• Multiple options

– Architecture per

continuation of “multi-

core” trend

• Resulting computers

would be of recognizable

architecture, but more

parallelism.

– I believe the increase in

parallelism will cause a

crisis.

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
2

Nanotech Memory

• Common Feature

– Some new device

structure that holds

information

– CMOS process

compatibility, typically

through additional

layers

• Many options

– We’ll review carbon

nanotube arrays in the

next few slides

– We’ll look at a table with

other options

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
3

Nantero NRAM™ Device

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
4

Electrode Layer Nanotube Film

Patterned Surface

Electromechanical

Array

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
5

Nantero’s Collaboration

with ASML

Nanotubes

•Proof of compatibility between equipment and nanotube process

•Creation of very-high-density bit arrays using 250nm stepper

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
6

Present Day Baseline

Technologies

Phase

Change

Memory*

Floating

Body

DRAM

Nano-

floating

Gate

Memory**

Single/Few

Electron

Memories*

*

Insulator

Resistance

Change

Memory
**

Molecular

Memories**

Storage

Mechanism

Device

Types
DRAM

NOR

Flash
OUM

1TDRAM

eDRAM

Engineered

tunnel

barrier or

nanocrystal

SET
MIM

oxides

Bi-stable

switch

Molecular

NEMS

Availability 2004 2004 ~2006 ~2006 ~2006 >2007 ~2010 >2010

Cell

Elements
1T1C 1T 1T1R 1T 1T 1T 1T1R 1T1R

1D-1R

>2008

Cross point

Unipolar
switching
Memories

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
7

Nanoarray Architecture

• Low Road

– Planar, conventional

architecture

• High Road

– Fabricate nanotech

array on top of chip

Column

R
o
w

Row

Drivers

Column

Drivers

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
8

n×n

n2×n
2

Thought Experiment – Skewed Nanoarray

• Problem is that molecular

scale mask alignment is

very hard

• However, regular arrays of

lines are more easily

drawn ����

• Diagram to right (from

Likharev) uses 2n2 drivers

to drive n4 crosspoints

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
9

Thought Experiment – Skewed Nanoarray

• Actual design

superimposes row and

column drivers with the

crosspoint array

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
10

Nano Memory Conclusions

• There seem to be a host of

proposals for nano

memory

• Some of these will appear

in the next year

• The technologies tend to

retain data with power off

• The technologies are

pretty fast – DRAM speed

or better

• Densities based on a cell

with dimensions

– Line-space ×××× line-space

– ×××× sub lithographic

linewidth

• 1 cm ×××× 1 cm chip (@ 6F2)

– 180 nm ���� 60 MBytes

– 65 nm ���� 500 MBytes

– 22 nm ���� 4 GBytes

– 10 nm ���� 20 GBytes

• Multiple layers possible

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
11

Architecture Trends

• Memory wall will disappear

– If you can live with 360

MBytes-116 GBytes

memory per chip

(previous slide)

• Peak thread speed will

grow more slowly than we

like

• Power per gate-operation

will level out (ugh) at

thermodynamic limit

• Efficiency of architecture

in converting power to

FLOPS may be subject to

improvement

• Chip-to-chip interconnect

speeds difficult to predict

at present

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
12

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
13

Burger’s Architecture, Erik’s Example

• Produce lots of puny cores

that can be used

individually or ganged

together

• Roughly, n cores will have

– n××××power dissipation

– n××××memory

– log n performance

• Why does Erik show this
as an example?

– It seems to exemplify all
the needed new
features in proper
balance

– Practical systems may
be a linear combination
of Burger’s architecture
and present-day ones

– Also, future PCs may
end up heterogeneous

• Integrated graphics, …

This is no joke.

Imposes huge win for

parallelism in code

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
14Architectures at the End of Silicon: Performance Projections and Promising Paths – Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
15Architectures at the End of Silicon: Performance Projections and Promising Paths – Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
16Architectures at the End of Silicon: Performance Projections and Promising Paths – Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
17Architectures at the End of Silicon: Performance Projections and Promising Paths – Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
18

Floorplan of First-cut Prototype

Architectures at the End of Silicon: Performance Projections and Promising Paths – Doug Burger

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
19

Stacked Memory & Rack Parameters

• Say we stack NRAM on top of a CPU chip like

Burger proposes

• Arithmetic on amount of NRAM

– 35 nm ½-pitch

– chip is 1.5 cm x 1.5 cm

– Bit cell is 2 x 2 linewidths or 4 x 4 ½-pitches

– This would be (.015 m chip edge)2/(35nm ½

pitch)2/(16 sq ½-pitches/cell)/(8 bits/byte)/(109

bytes/GByte) = 1.5 GBytes

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
20

Stacked Memory & Rack Parameters

• Rack architecture (limited by 10 KW dissipation

or 100 chips)

– 150 GBytes “on chip” memory divided into 100

modules of 1.5 GBytes (how much external

memory needed?)

– 100 256-way SMPs – total 25,000 processors (but

“flexible mapping” possible to give appearance of

fewer processors with more memory each)

– 200 Tflops peak/rack

– Memory bandwidth: Not specifically limited due to

PIM architecture

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
21

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
22

n

n

n2

n2

Thought Experiment – Skewed Nanoarray

• Problem is that molecular

scale mask alignment is

very hard

• Solution is to pattern only

regular arrays of lines at

the molecular scale ����

• Diagram to right (from

Likharev) uses 2n2 drivers

to drive n4 crosspoints

• Published design overlays

everything

Standard CMOS

driver/sensor
Crosspoint

array

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
23

SC2005 Tutorial © DeBenedictis, Keyes, Kogge
24

One Slide Taxonomy of Quantum Algorithms

• Exponential speedup for

– Period finding (see ����)

– Hidden subgroup

problem

• Factoring

• Discrete logarithms

• Algorithms for

problems I never heard

about except for QC

• Quadratic speedup for

– Searching

– Average, min, max

• Feynman asserted that a

QC could combat low

efficiency of classical

computer for simulating

quantum problems

– This assertion has been

repeatedly proven, but

there are few concrete

algorithms

– This could be a “killer

app” domain for

supercomputing

Draw floor plan of CPU here

SMP

Nano Memory Array?

____ Commodity or custom

____ DRAM bytes/chip

Bandwidth

____ # signal pins on chip

____ internal clock rate

____ total bandwidth =

____ memory bandwidth +

____ SMP bandwidth +

____ network bandwidth

production”

table

↑ Generation at “production” or

“introduction” table 1c, 1d, 1e, 1f

↓ Table 3a, 3b; note that

1/2to 2/3 of

pins are

power

100 Watts air cooling or

higher for water cooling

Don’t exceed chip area:

140 mm2 high volume

280 mm2 maximum

Example CPU floor plan:
(Cyclops, 130 nm)

Network 4
GBytes/sec

External Memory

0

0.5

1

1.5

2

2.5

1.E+06 1.E+07 1.E+08 1.E+09

Transistors

IP
C

N
o

te
:

T
h

e
s
e

 f
ig

u
re

s
 a

re
 f

ro
m

 2
0
0
3

 I
T

R
S

 a
n
d

↓

External Memory

Architecture Planning

Workbook

SC 2005 Tutorial M09

Impact of Moore's Law and Architecture on

Application Performance

K bytes memory

max of:

G/FLOPS

K/link bandwidth

3 Dimensions

Need n3 × K bytes memory

Each timestep max of:

tcomp = n3 × G/FLOPS

tcomm = 6 × n2 × K/link bandwidth

tsync = *

Performance estimation:

Lay out data to maximize data access bandwidth.

Will data be on chip, off chip, will it stream properly? The answer to

this will allow compute time to be estimated

Estimate communications time based on data and communications

Express answer as FLOPS or percentage of peak.

the relative standard deviation of the grind time is

large or the grain size of the concurrent phases becomes relatively

either because the problem size is small relative to the number

n

surface cells on 4 edges

(2D) or 6 planes (3D)

are swapped with

neighbors

K bytes of state

G floating operations

(grind time) per

update

Example: Cyclops

Network

External Memory

____ Linewidth

____ Commodity or custom

CPU

____ cores

____ cache/core

____ watts

____ DRAM bytes/chip

Bandwidth

____ #

____ internal clock rate

____ total bandwidth =

____ memory bandwidth +

____ SMP bandwidth +

____ Network bandwidth

↑ Choose “production”

vs. “introduction” table

� 100 Watts ±

Don’t exceed

chip area

↑

Note: 1/2 to

2/3 of all pins

must go to

power and

ground;

remainder are

available for

signaling

purposes.

Typically, there

are two

conductors per

signal.

90 nm

Custom

80

64 KBytes
150

64 M

1216

533M

0

16 GBytes/s

4 GBytes/s

20 GBytes/s

	Review & Approval System - Search Detail.pdf
	1-agenda-3
	Issues for the Future of Supercomputing: Impact of Moore's Law and Architecture on Application Performance��Extended Outline�SC|05 Tutorial M09
	Tutorial Goals
	Definitions of Scaling
	Schedule
	Review of Applications from SCaLeS
	Algorithm Scalability – Mesh-based Example
	ITRS Roadmap and Device Scaling
	Scaling of mPs and Advanced Architectures
	End of the Roadmap
	Projecting Applications Performance
	Hands-On Exercises�
	Beyond Transistors

	2-ApplPerfSC05
	Tutorial 123: Impact of Moore’s Law and Architecture on Application Performance, Session I:Opportunities to Advance Science
	Role of presentation
	Technical aspects of presentation
	Philosophy of presentation
	Context: recent reports promote simulation
	Gedanken experiment:How to use a jar of peanut butter as its price slides downward?
	Gordon Bell Prize “price performance”
	Gordon Bell Prize “peak performance”
	Gordon Bell Prize outpaces Moore’s Law
	The power of optimal algorithms
	“Moore’s Law” for MHD simulations
	“Moore’s Law” for combustion simulations
	Terascale simulation can be pitched as an alternative to experimentation
	Heretofore difficult apps are now parallelized
	2004 Gordon Bell “special” prize
	2003 Gordon Bell “special” prize
	1999 Gordon Bell “special” prize
	What would scientists do with 100-1000x? Example: predict future climates
	What would scientists do with 100-1000x? Example: predict future climates
	What would scientists do with 100-1000x? Example: probe structure of particles
	What would scientists do with 100-1000x? Example: probe structure of particles
	What would scientists do with 100-1000x? Example: design accelerators
	What would scientists do with 100-1000x? Example: design and control tokamaks
	What would scientists do with 100-1000x? Example: control combustion
	What would scientists do with 100-1000x? Example: control combustion
	What would scientists do with 100-1000x? Example: probe supernovae
	What would scientists do with 100-1000x? Example: probe supernovae
	It’s not about the solver
	It’s all about the solver (at the terascale)
	A central concept: solver toolchain
	Solver software toolchain
	Two definitions of scalability
	
	Contraindications of scalability
	Amdahl’s Law
	Resolution-limited progress
	Thread nonuniformity
	Often neglected possibilities for scalability
	From generalities to a case study
	
	Motivation
	Four potential limiters on scalability in large-scale parallel scientific codes
	Four potential limiters on arithmetic performance
	Plan for balance of Session I
	Euler simulation
	Background of FUN3D application
	Features of FUN3D application
	Four steps in creating a parallel program
	SPMD parallelism w/domain decomposition
	DD relevant to any local stencil formulation
	Algorithm: Newton-Krylov-Schwarz
	Merits of NKS algorithm/implementation
	Additive Schwarz preconditioning for Au=f in Ω
	Iteration count estimates from Schwarz theory[ref: Smith, Bjorstad & Gropp, 1996, Camb. Univ. Pr.]
	Time-implicit Newton-Krylov-Schwarz method
	Key features of implementation strategy
	Background of PETSc
	Separation of concerns between user code and PETSc library
	Outline for PDE performance study
	Variety and complexity of PDEs
	Explicit solvers
	Domain-decomposed implicit solvers
	Resource scaling for PDEs
	Primary PDE solution kernels(assumes vertex-based; dual statements for cell-based)
	Illustration of edge-based loop
	Complexities of PDE kernels
	Candidate stresspoints of PDE kernels
	Previews of observations for PDE codes
	Observation #1: Processor scalability no problem, in principle
	Estimating scalability forbulk-synchronized PDE stencil computations
	Estimating 3D stencil costs (per iteration)
	3D stencil computation illustrationRich local network, tree-based global reductions
	Scalability results for domain-decomposedbulk-synchronized PDE stencil computations
	Surface visualization of test domain for Euler flow over an ONERA M6 wing
	Fixed-size parallel scaling results (Flop/s)
	Parallel performance of PETSc-FUN3D 3D Mesh: 2,761,774 Vertices and 18,945,809 EdgesTeraGrid: Dual 1.5 GHz Intel Madison Pro
	Fixed-size parallel scaling results (time in seconds)
	Parallel performance of PETSc-FUN3D 3D Mesh: 2,761,774 Vertices and 18,945,809 EdgesTeraGrid: Dual 1.5 GHz Intel Madison Pro
	Parallel scaling results on ASCI RedONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million unkno
	Observation #2 (for Fixed-Size Problems):Synchronization eventually a bottleneck
	Observation #2a:Coarse grid can be a bottleneck
	Observation #2a, continued:Coarse grid can be a bottleneck
	Observation #3:Memory latency no problem, in principle
	Workingset characterization of memory traffic
	Gedanken experiment: cache traffic for PDEs
	BW-stretching strategies based on workingsets
	Three types of locality enhancements
	Improvements from locality reordering
	Observation #4:Memory bandwidth a major bottleneck
	ASCI memory bandwidth bottleneck
	Implications of bandwidth limitations in shared memory systems
	BW-stretching strategies based on multivectors in sparse matvecs
	Matrix-vector multiplication for a single vector
	Matrix-vector multiplication for N independent vectors
	Estimating the memory bandwidth limitation
	Sparse matvec performance summary
	Comparison of domain-level parallelism for MPI and OpenMP/MPI
	Observation #5:Load-store functionality may be a bottleneck
	Quantifying the load/store bottleneck
	Observation #6:Fraction of flops may be a bottleneck
	Significance of multivectors
	Realistic Measures of PerformanceSparse Matrix Vector Productsingle vector, matrix size = 90,708, nonzero entries = 5,047,12
	Realistic measures of performance Sparse Matrix Vector Productone vector, matrix size = 90,708, nonzero entries = 5,047,120
	Summary of observations for PDE codes
	Lessons for high-end simulation of PDEs
	Weighing in at the bottom line
	Four sources of performance improvement
	Source #1: Expanded number of processors
	Source #2: More efficient use of faster processors
	Source #3: More “architecture friendly” algorithms
	Performance improvement from algorithms (1)
	Performance improvement from algorithms (2)
	Source #4: Algorithms packing more science per flop
	Examples of adaptive opportunities
	Status and prospects for advanced adaptivity
	Summary of suggestions for high performance
	Reminder about the source of simulations

	3-roadmap
	The International Technology Roadmap for Semiconductors�and Its Effect on �Scalable High End Computing
	Why Is Supercomputing�Really Hard?
	Why Is Supercomputing Hard �In Silicon: Little’s Tyranny
	Technology Limits to Applications�(from NRC’s “Getting Up to Speed”)
	Why Look at Technology Scaling
	What Seems to Be The Consensus
	Outline
	Silicon Fundamentals
	A MOSFET Transistor
	Key Device Parameters
	A Logic Inverter
	4-input NAND Gate
	Full Adder
	Key Types of Memory Cells
	Static RAM bit�(6 Transistors per bit)
	Charge-Based DRAM Bit�(1 Transistor)
	Memory Arrays
	Compact DRAM Cells �for Memory Arrays
	Multiple Levels of Metal
	Off-Chip Interconnect:�Wire Bond
	Off-Chip Interconnect:�Solder Ball
	Scaling
	Device Scaling
	What Can Scaling Affect?
	Approaches to Technology Scaling
	Feature Size of Past�Microprocessors
	Approximate Scaling�Relationships
	ITRS
	International Technology�Roadmap for Semiconductors
	Types of Chip Technologies�Discussed
	Trends Driven by Scaling
	Challenges Addressed
	Technology Node
	Interesting Feature Sizes
	Feature Size Projections
	Projections as Scale Factors
	Comparison to Moore’s Law
	Commodity DRAM Capacity
	Memory Storage Density:�Cells Only
	Change in DRAM Density Factors
	Chip Capacity
	Logic Chip Density Scaling
	Logic Clock Rates
	Off Chip Bandwidth
	Relative Off-Chip�Scale Factors
	The Way We Were:�A Brief Romp Thru�Single Chip Microprocessor Land
	Historical Changes in Chip Parameters
	Functionality = IPC x Clock
	How Are We Using These Transistors
	Let’s Look at Transistor�Count
	Core CPU State vs Time
	Power
	Relative Off-Chip Scale Factors�(Repeat of Earlier Chart)
	Does Logic Performance Match �Off-chip Bandwidth Potential?
	Classical DRAM
	Memory Interfaces
	The Brave New World:�Adding More Threads to a Single Die
	Multi-Threading
	Advantages
	Examples of Multi-Threaded�Designs
	Multi-Core
	Scaling Today’s uP Chips
	Potential Multi-core Dies
	Examples of Multi-Core�Designs
	What is Today’s Multi-Core�Design Space
	Sample Chips
	Multi-Core Projection Models
	Shrink Model
	Shrink & Merge Model
	Constant Die Model
	Single Chip Type Model�(With Constant Die Size)
	Chip Count for a�Petabyte System
	Silicon Area for a�Petabyte System
	Silicon Alone is not the�Complete Story
	Observations
	A Contrarian’s View�Processing in Memory:�The Grand Synthesis �of Logic and Memory
	How can we use a sq. cm?�(with no overhead)
	Adding In �“Lines of Constant Performance”
	Knee Curves with�Basic Overheads
	Knee Curves with�Today’s Overheads
	Minimal Size for a�“Peta” System
	“Processing-In-Memory”
	The PIM �“Bandwidth Bump”
	PIM Chip �MicroArchitectural Spectrum
	PIM System Design Space: �Historical Evolution
	TERASYS SIMD PIM �(circa 1993)
	EXECUBE: An Early MIMD PIM (1st Silicon 1993)
	RTAIS: The First ASAP� (circa 1993)
	Mitsubishi M32R/D
	DIVA: Smart DIMMs for Irregular Data Structures
	Micron Yukon
	Berkeley VIRAM
	The HTMT Architecture &�PIM Functions
	Bluegene/L
	PIM Lite
	One Step Further: Allowing the Threads to Travel
	Vector Add via �Traveling Threadlets
	Trace-Based “Threadlet” Extraction & Simulation
	Next: An “All-PIM”�Supercomputer
	Summary
	Summary
	How Do We Make It Better?
	A Question from Salishan: �How many Cores can Fit on the Head of A Pin?
	The Future
	PIMs Now In Mass�Production

	4-scaling12
	Tutorial 123
	End of the Roadmap
	ITRS Construction Method and Limitations
	Technology Model
	End of the Roadmap
	Per Core SpecFP Data and Trends
	End of the Roadmap
	ITRS Spreadsheet
	ITRS Spreadsheet Structure
	User Inputs
	Schedule of Innovations
	ITRS Transistor Geometries
	ITRS Technology Progression
	End of the Roadmap
	Power Dissipation
	Processor Clock Rate
	ITRS Scaling Conclusions
	End of the Roadmap
	Scaling of Microprocessor Performance
	How to Project Uniprocessor Performance
	UT Austin Study (2000)
	Wire Delay Coverage in ITRS
	Modeling Wire Delay
	Cache Performance
	Modeling Pipelined mP
	Simulation Results
	Study Conclusions and Discussion
	Projecting Applications Performance
	Technology Scaling and Algorithms
	Projecting Applications Performance
	Thread Speed and Parallelism
	Projected Clock Rate Increases
	Implications of Thread Speed & Parallelism
	Projecting Applications Performance
	Inner Loop Working Set
	Implications of Inner Loop Working Set
	Projecting Applications Performance
	FLOPS/Watt
	Projecting Applications Performance
	Device Density Scaling
	Projecting Applications Performance
	Bandwidth Scaling
	Projecting Applications Performance
	Load Balance
	Maximum IQ of a Class in Your Kids School
	Efficiency Loss Due To Load Balance
	Projecting Applications Performance
	Example Problem: Future Mesh Problem
	Example, Part 2
	Example, Part 3
	Example, Part 4
	Example, Part 5
	Hands-On Exercises�
	Hands-On Exercises�
	Problem 1: Hardware Projection
	Hands-On Exercises�
	Problem 2: Black Box Software
	Hands-On Exercises�
	Problem 3: Mesh Application
	Hands-On Exercises�
	Problem 4: PIM Application
	Beyond Transistors
	Applications and $100M Supercomputers
	Simulation of Global Climate
	FLOPS Increases for Global Climate
	Exemplary Exa- and Zetta-Scale Simulations
	FLOPS Increases for MEMS
	Beyond Transistors
	Beyond Transistors
	Landauer’s Arguments
	Landauer’s Limit
	Thermal Limit
	Metaphor: FM Radio on Trip to Portland
	FM Radio and End of Moore’s Law
	Personal Observational Evidence
	Beyond Transistors
	Cutting Temperature
	Cutting Temperature
	Beyond Transistors
	Scientific Supercomputer Limits
	Beyond Transistors
	Transistors vs. Other Irreversible Devices
	Really Advanced Technology
	ITRS Device Review 2016 + QDCA
	Beyond Transistors
	Reversible Logic – Toffoli Gate
	Reversible Logic Can Beat Landauer’s Limit
	Reversible Logic Example
	Today’s Universal Logic & Reliability Limit
	“Recycling” Power
	Resonant Clocks
	A New Computing Device: Quantum Dots
	Upside Potential of Quantum Dots
	Upside Potential of Quantum Dots
	Reversible Multiplier Status
	Reversible Microprocessor Status
	Beyond Transistors
	Why Quantum Computing is Interesting
	Ion Trap Quantum Gates
	Reliable Quantum Operations
	Beyond Transistors
	Quantum “Algorithms”
	Emergence of Quantum Computing
	Quantum Applications
	Beyond Transistors
	One Slide Taxonomy of Quantum Algorithms

	5-additions
	Nanotech, Architecture, and Memory Wall
	Nanotech Memory
	Nantero NRAM™ Device
	Nantero’s Collaboration with ASML
	Nanoarray Architecture
	Thought Experiment – Skewed Nanoarray
	Thought Experiment – Skewed Nanoarray
	Nano Memory Conclusions
	Architecture Trends
	Burger’s Architecture, Erik’s Example
	Floorplan of First-cut Prototype��
	Stacked Memory & Rack Parameters
	Stacked Memory & Rack Parameters
	Thought Experiment – Skewed Nanoarray
	One Slide Taxonomy of Quantum Algorithms

	6-Architecture Planner9

