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Issues for the Future of Supercomputing: 
Impact of Moore's Law and Architecture on 

Application Performance

Extended Outline

SC|05 Tutorial M09

Erik DeBenedictis

David Keyes

Peter Kogge
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Tutorial Goals

• Explore key issues in future of supercomputing
– Algorithms, technology, architecture

•Motivate changes based on problem space

•Drive discussion based on “Moore’s Law”

• Explore meaning of silicon’s endpoints

•Discuss potential alternatives 

•Use concept of scaling throughout

•Combine with “hands-on” participant-based 
projections

• Provide an overview of successor technologies



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
3

Definitions of Scaling

•A dry thin flake of epidermis shed from the skin 

• To remove in layers or scales 

• (Australian): To ride … without paying the fare.

•A progressive classification, as of size, amount, 
importance, or rank 

• To alter according to a standard or by degrees; 
adjust in calculated amounts 

• the act of arranging in a graduated series 

From dictionary.com
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Schedule

• 8:30 Introductory Comments

• 8:45 Algorithm Scalability

– Review from Scales

– Mesh Example

• 10:00 Break

• 10:30 Silicon Scaling

– ITRS Roadmap

– Microprocessors and 
Alternative Architectures

• Noon Lunch

• 1:30 System Scaling

– End of the Roadmap

– Projecting Applications 
Performance on Future 
Supercomputers

• 3:00 Break

• 3:30 Hands-On Exercises

• 4:30 Beyond Transistors

• 5:00 Conclusion
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Review of Applications from SCaLeS

• Large-scale simulation going through phase change

• Complementary roles of algorithmic and architectural 
advances

• Lessons from recent Gordon Bell prizes

• Some simulation priorities and opportunities at and beyond 
the terascale

– Magnetic fusion energy

– Combustion

– Climate

– Astrophysics

– Accelerator design

– Lattice QCD

David Keyes
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Algorithm Scalability – Mesh-based Example

• Application Models 

– Mesh-based algorithms
• Discretizations

• Solvers

• Software

– Resource scaling for mesh-based applications

– Mesh-based kernels and architectural stress points

• Architectural Models

– Key parameters
• Processor

• Memory system

• Communication network

– Estimating performance scalability

– Opportunities for improving algorithm-architecture impedance 
match

David Keyes
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ITRS Roadmap and Device Scaling

•MOSFET Geometry

– Gates

– Memory cells

•CMOS Scaling Laws (a la Mead and Conway)

• Scaling examples

– µµµµPs

– Memories

– Memory Bandwidth

– Node-to-node communications rate

Peter Kogge
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Scaling of µµµµPs and Advanced Architectures

•Multi-Core Processors
– Trading IPC for explicit parallelism

– Core scaling

– Bandwidth scaling

•Multi-threading Architectures

– Latency hiding 

– Introducing locality-awareness & latency avoidance

• Processor in Memory Architectures

– Latency and bandwidth scaling

– PIM Bump and implications to inner loop memory 
requirements

Peter Kogge
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End of the Roadmap

• ITRS: Uniform exponentials or something else?
– SPEC processor numbers and implications

– Total power off track

– Some hint of clock rate problems

•Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling

Erik DeBenedictis



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
10

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm

Erik DeBenedictis
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Hands-On Exercises

• Organization

– Leaders will go through a sample problem with the group first

– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and applications 
reference materials

– Specific problems will be determined by the interests of the 
groups, with some sample problems given below:

• Problem #1: Project parameters of a $10M supercomputer in year 
2016

• Problem #2: Project performance of supercomputer above on a 
legacy application

• Problem #3: Performance on mesh application

• Problem #4: Project parameters of a PIM architecture 
supercomputer

Erik DeBenedictis

David Keyes

Peter Kogge
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Beyond Transistors

• Applications Requirements

• Upside potential for µµµµP/thermodynamic limits to total power

– Cooling technologies

• Upside potential of advanced architectures/PIM

• Reversible logic may defeat thermodynamic limitations

• Some nanotech technologies on the horizon

• Superconducting logic

– Carnot cycle

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation

– Some examples of possible quantum devices

Erik DeBenedictis



Tutorial 123: Impact of Moore’s 
Law and Architecture on 

Application Performance, Session I:
Opportunities to Advance Science 

through Supercomputer Simulation

David Keyes, Columbia University



Role of presentation
n Remind ourselves of some prime science and engineering 

customers
n Look anecdotally at a few demanding applications

� SciDAC: climate, QCD, accelerator design, magnetic fusion 
energy, combustion, astrophysics

� Bell: mechanics, seismology, aerodynamics
� Race through the picture gallery – no time for the science, itself

n Look generically at PDE-based simulation and the basis of 
continued optimism for its growth – capability-wise

n Look at some specific hurdles posed by high-end architecture



Technical aspects of presentation
n Introduce a parameterized highly tunable class of 

algorithms for parallel implicit solution of PDEs
� understand the source of its “weak scalability”
� ignore other numerical analysis aspects, here

n Note some algorithmic “adaptations” to architectural 
stresses



Philosophy of presentation
n Applications are given
n Architectures (hardware and software) are given
n Algorithms must be created to bridge to hostile 

architectures for the sake of the applications
n Knowledge of algorithmic capabilities can usefully 

influence 
� the way applications are formulated
� the way architectures are constructed



Context: recent reports promote simulation
n Cyberinfrastructure (NSF, 2003)

� new research environments through cyberinfrastructure
n Facilities for the Future of Science (DOE, 2003)

� “ultrascale simulation facility” ranked #2 in priority (behind ITER only)
n High End Computing Revitalization Task Force (Interagency, 2004)

� strategic planning on platforms
n Future of Supercomputing (NAS, 2005)

� broad discussion of the future of supercomputing 
n PITAC (Interagency, 2005)

� challenges in software and in interdisciplinary training 
n Simulation-based Engineering Science (NSF, 2005)

� opportunities in dynamic, data-driven simulation and engineering design 
¾ SCaLeS report, Vol 1 (DOE, 2003) & Vol 2 (DOE, 2004)

� implications of large-scale simulation for basic scientific research
¾ Capability Computing Needs (DOE, 2004)

� Profiles of leading edge DOE codes in 11 application domains



z Chapter 1. Introduction

z Chapter 2. Scientific Discovery 
through Advanced Computing: a 
Successful Pilot Program

z Chapter 3. Anatomy of a Large-scale 
Simulation

z Chapter 4. Opportunities at the 
Scientific Horizon

z Chapter 5. Enabling Mathematics 
and Computer Science Tools

z Chapter 6. Recommendations and 
Discussion

www.pnl.gov/scales

315 
contributors

Volume 2 (2004):

z 11 chapters on applications

z 8 chapters on mathematical methods

z 8 chapters on computer science and 
infrastructure



Gedanken experiment:
How to use a jar of peanut butter 

as its price slides downward?
n In 2005, at $3.20: make sandwiches
n By 2008, at $0.80: make recipe 

substitutions for other oils
n By 2011, at $0.20: use as feedstock 

for biopolymers, plastics, etc.
n By 2014, at $0.05: heat homes
n By 2017, at $0.0125: pave roads ☺

The cost of computing has been on a curve much better than this
for two decades and promises to continue for at least one more. 
Like everyone else, scientists should plan increasing uses for it…



Gordon Bell Prize “price performance”
    
Year  Application  System $ per Mflops 
1989  Reservoir modeling CM-2 2,500
1990  Electronic structure IPSC 1,250
1992  Polymer dynamics cluster 1,000
1993  Image analysis custom 154
1994  Quant molecular dyn cluster 333
1995  Comp fluid dynamics cluster 278
1996  Electronic structure SGI 159
1997  Gravitation cluster 56
1998  Quant chromodyn custom 12.5
1999  Gravitation custom 6.9
2000  Comp fluid dynamics cluster 1.9
2001  Structural analysis cluster 0.24

 

Four orders 
of magnitude 
in 12 years 

Price/performance has stagnated and no new such prize has been given since 2001.



Gordon Bell Prize “peak performance”
   
Year Type Application No. Procs System Gflop/s 
1988 PDE Structures 8 Cray Y-MP 1.0
1989 PDE Seismic 2,048 CM-2 5.6
1990 PDE Seismic 2,048 CM-2 14
1992 NB Gravitation 512 Delta 5.4
1993 MC Boltzmann 1,024 CM-5 60
1994 IE Structures 1,904 Paragon 143
1995 MC QCD 128 NWT 179
1996 PDE CFD 160 NWT 111
1997 NB Gravitation 4,096 ASCI Red 170
1998 MD Magnetism 1,536 T3E-1200 1,020
1999 PDE CFD 5,832 ASCI BluePac 627
2000 NB Gravitation 96 GRAPE-6 1,349
2001 NB Gravitation 1,024 GRAPE-6 11,550
2002 PDE Climate 5,120 Earth Sim 26,500

 

 

Four orders 
of magnitude 
in 13 years

With 100 Tflop/s in 2005, peak performance on real applications continues on its trajectory!



Gordon Bell Prize outpaces Moore’s Law

Four orders 
of magnitude 
in 13 years

Gordon Moore

Gordon Bell

<<Demi Moore>>

CONCUR-
RENCY!!!



The power of optimal algorithms
n Advances in algorithmic efficiency can rival advances 

in hardware architecture
n Consider Poisson’s equation on a cube of size N=n3

n If  n=64, this implies an overall reduction in flops of 
~16 million

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann & 
Goldstine

n5 n7

1950 Optimal SOR Young n3 n4 log n

1971 CG Reid n3 n3.5 log n

1984 Full MG Brandt n3 n3

∇2u=f 64

64 64

*Six-months is reduced to 1 s

*



year

relative 
speedup

Algorithms and Moore’s Law
n This advance took place over a span of about 36 years, or 24 doubling times for 

Moore’s Law
n 224≈16 million ⇒ the same as the factor from algorithms alone!



“Moore’s Law” for MHD simulations

“Semi-implicit”:

All waves treated 
implicitly, but still 
stability-limited by 
transport

“Partially implicit”:

Fastest waves 
filtered, but still 
stability-limited by 
slower waves

Figure from SCaLeS report, Volume 2



“Moore’s Law” for combustion simulations
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Terascale simulation can be pitched as 
an alternative to experimentation

Experiments prohibited 
or impossible

Simulation is an important complement 
to experiment in many areas

Lasers & Energy
combustion

ICF

Engineering
aerodynamics
crash testing

Environment
global climate
groundwater

Biology
drug design
genomics

Applied Physics
radiation transport

supernovae

Scientific
Simulation

Experiments 
controversial

Experiments 
dangerous

Experiments difficult  
to instrument

Experiments 
expensive

ITER
$5B



Heretofore difficult apps are now parallelized
n Unstructured grids
n Implicit, as well as explicit, methods
n Massive spatial resolution
n Thousand-fold concurrency
n Strong scaling within modest ranges
n Weak scaling without obvious limits

See, e.g., Gordon Bell “special” prizes in recent years …



2004 Gordon Bell “special” prize

Cortical 
bone

Trabecular 
bone

n 2004 Bell Prize in “special category” went to an implicit, unstructured 
grid bone mechanics simulation
� 0.5 Tflop/s sustained on 4 thousand procs of IBM’s ASCI White
� 0.5 billion degrees of freedom
� large-deformation analysis
� employed in NIH bone research at Berkeley

c/o M. Adams, Columbia



2003 Gordon Bell “special” prize
n 2003 Bell Prize in “special category” went to unstructured grid 

geological parameter estimation problem 
� 1 Tflop/s sustained on 2 thousand processors of HP’s “Lemieux 
� each explicit forward PDE solve: 17 million degrees of freedom
� seismic inverse problem: 70 billion degrees of freedom
� employed in NSF seismic research at CMU

reconstruction

target

c/o O. Ghattas, UT Austin



1999 Gordon Bell “special” prize
n 1999 Bell Prize in “special category” went to implicit, unstructured grid 

aerodynamics problems
� 0.23 Tflop/s sustained on 3 thousand processors of Intel’s ASCI Red
� 11 million degrees of freedom
� incompressible and compressible Euler flow
� employed in NASA analysis/design missions

Transonic “Lambda” Shock, Mach contours on surfaces

to      s



What would scientists do with 100-1000x? 
Example: predict future climates

n Resolution
� refine atmospheric resolution from 160 to 40 km
� refine oceanic resolution from 105 to 15km

n New “physics”
� atmospheric chemistry
� carbon cycle
� dynamic terrestrial vegetation (nitrogen and sulfur cycles 

and land-use and land-cover changes)
n Improved representation of subgrid processes

� clouds
� atmospheric radiative transfer



What would scientists do with 100-1000x? 
Example: predict future climates

Resolution of Kuroshio Current: Simulations at various resolutions have 
demonstrated that, because equatorial meso-scale eddies have diameters ~10-200 
km, the grid spacing must be < 10 km to adequately resolve the eddy spectrum. 
This is illustrated in four images of the sea-surface temperature.  Figure (a) shows a 
snapshot from satellite observations, while the three other figures are snapshots 
from simulations at resolutions of (b) 2°, (c) 0.28°, and (d) 0.1°.  



What would scientists do with 100-1000x? 
Example: probe structure of particles

n Resolution
� take current 4D quantum chromodynamics models from 

32×32×32×16 to 128×128×128×64
n New physics 

� “unquench” the lattice approximation: enable study of the 
gluon structure of the nucleon, in addition to its quark 
structure

� obtain chiral symmetry by solving on a 5D lattice in the 
domain wall Fermion formulation 

� allow precision calculation of the spectroscopy of strongly
interacting particles with unconventional quantum numbers, 
guiding experimental searches for states with novel quark 
and gluon structure



What would scientists do with 100-1000x? 
Example: probe structure of particles

Constraints on the Standard Model parameters ρ and η. For the Standard Model to 
be correct, these parameters from the Cabibbo-Kobayashi-Maskawa (CKM) matrix
must be restricted to the region of overlap of the solidly colored bands. The figure on 
the left shows the constraints as they exist today. The figure on the right shows the 
constraints as they would exist with no improvement in the experimental errors, but 
with lattice gauge theory uncertainties reduced to 3%.  

η η



What would scientists do with 100-1000x? 
Example: design accelerators

n Resolution
� complex geometry (long assemblies of damped detuned structure 

(DDS) cells, each one slightly different than its axial neighbor) 
requires unstructured meshes with hundreds of millions of 
degrees of freedom

� Maxwell eigensystems for interior elements of the spectrum must 
be solved in the complex cavity formed by the union of the DDS 
cells

n Novel capability
� PDE-based mathematical optimization will replace expensive and 

slow trial and error prototyping approach
� each inner loop of optimization requires numerous eigensystem 

analyses



What would scientists do with 100-1000x? 
Example: design accelerators

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given Geometry

Omega3P

S3P

T3P

Tau3P

DDS CELL

Next generation accelerators have complex cavities. Shape optimization is required 
to improve performance and reduce operating cost. 

c/o K. Ko, SLAC



What would scientists do with 100-1000x? 
Example: design and control tokamaks

n Resolution
� refine meshes and approach physical 

Lundquist numbers
n Multiphysics 

� combine MHD, PIC, and RF codes in a 
single, consistent simulation

� resolve plasma edge
n Design and control

� optimize performance of experimental 
reactor ITER and follow-on production 
devices

� detect onset of instabilities and modify 
before catastrophic energy releases from the 
magnetic field



Noise
Detection
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I  D  A  V  E

What would scientists do with 100-1000x? 
Example: design and control tokamaks

c/o S. Klasky, ORNL



What would scientists do with 100-1000x? 
Example: control combustion

n Resolution
� evolve 3D time-dependent large-eddy simulation (LES) codes to 

direct Navier-Stokes (DNS)
� multi-billions of mesh zones required

n New “physics”
� explore coupling between chemistry and acoustics (currently 

filtered out)
� explore sooting mechanisms to capture radiation effects
� capture autoignition with realistic fuels

n Integrate with experiments
� pioneer simulation-controlled experiments to look for predicted 

effects in the laboratory



What would scientists do with 100-1000x? 
Example: control combustion

Instantaneous flame front imaged by density of inert marker Instantaneous flame front imaged by fuel concentration

Images c/o R. Cheng (left), J. Bell (right), LBNL, and NERSC    
2003 SIAM/ACM Prize in CS&E (J. Bell & P. Colella)



What would scientists do with 100-1000x? 
Example: probe supernovae

n Resolution
� current Boltzmann neutrino transport models are vastly under-

resolved 
� need at least 5123 spatially, at least 8 polar and 8 azimuthal, and at 

least 24 energy groups energy groups per each of six neutrino 
types

� to discriminate between competing mechanisms, must conserve 
energy to within 0.1% over millions of time steps

n Full dimensionality
� current models capable of multigroup neutrino radiation are 

lower-dimensional; full 3D models are required



What would scientists do with 100-1000x? 
Example: probe supernovae

Stationary accretion shock instability defines shape of supernovae and direction of 
emitted radiation. Lower dimensional models produce insight; full dimensional 
models are ultimately capable of providing radiation signatures that can be 
compared with observations. 

c/o A. Mezzacappa, ORNL



“The partial differential equation entered theoretical physics as a 
handmaid, but has gradually become mistress.” – A. Einstein

PDEsPDEs

are are 
densedense

in the in the 
CS&ECS&E

portfolioportfolio

model, mesh, 
discretize, partition, 

solve, adapt, 
visualize, optimize 
probe sensitivity, 

probe stability



It’s not about the solver

CS

Math

Applications

Applications 
drive

Enabling 
technologies 
respond



It’s all about the solver (at the terascale)
n Given, for example: 

� a “physics” phase that 
scales as O(N)

� a “solver” phase that 
scales as O(N3/2)

� computation is almost all 
solver after several 
doublings

n Most applications groups have not 
yet “felt” this curve in their gut
� BG/L will change this
� 64K-processor machine 

delivered in 2005

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes 
97% time on 
64K procs

Weak scaling limit, assuming efficiency of 
100%  in both physics and solver phases

problem size

Solver takes 
50% time 
on 64 procs



A central concept: solver toolchain
n From solutions to sensitivity, stability, 

optimization
n Nested modules
n Leveraged implementation of distributed data 

structures
n Hiding of communication and performance-

oriented details so users deal with mathematical 
objects throughout 



Solver software toolchain
n Design and implementation of 

“solvers”
� Linear solvers

� Eigensolvers

� Nonlinear solvers

� Time integrators

� Optimizers

n Software integration
n Performance optimization
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Optimizer

Linear 
solver
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Two definitions of scalability
n “Strong scaling”

� execution time decreases in 
inverse proportion to the number 
of processors

� fixed size problem overall

n “Weak scaling”
� execution time remains constant, 

as problem size and processor 
number are increased in 
proportion

� fixed size problem per processor
� also known as “Gustafson 

scaling”

poorlog T

log p
good

N constant

Slope
= -1

T  

p

good

poor

N ∝ p

Slope
= 0



n Algebraic multigrid a key algorithmic technology
� Discrete operator defined for finest grid by the application, itself, and

for many recursively derived levels with successively fewer degrees of 
freedom, for solver purposes

� Unlike geometric multigrid, AMG not restricted to problems with 
“natural” coarsenings derived from grid alone

n Optimality (cost per cycle) intimately tied to the ability to coarsen 
aggressively

n Convergence scalability (number of cycles) and parallel efficiency also 
sensitive to rate of coarsening

Preview: Algebraic multigrid on BG/L

• While much research and development 
remains, multigrid will clearly be 
practical at BG/L-scale concurrency

Figure shows weak scaling result for AMG out 
to 16K processors, with one 30× 30×30 block 
per processor (from 27K dofs up to 422M dofs) 

0
2
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10
12
14
16
18

1 512 1728 4096 8000 12167 15625

Default
PMIS

procs

se
c

c/o U. M. Yang, LLNL



Contraindications of scalability
n Fixed problem size

� Amdahl-type constraints
� “fully resolved” discrete problems (protein folding, network 

problems)
� “sufficiently resolved” problems from the continuum

n Scalable problem size
� Resolution-limited progress

� explicit schemes for time-dependent PDEs
� suboptimal iterative relaxations schemes for equilibrium PDEs

� Nonuniformity of threads
� adaptive schemes
� multiphase computations (e.g, particle and field)



Amdahl’s Law
n Fundamental limit to strong scaling due to small overheads
n Independent of number of processors available
n Analyze by binning code segments by degree of exploitable 

concurrency and dividing by available processors, up to limit
n Illustration for just two bins:

� fraction f1 of work that is purely sequential
� fraction (1-f1) of work that is arbitrarily concurrent

n Wall clock time for p processors
n Speedup 

n Applies to any performance enhancement, not just parallelism

pff /)1( 11 −+∝
]/)1(/[1 11 pff −+= p 1 10 100 1000 10000

S 1.0 9.2 50.3 91.0 99.0[Table shows example for f1 of 1%]



Resolution-limited progress
d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h mesh cell size
τ time step size 
τ=O(hα) bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ ∝ hα = 1/nα = 1/Nα/d  = 1/(PS)α/d )

n Illustrate for CFL-limited 
time stepping

n Parallel wall clock time

n Example: explicit wave 
problem in 3D (α=1, d=3)

n Example: explicit diffusion 
problem in 2D (α=2, d=2)

dd PST //1 αα+∝

Domain 103× 103×103 104× 104×104 105× 105×105

Time 1 day 10 days 3 months

Domain 103× 103 104× 104 105× 105

Time 1 day 3 months 27 years



Thread nonuniformity
n Evolving state of the simulation can spoil load balance

� adaptive scheme
� local mesh refinement
� local time adaptivity

� state-dependent work complexity
� complex constitutive or reaction terms
� nonlinear inner loops with variable convergence rates

� multiphase simulation
� bulk synchronous alternation between different phases with 

different work distributions

…
P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M



Often neglected possibilities for scalability
n Parallelization in the time (or generally causal) 

dimension, particularly in nonlinear problems after 
spatial concurrency is exhausted

n Creating independent ensembles for asynchronous 
evaluation (parameter exploration or stochastic model) 
after space-time concurrency is exhausted on the direct 
problem

n Trading finely resolved discretizations (very sparse) for 
higher-order discretizations (block dense), or other 
algorithmic innovations that alter the granularity of bulk 
synchronous work between data movements



From generalities to a case study
n In the balance of this session, we focus in detail on the 

limits to performance of a prototypical unstructured mesh-
based implicit computation

n With no dependence on numerical analysis other than to 
inform us about the essential kernels, we study the balance 
of computation and data motion (within a processor’s own 
memory system and between the memory systems of 
different processors)

n We find that different kernels lead to different stresspoints 
among the architectural parameters of a hierarchical 
distributed memory machine

n Our study motivates the attention to architecture and the 
importance of extrapolating architectural parameters in the 
other sections of the tutorial



Case Study Model and Experiments 
on High-end Platforms:

Achieving High Sustained Performance in 
an Unstructured Mesh CFD Application

David Keyes, Columbia University
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Motivation
n No computer system is well balanced for all computational tasks, 

or even for all phases of a single well-defined task, like solving 
nonlinear systems arising from discretized differential equations

n Given the need for high performance in the solution of these and
related systems, one should be aware of which computational 
phases are limited by which aspect of hardware or software.

n With this knowledge, one can design algorithms to “play to” the 
strengths of a machine of given architecture, or one can 
intelligently select or evolve architectures for preferred algorithms.



Four potential limiters on scalability 
in large-scale parallel scientific codes

n Insufficient localized concurrency
n Load imbalance at synchronization points
n Interprocessor message latency
n Interprocessor message bandwidth

“horizontal aspects”



Four potential limiters 
on arithmetic performance

n Memory latency
� Failure to predict which data items are needed

n Memory bandwidth
� Failure to deliver data at consumption rate of processor

n Load/store instruction issue rate
� Failure of processor to issue enough loads/stores per cycle

n Floating point instruction issue rate
� Low percentage of floating point operations among all 

operations

“vertical aspects”



Plan for balance of Session I
n Background of 1999 Bell Prize winner in “Special” category

� application
� algorithm

n General characterization of PDE requirements
� identification of common algorithmic building blocks
� simple complexity analyses (computation, communication, inter-

processor motion)
n Identification and illustration of bottlenecks on some of yesterday's 

important platforms
� ASCI Red (Intel Pentium), ASCI Blue Mountain (SGI MIPS), 

ASCI Blue Pacific (IBM Power), Cray T3E (DEC Alpha)
n … and some of today’s

� IBM BlueGene/L, NSF Teragrid, VaTech System X
n Speculation on useful algorithmic research directions



Euler simulation
n 3D transonic flow over ONERA M6 wing, at 3.06º 

angle of attack  (exhibits λ-shock at M = 0.839)

n Solve
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Background of FUN3D application
n Tetrahedral vertex-centered unstructured grid code developed by W. K. 

Anderson (NASA) for steady compressible and incompressible Euler and 
Navier-Stokes

n Used in airplane, automobile, and submarine applications for analysis and 
design

n Standard discretization is second-order Roe scheme for convection and 
Galerkin for diffusion

n Newton-Krylov solver with global point-block-ILU preconditioning, with 
false timestepping for nonlinear continuation towards steady state; 
competitive with FAS multigrid in practice

n Legacy implementation/ordering is vector-oriented



Features of FUN3D application
n Based on “legacy” (but contemporary) CFD application with significant 

F77 code reuse
n Portable, message-passing library-based parallelization, run on NT boxes 

through Tflop/s ASCI platforms
n Simple multithreaded extension between processors sharing memory

physically 
n Sparse, unstructured data, implying memory indirection with only modest 

reuse
n Wide applicability to other implicitly discretized multiple-scale PDE 

workloads
n Extensive profiling has led to follow-on algorithmic research



Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1
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n Decomposition of computation in tasks
n Assignment of tasks to processes
n Orchestration of data access, communication, synchronization
n Mapping processes to processors

c/o Culler et al, UC Berkeley



SPMD parallelism w/domain decomposition

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned 

to proc “2”

(volume) work to (surface) 
communication is preserved 
under weak scaling



DD relevant to any local stencil formulation
finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices 

J=

node i

row i
• However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D
• Want to solve in subdomains only, and 
use to precondition full sparse problem



Algorithm: Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable



Merits of NKS algorithm/implementation
n Relative characteristics: the scaling “exponents” are naturally good

� Convergence scalability
� weak (or no) degradation in problem size and parallel granularity (with use 

of small global problems in Schwarz preconditioner)
� Implementation scalability

� no degradation in ratio of surface communication to volume work (in 
problem-scaled limit)

� only modest degradation from global operations (for sufficiently richly 
connected networks)

n Absolute characteristics: the “constants” can be made good
� Operation count complexity

� residual reductions of  10-9 in 103 “work units”
� Per-processor performance

� up to 25% of theoretical peak
n Overall, machine-epsilon solutions require as little as 15 microseconds per 

degree of freedom!



Additive Schwarz preconditioning 
for Au=f in Ω

n Form preconditioner B out of (approximate) local solves on (overlapping) 
subdomains

n Let Ri and Ri
T be Boolean gather and scatter operations, mapping between a 

global vector and its ith subdomain support
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Iteration count estimates from Schwarz theory
[ref: Smith, Bjorstad & Gropp, 1996, Camb. Univ. Pr.]

n Krylov-Schwarz iterative methods typically converge in a number of iterations 
that scales as the square-root of the condition number of the Schwarz-
preconditioned system

n In terms of N and P, where for d-dimensional isotropic problems, N=h-d and 
P=H-d, for mesh parameter h and subdomain diameter H, iteration counts may be 
estimated as follows:

Ο(P1/3)Ο(P1/3)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi

Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type



Time-implicit 
Newton-Krylov-Schwarz method

For nonlinear robustness, NKS iteration is wrapped in time-stepping. 

for (l = 0; l < n_time; l++) {

select time step

for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian

for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {

solve subdomain problems concurrently

} 

perform preconditioned Jacobian-vector product

enforce Krylov basis conditions

update optimal coefficients 

check linear convergence

} 

perform DAXPY update 

check nonlinear convergence

}

}                                                               Steps in red involve global communication.



Key features of implementation strategy
n Subdomain partitioning by one of the MeTiS graph algorithms 
n SPMD “owner computes” PETSc implementation under the dual objectives of 

minimizing the number of messages  and overlapping communication with 
computation

n Each processor “ghosts” its stencil dependences in its neighbors
n Ghost nodes ordered after contiguous owned nodes
n Domain mapped from (user) global ordering into local orderings
n Scatter/gather operations created between local sequential vectors and global 

distributed vectors, based on runtime connectivity patterns
n Newton-Krylov-Schwarz operations translated into local tasks and communication

tasks
n Profiling used to help eliminate performance bugs in communication and memory 

hierarchy



Background of PETSc
n Developed by Gropp, Smith, McInnes & Balay (ANL) to support research, 

prototyping, and production parallel solutions of operator equations in message-
passing environments

n Distributed data structures as fundamental objects - index sets, 
vectors/gridfunctions, and matrices/arrays

n Iterative linear and nonlinear solvers, combinable modularly and recursively, 
and extensibly

n Portable, and callable from C, C++, Fortran
n Uniform high-level API, with multi-layered entry
n Aggressively optimized: copies minimized, communication aggregated and 

overlapped, caches and registers reused, memory chunks preallocated, 
inspector-executor model for repetitive tasks (e.g., gather/scatter)

n Now part of the Terascale Optimal PDE Simulations project (DOE SciDAC)

See http://www.mcs.anl.gov/petsc, http://www.tops-scidac.org

http://www.mcs.anl.gov/petsc
http://www.tops-scidac.org/


Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Separation of concerns between 
user code and PETSc library

User code PETSc code



Outline for PDE performance study
n General characterization of PDE requirements
n Identification of common algorithmic building blocks
n Simple complexity characterizations (computational work, 

interprocessor communication, intraprocessor data motion)
n Identification and illustration of bottlenecks on some of 

today's important platforms
n Experiments with a high-performance port of a NASA 

aerodynamic design code and with a sparse unstructured 
matrix-vector kernel

n Speculation on useful algorithmic research directions



Variety and complexity of PDEs
n Varieties of PDEs

� evolution (time hyperbolic, time parabolic)
� equilibrium (elliptic, spatially hyperbolic or parabolic)
� mixed, varying by region
� mixed, of multiple type (e.g., parabolic with elliptic constraint)

n Complexity parameterized by:
� spatial grid points, Nx
� temporal grid points, Nt
� components per point, Nc
� auxiliary storage per point, Na
� grid points in stencil, Ns

n Memory: M ≈ Nx • (Nc + Na + Nc • Nc • Ns)
n Work:  W ≈ Nx • Nt • (Nc + Na + Nc • Nc • Ns)



Explicit solvers
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n Concurrency is pointwise, O(N)
n Comm.-to-Comp. ratio is surface-to-volume, O((N/P)-1/3)
n Communication range is nearest-neighbor, except for time-step 

computation
n Synchronization frequency is once per step, O((N/P)-1)
n Storage per point is low
n Load balance is straightforward for static quasi-uniform grids
n Grid adaptivity (together with temporal stability limitation) 

makes load balance nontrivial



Domain-decomposed implicit solvers
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n Concurrency is pointwise, O(N), or subdomainwise, O(P)
n Comm.-to-Comp. ratio still mainly surface-to-volume, 

O((N/P)-1/3)
n Communication still mainly nearest-neighbor, but nonlocal 

communication arises from conjugation, norms, coarse grid 
problems

n Synchronization frequency often more than once per grid-
sweep, up to Krylov dimension, O(K(N/P)-1)

n Storage per point is higher, by factor of O(K)
n Load balance issues the same as for explicit



Resource scaling for PDEs
n For 3D problems, work is proportional to four-thirds power of  memory, 

because
� For equilibrium problems, work scales with problem size times 

number of iteration steps -- proportional to resolution in single spatial 
dimension

� For evolutionary problems, work scales with problems size times 
number of time steps -- CFL arguments place latter on order of spatial 
resolution, as well

n Proportionality constant can be adjusted over a very wide range by both 
discretization (high-order implies more work per point and per memory 
transfer) and by algorithmic tuning

n If frequent time frames are to be captured, other resources -- disk capacity 
and I/O rates -- must both scale linearly with work, more stringently than 
for memory.



Primary PDE solution kernels
(assumes vertex-based; dual statements for cell-based)

n Vertex-based loops
� state vector and auxiliary vector updates

n Edge-based “stencil op” loops
� residual evaluation
� approximate Jacobian evaluation
� Jacobian-vector product (often replaced with matrix-free form, involving 

residual evaluation)
� intergrid transfer (coarse/fine)

n Sparse, narrow-band recurrences
� approximate factorization and back substitution
� smoothing

n Vector inner products and norms
� orthogonalization/conjugation
� convergence progress and stability checks



Illustration of edge-based loop
n Vertex-centered grid
n Traverse by edges

� load vertex values
� compute intensively

� e.g., for compressible flows, 
solve 5x5 eigen-problem for 
characteristic directions and 
speeds of each wave

� store flux contributions at 
vertices

n Each vertex appears in 
approximately 15 flux 
computations



Complexities of PDE kernels
n Vertex-based loops

� work and data closely proportional
� pointwise concurrency, no communication

n Edge-based “stencil op” loops 
� large ratio of work to data
� colored edge concurrency; local communication

n Sparse, narrow-band recurrences
� work and data closely proportional
� frontal concurrency; no, local, or global communication

n Vector inner products and norms
� work and data closely proportional
� pointwise concurrency; global communication



Candidate stresspoints of PDE kernels
n Vertex-based loops

� memory bandwidth
n Edge-based “stencil op” loops 

� load/store (register-cache) bandwidth
� internode bandwidth

n Sparse, narrow-band recurrences
� memory bandwidth
� internode bandwidth, internode latency, network diameter

n Inner products and norms
� memory bandwidth
� internode latency, network diameter



Previews of observations for PDE codes
n Processor scalability is no problem, in principle
n Common bus-based network is a bottleneck
n For fixed-size problems, global synchronization is 

eventually a bottleneck
n Coarse grid in preconditioner can be a bottleneck
n Memory latency is no problem, in principle
n Memory bandwidth is a major bottleneck
n Load-Store functionality may be a bottleneck
n Frequency of floating point instructions may be a bottleneck



Observation #1: 

Processor scalability no problem, in principle
n As popularized with the 1986 Karp Prize paper of Benner, Gustafson & 

Montry, Amdahl's law can be defeated if serial (or bounded 
concurrency) sections make up a decreasing fraction of total work as 
problem size and processor count scale --- true for most iterative implicit 
nonlinear PDE solvers

n Simple, back-of-envelope parallel complexity analyses show that 
processors can be increased as fast, or almost as fast, as problem size, 
assuming load is perfectly balanced

n Caveat: the processor network must also be scalable (applies to 
protocols as well as to hardware); machines based on common bus 
networks will not scale



Estimating scalability for
bulk-synchronized PDE stencil computations
n Given complexity estimates of the leading terms of:

� the concurrent computation (per iteration phase)
� the concurrent communication
� the synchronization frequency

n And a model of the architecture including:
� internode communication (network topology and protocol 

reflecting horizontal memory structure)
� on-node computation (effective performance parameters including 

vertical memory structure)
n One can estimate optimal concurrency and optimal execution time

� on per-iteration basis, or overall (by taking into account any 
granularity-dependent convergence rate)

� simply differentiate time estimate in terms of (N,P) with respect to 
P, equate to zero and solve for P in terms of N



Estimating 3D stencil costs (per iteration)

n grid points in each direction n, 
total work N=O(n3)

n processors in each direction p, 
total procs P=O(p3)

n memory per node requirements 
O(N/P)

n concurrent execution time per iteration
A n3/p3

n grid points on side of each processor 
subdomain n/p

n Concurrent neighbor commun. time 
per iteration B n2/p2

n cost of global reductions in each 
iteration  C log p or C p(1/d)

� C includes synchronization frequency
n same dimensionless units for 

measuring A, B, C 
� e.g., cost of scalar floating point 

multiply-add



3D stencil computation illustration
Rich local network, tree-based global reductions

n total wall-clock time per iteration

n for optimal p,            , or  

or (with                        ),

n without “speeddown,”  p can grow with n
n in the limit as 
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Scalability results for domain-decomposed
bulk-synchronized PDE stencil computations

n With tree-based (logarithmic) global reductions and 
scalable nearest neighbor hardware:
� optimal number of processors scales linearly with 

problem size

n With 3D torus-based global reductions and scalable 
nearest neighbor hardware:
� optimal number of processors scales as three-fourths

power of problem size (almost “scalable”)

n With common network bus (heavy contention):
� optimal number of processors scales as one-fourth

power of problem size (not “scalable”)



Surface visualization of test domain for 
Euler flow over an ONERA M6 wing

n Wing surface outlined in green triangles, farfield blue, symmetry plane red
n 2.8 M vertices in the actual computational domain (9K in image below)



Fixed-size parallel scaling results (Flop/s)



Parallel performance of PETSc-FUN3D 
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache 

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache



Fixed-size parallel scaling results 
(time in seconds)



Parallel performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache
BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache 

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache
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Parallel scaling results on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 

million unknowns) on up to 3072 ASCI Red nodes (each with dual Pentium Pro 333 
MHz processors)



Observation #2 (for Fixed-Size Problems):

Synchronization eventually a bottleneck
n Percentage of time spent in communication phases on ASCI Red for NKS 

unstructured Euler simulation
n Principal nonscaling feature is synchronization at global inner products and 

norms, while cost of halo exchange  grows slowly even for fixed-size problem  
with deteriorating surface-to-volume

Number of 
Processors 

Global 
reductions 

 

Synchronizations Halo 
Exchanges

128 5% 4% 3% 
256 3% 6% 4% 
512 3% 7% 5% 
768 3% 8% 5% 

1024 3% 10% 6% 
 
 



Observation #2a:

Coarse grid can be a bottleneck
n Execution times for scaled 3D elliptic problem with various coarse grid 

components of preconditioner, over 64-fold range of size and processor number 
(NK= Newton-Krylov; NR = Newton-Richardson)

n Largest case has 2 million unknowns and 8x8x8 replicated coarse grid

Number of
Processors

1/h 1/H 2-level
NK

V-cycle
NK

F-cycle
NK

F-cycle
NR

1 32 2 21.5s 19.6s 19.6s 21.1s

8 64 4 26.0s 23.3s 24.3s 26.1s

64 128 8 36.5s 31.2s 30.8s 34.4s

Scaled
Efficiency

0.59 0.63 0.64 0.61



Observation #2a, continued:

Coarse grid can be a bottleneck
n Algorithmic scalability (linear iteration count per Newton step) for scaled 3D 

elliptic problem with various coarse grid components of preconditioner, over 
64-fold range of size and processor number

n Largest case has 2 million unknowns and 8x8x8 replicated coarse grid

Number of
Processors

1/h 1/H 2-level
NK

V-cycle
NK

F-cycle
NK

F-cycle
NR

1 32 2 4.3 3.0 2.3 3.8

8 64 4 4.7 3.0 2.5 4.0

64 128 8 5.6 3.3 2.3 4.0

Scaled
Efficiency

0.77 0.91 1.00 0.95



Observation #3:

Memory latency no problem, in principle
n Regularity of reference in static grid-based computations can be 

exploited through memory-assist features to cover latency
n PDEs have simple, periodic workingset structure that permits effective 

use of prefetch/dispatch directives, and lots of slackness (process 
concurrency in excess of hardware concurrency)

n Combined with coming processors-in-memory (PIM) technology for 
gather/scatter into densely used block transfers and multithreading for 
latency that cannot be amortized by sufficiently large block transfers, the 
solution of PDEs can approach zero stall conditions

n Caveat: high bandwidth is critical to covering latency



Workingset characterization of memory traffic
n Smallest: data for single stencil 
n Largest: data for entire subdomain
n Intermediate: data for a neighborhood 

collection of stencils, reused as many times 
as possible



Gedanken experiment: cache traffic for PDEs
n As successive workingsets “drop” into a level of memory, capacity (and 

with effort conflict) misses disappear, leaving only compulsory, reducing 
demand on main memory bandwidth



BW-stretching strategies based on workingsets
n No performance value in memory levels larger than subdomain
n Little performance value in memory levels smaller than 

subdomain but larger than required to permit full reuse of most 
data within each subdomain subtraversal (middle knee, prev. 
slide)

n After providing L1 large enough for smallest workingset (and 
multiple independent copies up to desired level of 
multithreading, if necessary all additional resources should be 
invested in large L2

n Tables describing grid connectivity are built (after each grid 
rebalancing) and stored in PIM --- used to pack/unpack dense-
use cache lines during subdomain traversal



Three types of locality enhancements
n Edge-reordering for maximal vertex reuse
n Field interlacing for maximal cache-line reuse

� use   U1, V1, W1, U2, V2, W2, …, Un, Vn, Wn
� rather than   U1, U2, …, Un, V1, V2, …, Vn, W1, W2, …, Wn

n Sparse Jacobian blocking for minimal integer metadata in 
manipulating a given amount of floating point physical data



Improvements from locality reordering
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Observation #4:

Memory bandwidth a major bottleneck
Execution times for NKS Euler Simulation on Origin 2000: 
(standard) double precision matrices versus single precision

106s122s16s31s120

181s205s34s60s64

331s373s67s117s32

657s746s136s223s16

SingleDoubleSingleDouble 

OverallLinear Solve

Computational Phase
Number of 
Processors

Note that times are nearly halved, along with precision, for the BW-limited linear solve 
phase, indicating that the BW can be at least doubled before hitting the next bottleneck!



ASCI memory bandwidth bottleneck
n Per-processor memory bandwidth versus rate of work

� approximately 10-15 flops per word transferred from memory
� fairly constant across machines, and fairly poor without extensive reuse

Peak
(M F/s)

BW /proc
(M W /s)

(M F/s)/
(M W /s)

W hite 1500 125.0 12.0

Blue M tn 500 48.8 10.2

Blue Pac 666 45.0 14.8

Red 333 33.3 10.0



Implications of bandwidth limitations 
in shared memory systems

• The processors on a node compete for the available memory 
bandwidth
• The computational phases that are memory bandwidth limited will
not scale and may even run slower due to arbitration
• Stream Benchmark on ASCI Red MB/s for the Triad Operation

1521571E07
1411451E06
1441401E05
2381375E04

12966661E04
2 Threads1 ThreadVector Size

Larger vectors in last three rows do not fit into cache and are bandwidth-limited



BW-stretching strategies 
based on multivectors in sparse matvecs

n The sparse matrix-vector multiply (matvec) is one of the most common 
kernels in scientific computing
� Same data access considerations as stencil-op kernel in explicit methods 

for PDEs
� Same as Krylov kernel and similar to preconditioner application kernel in 

implicit methods for PDEs
n When multiplying a single vector, each element of the sparse matrix is used 

exactly once per matvec
n If the matrix is large, none of its elements will remain in the cache from one 

matvec to the next
n If multiple vectors, say N, are multiplied at once, each element of the matrix is 

reused N times
n A simple complexity model for the sparse matrix-vector product illustrates the 

issues



Matrix-vector multiplication 
for a single vector

do i=1, n

fetch ia(i+1)

sum = 0

! loop over the non-zeros of the row

do j = ia(i), ia(i + 1)-1  {

fetch ja(j), a(j), x (ja(j))

sum = sum + a(j) * x(ja(j))

enddo

Store sum into y(i)

enddo



Matrix-vector multiplication for 
N independent vectors

do i = 1, n

fetch ia(i+1)

! loop over the non-zeros of the row

do j = ia(i), ia(i + 1) - 1

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))

do N fmadd (floating multiply add)

enddo

Store y1(i) ..…yN(i)

enddo

This version performs A • {x1, …, xN}



Estimating the memory bandwidth limitation
n Assume ideal memory system apart from bandwidth

� Perfect cache (only  compulsory misses; no overhead)
� No memory latency
� Unlimited number of loads and stores per cycle

n Specify number of rows and nonzeros, and sizes for 
integers and floats

n Assume matrix blocking factor and vector blocking factor 
n Compute data volume associated with sparse matvec
n Compute number of floating-point multiply adds  (fmadd) 
n Bytes per floating multiply-add combined with memory 

bandwidth (bytes/second) give a bound on rate of 
execution of multiply-adds



Sparse matvec performance summary
n Matrix size = 90,708;  number of nonzero entries = 5,047,120, blocksize = 4
n Number of Vectors is either 1 or a block of  4
n On 250 MHz MIPS R10000
n Stream performance 358 MB/sec (triad vector operation) http://www.cs.virginia.edu/stream 

Bandwidth MFlops Format Number of 
Vectors 

Bytes / 
fmadd Required Measured Ideal Achieved

AIJ 1 12.36 3090 276 58 45 
AIJ 4 3.31 827 221 216 120 

BAIJ 1 9.31 2327  84 55 
BAIJ 4 2.54 635 229 305 175 

 
 

 
Bandwidth (GB/s) MFlops Format Number of 

Vectors 
Bytes / 

flop Required Measured Ideal Achieved
AIJ 1 6.18 14.83 1.97  319 274 
AIJ 4 1.66   3.98 1.97 1188 615 

 
 

n On 2.4 GHz P4 Xeon
n Stream performance 1973 MB/sec (triad vector operation) http://www.cs.virginia.edu/stream

http://www.cs.virginia.edu/stream
http://www.cs.virginia.edu/stream


Comparison of domain-level parallelism 
for MPI and OpenMP/MPI

• Table shows execution times of residual flux evaluation phase for W-cycle FAS Euler 
simulation on ASCI Red (2 processors per node)
• Thread management imposes an overhead of 5% up to more serious levels, depending 
upon the system
• In computational phases that are not memory bandwidth-limited, shared-memory 
multithreading can be more efficient than MPI-mediated domain-based multiprocessing

# Nodes On each node Sec./W-cycle

128 1 MPI process 14.01

128 2 MPI processes 7.98

128 2 OpenMP threads 7.56

256 1 MPI process 7.59



Observation #5:

Load-store functionality may be a bottleneck
• Table shows execution times of residual flux evaluation phase for NKS     
Euler simulation on ASCI Red (2 processors per node)
• In each paradigm, the second processor per node contributes another 
load/store unit while sharing fixed memory bandwidth
• Note that 1 thread is worse than 1 MPI process, but that 2-thread 
performance eventually surpass 2-process performance as subdomains 
become small

45s72s39s76s2560

40s62s33s66s3072

258s456s261s483s256

2 Proc1 Proc2 Thr1 Thr

MPIMPI/OpenMP
Nodes



Quantifying the load/store bottleneck
n Assume ideal memory system apart from load/store units

� All data items are ready in cache
� Each operation takes only one cycle to complete but multiple 

operations can graduate in one cycle
n If only one load or store can be issued in one cycle (as is the case 

on R10000 and many other processors), the best we can hope for is 

n Other restrictions (like primary cache latency, latency of floating 
point units etc.) need to be taken into account while creating the 
best schedule

MFlops/sPeak *
Stores and Loads ofNumber 

nsinstructiopoint  floating ofNumber 



Observation #6:

Fraction of flops may be a bottleneck
do i=1, m

jrow = ia(i+1) // 1Of, AT, Ld
ncol =  ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN //  N Ld
do j=1,ncol // 1 Ld
fetch ja(jrow), a(jrow), x1(ja(jrow)), ..…xN(ja(jrow)) 

// 1 Of, N+2 AT N+2 Ld
do N fmadd (floating multiply add) // 2N Flop

enddo // 1 Iop, 1 Br
Store sum1…..sumN in y1(i) ..…yN(i) // 1 Of, N AT, and St

enddo                                                           // 1 Iop, 1 Br

AT:address transln; Br: branch; Iop: integer op; Flop: floating point op; Of: offset 
calculation; Ld: load; St: store

n Estimated number of floating point operations out of the total instructions (for 
the unstructured Euler Jacobian)
� For N=1, If = 0.18
� For N = 4, If = 0.34; this is one-third of “peak” performance



Significance of multivectors
n Using multivectors can improve the performance of sparse 

matrix-vector product significantly
n “Algorithmic headroom” is available for modest blocking
n Simple models predict the performance of sparse matrix-vector 

operations on a variety of platforms, including the effects of 
memory bandwidth, and instruction issue rates
� achievable performance is a small fraction of stated peak for sparse 

matrix-vector kernels, independent of code quality
� compiler improvements and intelligent prefetching can help but the 

problem is fundamentally an architecture-algorithm mismatch and 
needs an algorithmic solution



Realistic Measures of Performance
Sparse Matrix Vector Product

single vector, matrix size = 90,708, nonzero entries = 5,047,120
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Realistic measures of performance 
Sparse Matrix Vector Product

one vector, matrix size = 90,708, nonzero entries = 5,047,120
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Summary of observations for PDE codes
n Processor scalability is no problem, in principle
n Common bus-based network is a bottleneck
n For fixed-size problems, global synchronization is 

eventually a bottleneck
n Coarse grid in preconditioner can be a bottleneck
n Memory latency is no problem, in principle
n Memory bandwidth is a major bottleneck
n Load-Store functionality may be a bottleneck
n Frequency of floating point instructions may be a bottleneck



Lessons for high-end simulation of PDEs
n Unstructured (static) grid codes can run well on distributed 

hierarchical memory machines, with attention to partitioning, 
vertex ordering, component ordering, blocking, and tuning

n Parallel solver libraries can give new life to the most valuable, 
discipline-specific modules of legacy PDE codes

n Parallel scalability is easy, but attaining high per-processor 
performance for sparse problems gets more challenging with 
each machine generation

n The NKS family of algorithms can be and must be tuned to an 
application-architecture combination; profiling is critical

n Some gains from hybrid parallel programming models 
(message passing and multithreading together) require little 
work; squeezing the last drop is likely much more difficult



Weighing in at the bottom line
n Characterization of a 1 Teraflop/s computer of today

� about 1,000 processors of 1 Gflop/s (peak) each
� due to inefficiencies within the processors, more practically 

characterized as about 4,000 processors of 250 Mflop/s each
n How do we want to get to 1 Petaflop/s?

� 1,000,000 processors of 1 Gflop/s each (only wider)?
� 10,000 processors of 100 Gflop/s each (mainly deeper)?

n From the point of view of PDE simulations on quasi-static Eulerian 
grids 
� Either!

n Caveat: dynamic grid simulations are not directly covered in this 
discussion
� but see work 2003 SIAM/ACM Prize



Four sources of performance improvement
n Expanded number of processors

� arbitrarily large factor, through extremely careful attention to load 
balancing and synchronization

n More efficient use of processor cycles, and faster processor/memory elements
� one to two orders of magnitude, through memory-assist language features, 

processors-in-memory, and multithreading
n Algorithmic variants that are more architecture-friendly

� approximately an order of magnitude, through improved locality and 
relaxed synchronization

n Algorithms that deliver more “science per flop”
� possibly large problem-dependent factor, through adaptivity
� This last does not contribute to raw flop/s!



Source #1: 

Expanded number of processors
n Recall Observation #1 and “back-of-envelope estimates”: 

Scalability not a problem.
n Caveat: the processor network must also be scalable 

(applies to protocols as well as to hardware)
n Remaining  four orders of magnitude could be met by 

hardware expansion (but this does not mean that fixed-size 
applications of today would run 104 times faster)



Source #2:

More efficient use of faster processors
n Current low efficiencies of sparse codes can be improved if 

regularity of reference is exploited with memory-assist features
n Recall Observation #3: PDEs have exploitable periodic workingset

structures that can overcome memory latency
n Caveat: high bandwidth is critical, since PDE algorithms do only

O(N) work for O(N) gridpoints worth of loads and stores
n One to two orders of magnitude can be gained by catching up to the 

clock, and by following the clock into the few-GHz range



Source #3:

More “architecture friendly” algorithms
n Algorithmic practice needs to  catch up to architectural demands

� several “one-time” gains remain to be contributed that could 
improve data locality or reduce synchronization frequency, while
maintaining required concurrency and slackness

� “One-time” refers to improvements by small constant factors, 
nothing that scales in N or P – complexities are already near 
information-theoretic lower bounds, and we reject increases in 
flop rates that derive from less efficient algorithms

� Caveat: remaining algorithmic performance improvements may 
cost extra space or may bank on stability shortcuts that 
occasionally backfire, making performance modeling less 
predictable

n Perhaps an order of magnitude of performance remains here



Performance improvement from algorithms (1)
n Spatial reorderings that improve locality

� interlacing of all related grid-based data structures
� ordering gridpoints and grid edges for L1/L2 reuse

n Discretizations that improve locality
� higher-order methods (lead to larger denser blocks at each point than 

lower-order methods)
� vertex-centering (for same tetrahedral grid, leads to denser 

blockrows than cell-centering)
n Temporal reorderings that improve locality

� block vector algorithms (reuse cached matrix blocks; vectors in 
block are independent)

� multi-step vector algorithms (reuse cached vector blocks; vectors 

have sequential dependence)



Performance improvement from algorithms (2)
n Temporal reorderings that reduce synchronization penalty

� less stable algorithmic choices that reduce synchronization 
frequency (deferred orthogonalization, speculative step selection)

� less global methods that reduce synchronization range by replacing 
a tightly coupled global process (e.g., Newton) with loosely 
coupled sets of tightly coupled local processes (e.g., Schwarz)

n Precision reductions that make bandwidth seem larger
� lower precision representation of preconditioner matrix 

coefficients or poorly known coefficients (arithmetic is still 
performed on full precision extensions) 



Source #4: 

Algorithms packing more science per flop
n Some algorithmic improvements do not improve flop rate, but lead to the 

same scientific end in the same time at lower hardware cost (less 
memory, lower operation complexity)

n Caveat: such adaptive programs are more complicated and less thread-
uniform than those they improve upon in quality/cost ratio

n Desirable that petaflop/s machines be general purpose enough to run the 
“best” algorithms

n Not daunting, conceptually, but puts an enormous premium on dynamic 
load balancing

n An order of magnitude or more can be gained here for many problems



Examples of adaptive opportunities
n Spatial Discretization-based adaptivity

� change discretization type and order to attain required 
approximation to the continuum everywhere without over-
resolving in smooth, easily approximated regions

n Fidelity-based adaptivity
� change continuous formulation to accommodate required 

phenomena everywhere without enriching in regions where 
nothing happens

n Stiffness-based adaptivity
� change solution algorithm to provide more powerful, 

robust techniques in regions of space-time where  discrete 
problem is linearly or nonlinearly stiff without extra work 
in nonstiff, locally well-conditioned regions 



Status and prospects for advanced adaptivity

n Metrics and procedures well developed in only a few areas
� method-of-lines ODEs for stiff IBVPs and DAEs, FEA for elliptic 

BVPs
n Multi-model methods used in ad hoc ways in production

� Boeing TRANAIR code
n Poly-algorithmic solvers demonstrated in principle but rarely in the 

“hostile” environment of high-performance computing
n Requirements for progress

� management of hierarchical levels of synchronization
� user specification of hierarchical priorities of different threads



Summary of suggestions for high performance

n Algorithms that deliver more “science per flop”
� possibly large problem-dependent factor, through adaptivity (but 

we won't count this towards rate improvement)
n Algorithmic variants that are more architecture-friendly

� expect half an order of magnitude, through improved locality and 
relaxed synchronization

n More efficient use of processor cycles, and faster processor/memory
� expect one-and-a-half orders of magnitude, through memory-

assist language features, PIM, and multithreading
n Expanded number of processors

� expect two orders of magnitude, through dynamic balancing and 
extreme care in implementation 



Reminder about the source of  simulations
n Computational science and engineering is not about individual 

large-scale analyses, done fast and “thrown over the wall”
n Both “results” and their sensitivities are desired; often 

multiple operation points to be simulated are known a priori, 
rather than sequentially

n Sensitivities may be fed back into optimization process
n Full CFD analyses may also be inner iterations in a 

multidisciplinary computation
n In such contexts, “petaflop/s” may mean 1,000 analyses 

running somewhat asynchronously with respect to each other, 
each at 1 Tflop/s – clearly a less daunting challenge and one 
that has better synchronization properties for exploiting “The 
Grid” – than 1 analysis running at 1 Pflop/s
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Why Is Supercomputing

Really Hard?

• Silicon density: Sheer space taken up implies 
large distances & loooooong latencies

• Silicon mindset:

– Processing logic “over here”

– Memory “over there”

– And we add acres of high heat producing stuff to 
bridge the gap

• Questions: 

– Where are we going with “business as usual”

– How far can we scale with a mindset (but not 
technology) change? 

• And is it enough? (to be answered later)
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Why Is Supercomputing Hard

In Silicon: Little’s Tyranny

Concurrency =    Throughput

Latency

ILP: Getting tougher & tougher to increase

•Must extract from program

•Must support in very complex H/W

Getting worse fast!!!!

(The Memory Wall)

Much less than peak

and degradingdegrading rapidly
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Technology Limits to Applications
(from NRC’s “Getting Up to Speed”)
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Why Look at Technology Scaling

• What are the basic units of memory & logic 

– In terms of functionality per sq. cm

• How will these change over time

• How with their individual performance 

characteristics change

• When do real-world limits come into play

– Power and inter-chip bandwidth

• What’s the likely best “chip” architectures
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What Seems to Be The Consensus

• Silicon will remain with us, but

– Power becoming dominating concern

– Individual CPU core complexity flattening

– Clock rate increases flattening

– Commodity memory bandwidths stagnant

– Chip-to-chip growing in importance

• Impact on building-block chip architecture

– Moore’s Law by other than clock rate

– Line between “Logic” and “Memory” chips blurs

– We will increase “threads per die” not IPC/core
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Outline

• Silicon Fundamentals

• Scaling

• ITRS Roadmap

• Limits on Classical Chips

• Multi-threading & Multi-core 

• Processing in Memory
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Silicon Fundamentals

•MOSFET Transistor

• Simple  Logic Circuits

• Variations of Memory

•Multiple Levels of Metal

• Off-Chip Interconnect
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A MOSFET Transistor

Silicon Substrate

Metal

Polysilicon

Source Gate Drain

Diffusion Silicon Dioxide

An Electric field Here

Causes tunneling here
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Key Device Parameters

t
ox

W

L
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A Logic Inverter

Input

OutputGnd Vdd

N-Type Diffusion/Transistor

• electron rich

• Turns on with + gate

P-Type Diffusion/Transistor

• electron poor

• Turns on with - gate

Ground

Input

Output

Vdd (Positive)

N-Type

Transistor

P-Type

Transistor
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4-input NAND Gate

In3

In1

In2

In4

In1 In2 In3 In4

VDD

Out

In1 In2 In3 In4

Vdd

GND

Out
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Full Adder
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Key Types of Memory Cells

• Commodity DRAM

• Embedded DRAM

• SRAM

• Non-Volatile RAM

– NAND Type

– NOR Type

Peak Bandwidth

L
a
te
n
cy

DRAM

EDRAM

SRAM

Better

Power

D
en
si
ty

DRAM

EDRAM

SRAM

B
etter

No single optimal choice!
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Static RAM bit
(6 Transistors per bit)

• To Write

– Place data and ~data on Din & ~Din

– Raise Select 

• To Read

– Raise Select to couple latch to outputs

– Sense output lines Dout & ~Dout

• In between, data stays latched in inverters

Select

Din/Dout ~Din/~Dout
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Charge-Based DRAM Bit
(1 Transistor)

• To Write
– Place data value on Din

– Activiate Select

– Capacitor is charged/discharged

• To Read
– Activate Select

– Read value on capacitor from Dout

• But charge “leaks” away over time

Select (“Word Line”)

Din/Dout

(“Bit Line”)

Ground
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Memory Arrays

1 out of 16

Decoder

Column Precharge Logic

Sense Amplifiers

Data0 Data1 Data2 Data3

Address (6 bits)

4

2

Sample 4 bit x

64 word array

Gnd
DRAM

Gnd

Vdd

Left

Column
Right
Column

Row Address

Column
Address

Row Select

SRAM
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Compact DRAM Cells 

for Memory Arrays

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode

Capacitor dielectric layer

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode

Capacitor dielectric layer

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode

Capacitor dielectric layer
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Multiple Levels of Metal

Bonding

Pad
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Off-Chip Interconnect:

Wire Bond

Wire Bond

Contacts available only from periphery of chip

Wire “welded”

to pad
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Off-Chip Interconnect:

Solder Ball

C4 Solder Ball

Allows an array of contacts over entire chip surface
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Scaling
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Device Scaling

• Key parameters: Gate length L, width W 

• “On” resistance prop. to L/W

• “Delay” in turning transistor on

– Function of capacitance of gate

– In turn proportional to area/tox = LW/tox
• Decreasing L thus a “good thing”

• But desirable to keep minimum devices with “square”
gates …. want to shrink W also

• Other “shrinkable” dimensions: tox, metal width, spacing 
between wires, …

“Scaling:” shrink a dimension by factor S

t
ox

W

L

t
ox

W

L
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What Can Scaling Affect?

• Chip area to perform some function
– If device & wire dimensions change by S

– Then area changes by S2

• Frequency of operation
– Decreasing gate area decreases capacitance

– Decreasing distance decreases R

• But decreasing wire cross-section increases R

• Power to perform some function ~ C x F x Vdd
2

– Decreasing gate area decreases aggregate capacitance C

– Decreasing L decreases threshold voltage, which decreases 
needed Vdd

• Power density: power per unit area
– Limiting factor for cooling considerations

Bigger S factors are better
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Approaches to Technology Scaling

• Full scaling: Ideal if possible

– Keep E-field within gate capacitor constant

– Requires scaling L, W, tox
– Also scales voltage

– Area shrinks, power drops, higher frequency

• Fixed Vdd Scaling: Common until late 1990s

– Scale only L, W

– Keep Vdd constant

– Same area shrink, very high clock, terrible power

• General Scaling: Typical today

– Different scale factors for different parameters

– Vdd does not drop as fast

– Lower peak clock, but better power & power density
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Approximate Scaling

Relationships

Parameter Full Fixed V General Full Fixed V General

W, L 1/S 1/S 1/S 1/S 1/S 1/S

tox 1/S 1/S 1/S 1/S 1/S 1/S

Vdd 1/S 1 1/U 1/S 1 1/U

Circuit Area 1/S^2 1/S^2 1/S^2 1/S^2 1/S^2 1/S^2

Clock S S^2 S^2/U S S S

Circuit Power 1/S^2 S S/U^3 1/S^2 1 1/U^2

Power Density 1 S^3 S^3/U^3 1 S^2 S^2/U^2

"Long Channel" Devices "Short Channel" Devices

Moore’s Law: 

• 4X “functionality” every 3 years

• “Interpreted” as ~ S=2 every 3 years
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ITRS

• The Process

• A Technology Node

• Key Technology Projections
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International Technology

Roadmap for Semiconductors 

• Goal: predict semiconductor scaling for 
next 15 years

– Convert “Moore’s Law” into detailed 
projections

– Identify technical roadblocks

• Result of a worldwide consensus

– U.S.A, Europe, Japan, Korea, and Taiwan

• Dating back to 1994

– Initially every three years

– But now significant yearly “updates”
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Types of Chip Technologies

Discussed

• Logic: high speed transistor, lots of metal layers

– High Performance Microprocessors

– Cost Performance Microprocessors

– Low Power Microprocessors

– ASICS (Application Specific ICs)

• DRAM: high threshold transistors, few metal, 

cheap fab processes

– High Volume Commodity Dense memory part

• Embedded DRAM: DRAM circuits made on logic 

process (faster, but less dense)



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
31

Trends Driven by Scaling

• Integration Level: Components/chip

• Cost: $ per function

• Speed: Microprocessor clock rate, GHz

• Power: Laptop or cell phone battery life

• Compactness: Small and light-weight 

products

• Functionality: Nonvolatile memory, imager
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Challenges Addressed

• System Drivers & Design

• Test & Test Equipment

• Process Integration, Devices, & Structures
– Including RF, mixed signal, emerging

• Front End Processes

• Lithography

• Interconnect

• Factory Integration

• Assembly & Packaging

• Environmental Safety & Health

• Yield Enhancement

• Metrology

• Modeling & Simulation
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Technology Node

• Goal: “Label” state of the art to allow quick 

correlation to Moore’s Law scaling

• Technology Generation for Year X:

– Minimum feature size in any product in that year

• Technology Node: 

– A year in which technology generation provides 

~4X functionality growth over prior Technology 

Node

– Typically tied to DRAM, as that is usually smallest

– Based on Year of Production
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Interesting Feature Sizes

• ½ of minimum pitch between two 
DRAM metal lines

• ½ of minimum pitch between two 
microprocessor metal lines 

• ½ of minimum pitch between two 
microprocessor poly lines

• Gate length of a microprocessor 
transistor gate “as printed”

• Gate length of a microprocessor 
transistor gate “as physically 
fabricated”

Pitch

Pitch

L

L
PHYSICAL

L
PRINT
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Feature Size Projections
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Projections as Scale Factors

Basic area scaling doubles every 3 years
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Comparison to Moore’s Law

• Moore’s Law: ~4X functionality per 3 years

• But feature scaling provides only 2X

• Difference for microprocessors

– Clock frequency increase

–More parallelism in microarchitecture

• Difference for DRAMs

– Denser cell design

– Bigger die area

• Both are reaching limits
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Commodity DRAM Capacity

• Chip Capacity: Product of

– Cell area

– Chip area

– % of chip that is cell array

• Cell area factor: 

– technology-independent area of one bit

– Decreasing slowly over time

• Cell Area: product of factor & feature size2

• Chip Area: now chosen to maximize yield

• Cell Array area: % of chip that is cell

– Constant at 63% in production
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Memory Storage Density:

Cells Only
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Change in DRAM Density Factors
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DRAM is now $-Driven – not Density-Driven
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Chip Capacity
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Chip Capacity is No Longer Following Original Moore’s Law
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Logic Chip Density Scaling
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Logic functions per chip: ~2X every 3 years
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2004 Projection was 5.2 GHz  - and we didn’t make it!!!

On-chip clock rates are flattening And then magic happens



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
44

Off Chip Bandwidth 

• Upper limit = product of:

– # of off-chip pins/contacts

–% not used as power/ground

–Max signaling rate per pin

• Density & signal rate improve with time

–With 50% power/ground

– But they don’t match growth in performance 

potential
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Relative Off-Chip

Scale Factors
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The  Way We Were:

A Brief Romp Thru

Single Chip Microprocessor Land

• Data from last 30 years of real chips
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Historical Changes in Chip 

Parameters
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Functionality = IPC x Clock
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• ~ 4X per die every 3 years

• But: Most in cache

• And partially due to larger die

• And off-chip clock rates lagging

• ~ 2.3X every 3 years

• But: increasing clock increases 

memory wall

• And rates stagnating
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How Are We Using These 

Transistors
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Let’s Look at Transistor

Count
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• Still ~4X every 3 years

• But N-way superscalar at best 

perhaps sqrt(N) IPC

• Again highly latency driven
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•Most of uP die = SRAM
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Power
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Relative Off-Chip Scale Factors
(Repeat of Earlier Chart)
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Does Logic Performance Match 

Off-chip Bandwidth Potential?
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Classical DRAM

• Memory mats: ~ 1 Mbit each

• Row Decoders

• Primary Sense Amps

• Secondary sense amps & “page” multiplexing

• Timing, BIST, Interface

• Kerf
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Memory Interfaces

• Today: DRAM chips separated from uP

• Latency: sum of

– Time to get address from uP to DRAM

– Time to access internal DRAM arrays

– Time to pick out particular nibble

– Time to send back to CPU

• Bandwidth: Function of

– Number of pins off of uP die

– Max signaling rate to DRAM

– Ability of DRAM to overlap multiple operations

Remember: DRAM uses 

slower transistors

Improving only 7%/yr

Which leaves less space for memory
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The Brave New World:

Adding More Threads to a Single Die

•Multi-Threading

•Multi-Core
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Multi-Threading

• Thread: execution of a series of inter-dependent 
instructions in support of a single program

• Today’s single threaded CPUs
– Dependencies in program code reduce ability to keep function 
units busy

– Limited in support for memory operations “in flight”

• Multi-threading: allowing multiple threads to take turns 
using same CPU logic
– Typical requirement: multiple register sets

• Variations in terms of when/how instructions from all 
active threads are issued
– Coarse-grained MT: Issue from one thread & change only at 
some major event

– Fine grained MT: Change every few instructions

– Simultaneous Multi-threading (SMT): actually interleave 
instructions from multiple threads
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Advantages

• Hide long-latency memory operations by 
switching to other threads

• Have larger pool of unrelated instructions 
to use to feed function units

• Simplify scheduling of multiple activities 
and still guarantee forward progress for 
each

• In SMT designs: guaranteed independent 
instructions in pipelines eliminates need for 
expensive forwarding and reordering
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Examples of Multi-Threaded

Designs

• 1960s: CDC 6600 I/O Processor

• 1970s: Space Shuttle I/O Processor

• 1980s: Denelcor HEP

• 1990s: Cray MTA

• Recent machines

– Intel Hyperthreading: 2 threads/core

– SUN MAJC chip 

– POWER5 dual thread dual core

– PIM Lite: Multi-threading “at the memory”

– Sun Niagara 8 core 4-way multi-threaded chip

– Cray Coronado chip 32-way threading
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Multi-Core

• More complex CPU cores no longer cost effective

– High complexity & design costs

– “Slow wires” make high clocks tough

– Decreasing efficiency due to relatively slower 

memory

– Need bigger caches for latency but don’t use inherent 

bandwidth

• Solution: “reuse” existing design in better 

technology & place multiple cores on same die

– Combine with shared memory hierarchy
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Scaling Today’s uP Chips
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Potential Multi-core Dies
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Examples of Multi-Core

Designs
• Microprocessors

– 1993: EXECUBE

– IBM POWER4 dual-core

– Intel XEON dual-core

– Sun dual core UltraSPARC

– IBM CELL 9 way 

– IBM Bluegene/L dual core with embedded DRAM

– Sun Niagara 8 way core

• Specialized chips

– Network processors (up to 100s of cores)

– Graphics & game processors

• Many multi-core designs also using multi-threaded cores
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What is Today’s Multi-Core

Design Space
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Sample Chips
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Multi-Core Projection Models

• Shrink: Take today & just shrink

• Shrink & Merge: replace L2/L3 SRAM 

with DRAM (& reduce clock)

• Constant die size: Add cores to fill die

• Single chip type: merge with memory

– Ensure desired memory/performance ratio

• Consider for each model: 

– How many pins needed for constant 

bandwidth ratio
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Shrink Model
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Shrink & Merge Model
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Bandwidth Constrained!
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Constant Die Model
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Single Chip Type Model

(With Constant Die Size)
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Chip Count for a

Petabyte System
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Silicon Area for a

Petabyte System
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Silicon Alone is not the

Complete Story

• Only 20% of MCM is silicon

• And we haven’t accounted for the heat sink! 



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
75

Observations

• Silicon growing irregularly in

– Memory density per square cm

– Performance possible per square cm

– Off-chip I/O bandwidth per square cm

• 99% of today’s logic chips

– Do no computation

– And are mostly memory

• And we pay a huge overhead when 

– Densest memory technology not used

– Memory & logic on separate chips

• It’s the interconnect to memory, stupid!
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A Contrarian’s View

Processing in Memory:

The Grand Synthesis 

of Logic and Memory
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How can we use a sq. cm?

(with no overhead)
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Knee Curves with

Basic Overheads
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Knee Curves with

Today’s Overheads
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“Processing-In-Memory”

• High density memory on same chip 

with reasonable dense logic

• Very fast access from logic to memory

• Very high bandwidth

• ISA/microarchitecture designed to 

utilize high  bandwidth

• Tile with “memory+logic” nodes
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The PIM 

“Bandwidth Bump”
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PIM Chip 

MicroArchitectural Spectrum
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PIM System Design Space: 

Historical Evolution
• Variant One: Accelerator (historical)

• Variant Two: Smart Memory

– Attach to existing SMP (using an existing memory bus interface)

– PIM-enhanced memories, accessible as memory if you wish

– Value: Enhancing performance of status quo

• Variant Three: Heterogeneous Collaborative

– PIMs become “independent,” & communicate as peers

– Non PIM nodes “see” PIMs as equals

– Value: Enhanced concurrency and generality over variant two

• Variant Four: Uniform Fabric (“All PIM”)

– PIM “fabric” with fully distributed control and emergent behavior

– Extra system I/O connectivity required

– Value: Simplicity and economy over variant three

• Option for any of above: Extended Storage

– Any of above where each PIM supports separate dumb memory chips
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TERASYS SIMD PIM 

(circa 1993)
•Memory part for CRAY-3 

• “Looked like” SRAM memory

•With extra command port

•128K SRAM bits (2k x 64)

• 64 1 bit ALUs

• SIMD ISA

• Fabbed by National

• Also built into workstation with 

64K processors

• 5-48X Y-MP on 9 NSA benchmarks
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EXECUBE: An Early MIMD 

PIM (1st Silicon 1993)
• First DRAM-based Multi-Core with Memory

• Designed from onset for “glueless” one-part-type scalability

• On-chip bandwidth: 6.2 GB/s; Utilization modes > 4GB/s

8 

Compute Nodes

on ONE Chip

MEMORY MEMORY MEMORY MEMORY

MEMORY MEMORY MEMORY MEMORY

CPU

CACHE CACHE

Include

“High Bandwidth”

Features in ISA

EXECUBE: 

3D Binary Hypercube

SIMD/MIMD on a chip
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RTAIS: The First ASAP

(circa 1993)

R
A
M

-0

8Bit

ALU

R
A
M

-1

8Bit

ALU

R
A
M

-...

8Bit

ALU

R
A
M

-3
0

8Bit

ALU

R
A
M

-3
1

8Bit

ALU C
o
n
tr
o
ll
er

Inter-ALU Exchange S
h
ar
ed

 M
em

o
ry

M
E
M
O
R
Y
 B
U
S

• Application: “Linda in Memory”

• Designed from onset to perform wide ops “at the sense amps”

• More than SIMD: flexible mix of VLIW

• “Object oriented” multi-threaded memory interface

• Result: 1 card 60X faster than state-of-art R3000 card
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Mitsubishi M32R/D

DRAM

DRAM

C

a

c

h

e

Mpy

CPU

Mem

I/F

C

a

c

h

e

DRAM

DRAM

24 bit address bus16 bit data bus

Also two 1-bit I/Os

• 32-bit fixed point CPU + 2 MB DRAM

• “Memory-like” Interface

• Utilize wide word I/F from DRAM macro for cache line
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DIVA: Smart DIMMs for 

Irregular Data Structures

In
te
rc
o
n
n
ec
t

Memory

Stack

A

S

A

P

Memory

Stack

A

S

A

P

Memory

Stack

A

S

A

P

ADR

MAP

ADR

MAP

uP

Host

TLB

Cache

…. ….
Host issues Parcels

• Generalized

“Loads & Stores”

• Treat memory as 

Active Object-

oriented store

Local

Prog.

CPU

DIVA Functions:

• Prefix operators

• Dereferencing & pointer 

chasing

• Compiled methods

•Multi-threaded

•May generate parcels

CPU

C

A

C

H

E

Conventional

Motherboard

• 1 CPU + 2MB

•MIPS + “Wide Word”
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Micron Yukon

• 0.15µµµµm eDRAM/ 0.18µµµµm logic 

process

• 128Mbits DRAM

– 2048 data bits per access

• 256 8-bit integer processors

– Configurable in multiple 

topologies

• On-chip programmable controller

• Operates like an SDRAM

SDRAM-like interface

FIFO

Task Dispatch UnitTask Dispatch UnitTask Dispatch UnitTask Dispatch Unit

FIFO FIFO

M16 PE M16 PE M16 PE M16 PE 
sequencersequencersequencersequencer

DRAM DRAM DRAM DRAM 
Control Control Control Control 
UnitUnitUnitUnit

256 Processing 256 Processing 256 Processing 256 Processing 
ElementsElementsElementsElements

R
e
g
is
te
r F
ile
s

16MBytes 16MBytes 16MBytes 16MBytes 
Embedded Embedded Embedded Embedded 
DRAMDRAMDRAMDRAM

HMIHMIHMIHMI

Synchronisation

Host 
(remote)



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
92

Berkeley VIRAM

• System Architecture: single 

chip media processing

• ISA: MIPS Core + Vectors + 

DSP ops

• 13 MB DRAM in 8 banks

• Includes flt pt

• 2 Watts @ 200 MHz, 

1.6GFlops

4 “Vector Lanes”

MIPS
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The HTMT Architecture &

PIM Functions

• Compress/Decompress

• Spectral Transforms

• Compress/Decompress

• ECC/Redundancy

• Compress/Decompress

• Routing

3D

Mem

DRAM

PIM

OPTICAL SWITCH

SRAM

PIM

RSFQ

Nodes

I/O FARM

• RSFQ Thread Management

• Context Percolation

• Scatter/Gather Indexing

• Pointer chasing

• Push/Pull Closures

• Synchronization Activities

• Data Structure 

Initializations 

•“In the Memory”

Operations

New Technologies:

• Rapid Single Flux Quantum (RSFQ) devices for 100 GHz CPU nodes

• WDM all optical network for petabit/sec bi-section bandwidth

• Holographic 3D crystals for Petabytes of on-line RAM

• PIM           for active memories to manage latency

PIMs in Charge
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Bluegene/L

• Two relatively simple cores with dense embedded 

DRAM techology

• Designed to scale simply to bigger systems

• Basis for world’s fastest machine

4 MB EDRAM

L2 Cache

Interface Logic

L1I L1D

PPC 440

DP FPU

L1I L1D

PPC 440

DP FPU

Memory I/FNode-Node I/F
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PIM Lite

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

• “Looks like memory” at Interfaces

• ISA: 16-bit multithreaded/SIMD

– “Thread” = IP/FP pair

– “Registers” = wide words in frames

• Designed for multiple nodes per chip

• 1 node logic area ~ 10.3 KB SRAM 

(comparable to MIPS R3000)

• TSMC 0.18u 1-node 1st pass success

• 3.2 million transistors (4-node)

Thread

Queue

Frame

Memory

Instr

Memory
ALU

Data

Memory

Write-

Back

Logic

Parcel in (via chip data bus) Parcel out (via chip data bus)

Instruction Memory

(4 Kbytes)

Frame Memory (1 K)

ALU & Permute Net

Data Memory

(2 Kbytes)

Thread Pool

Write-Back Logic

2.9 mm

4
.5
 m

m

Instruction Memory

(4 Kbytes)

Frame Memory (1 K)

ALU & Permute Net

Data Memory

(2 Kbytes)

Thread Pool

Write-Back Logic

2.9 mm

4
.5
 m

m
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One Step Further: Allowing the 

Threads to Travel

• “Overprovision” memory with huge 

numbers of anonymous processors

– Like PIM Lite, each multi-threaded

• Reduce state of a thread to ~ a cache line

• Make creating a new thread “near” some 

memory a cheap operation

• Allow thread to “move” to new site when 

locality demands

Latency reduced by huge factors
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Vector Add via 

Traveling Threadlets

Type 1
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Type 2

Type 3

Accumulate  Q

X’s in payload

Spawn type 2s

Fetch Q

matching Y’s,

add to X’s,

save in payload,

store in Q Z’s

Z
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R
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Stride thru Q elements

Transaction Reduction factor: 

•1.66X (Q=1)

•10X (Q=6) 

• up to 50X (Q=30)
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Trace-Based “Threadlet” Extraction & 

Simulation

• Applied to large-scale Sandia applications 

over summer 2003
P: desired # concurrent threads

From Basic Application Data Through Detailed Thread Characteristics

Analysis

To Overall Concurrency 
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Next: An “All-PIM”

Supercomputer

PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM

Interconnection

Network

PIM Cluster
PIM Cluster

“Host”
PIM Cluster

I/O

A “PIM Cluster”

A “PIM DIMM”
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Summary
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Summary

• When it comes to silicon: It’s the Memory, Stupid!

• State bloat consumes huge amounts of silicon

– That does no useful work!

– And all due to focus on “named” processing logic

• Technology scaling progressing at uneven rates

– Clocks slowing

– Power limiting logic gate density

– Off-chip I/O becoming a killer

• Today’s solution: Multi-core, multi-threaded uP dies

– Increases # of threads per core 

– But doesn’t solve bandwidth to memory problem
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How Do We Make It Better?

• Focus on “cheap” logic in dense memory fab 
process

– Don’t fret the clock rate

• Reduce thread state
– Cost of moving/copying state = line reference

• Simplify cores and “overprovision”
– “Pitch-match” to memory macro

• Relentless multi-threading execution models

• Change execution model from “named” core to 
anonymous core “nearest” memory object

– A “Traveling Thread” need never “wait” for 
processing resources

– Convert two way latencies to one way
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A Question from Salishan: 
How many Cores can Fit on the Head of A Pin?

• Area of a pin = .015 sq. cm.

• Assume Darkhorse 8051 @ 7 KT

• 2018: 4200 cores, @ 53 GHz

– = approx 20 TOPS

• But to make them dance we need 

memory

• At 50/50 Memory & Logic

– 2100 Cores + 100MB

• New Term: PIMHEAD



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
104

The Future

Will We Design Like This? Or This?

Regardless of Technology!
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PIMs Now In Mass

Production

• 3D Multi Chip Module

• Ultimate in Embedded Logic

• Off Shore Production

• Available in 2 device types

•Biscuit-Based Substrate

•Amorphous Doping for 
Single Flavor Device Type

•Single Layer Interconnect 
doubles as passivation
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Tutorial 123

Erik P. DeBenedictis



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
2

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling
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ITRS Construction Method and Limitations

• ITRS Looks Perfectly 
Smooth

– Yes indeed, this is due 
to the concept of 
“targets”
• √√√√2 reduction in line 

width every 3 years

• 17%/year increase in 
clock rate

– Roadmap based on 
Excel spreadsheet with 
targets, inputs, and 
dependent variables

• Limitations of ITRS 
Approach

– System performance 
involves dozens of 
interrelated variables

– Smooth scaling is 
targeted for the dozen 
variables reported

– By tying a dozen 
variables to a straight 
line, other variables 
become “dependent”
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Technology Model

• Two or three year interval 
between √√√√2 reductions in 
line width

– Reducing line width by 
√√√√2 doubles the number 
of devices

• However, ability to predict 
the future is imperfect ����

ITRS 2001 edition Executive Summary
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End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling
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Per Core SpecFP Data and Trends

• Plot of 785 SpecFP 
submissions, considering 
only one core

• 43% per year is an 
important figure

– ITRS projection

– Excel’s trendline

– Erik’s plot of “top of 
envelope”

• However, we are falling 
short of 43% growth

0

500

1000

1500

2000

2500

3000

3500

4000

Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06

43% 
growth/year

45%-25%-17% 
growth/year

17% growth/year

Trendline

Data from Spec.org, per core numbers, 
entered into Excel spreadsheet for graphing



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
7

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling
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ITRS Spreadsheet

• Review spreadsheet 
interactively in Excel

• Points to make

– Illustrate role and 
implementation of 
“targets”

• Line width

• Clock rate

– Illustrate user inputs

• Sub threshold adjustment 
factors rows 34 & 36

– Illustrate rows derived by 
calculation

– Illustrate iteration to 
target

– Illustrate HP LOP LSTP

• Draw conclusions

– Industry defines targets

– Table preparer adds 
value by scheduling 
innovations to meet 
targets

– Validity depends on 
innovations occurring 
on schedule

• Limited example next slide
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ITRS Spreadsheet Structure

Target is exponential 
in “Years in Future”

Fprocessor is result of 
96 rows of targets, 
inputs, and iterative 

calculation

Result usually 
matches to one 
decimal place!

Line Width 
Scaling

ITRS 2003 
supplementary 
material
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User Inputs

• Some factors will scale exponentially by 
definition, yet others will scale based on 
projections of engineers

• Supply voltage, doping levels, layer thicknesses, 
leakage, geometry, mobility, parasitic capacitance

These values are 
typed-in, based on 

schedule in next slide

ITRS 2003 supplementary material
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Schedule of Innovations

• To make the calculations 
fit the projection of a 
smooth “Moore’s Law,”
certain variables must be 
adjustable

• The independent variables 
are a “schedule of 
innovations,” or 
technology advances that 
must enter production on 
certain years

MOSFET Scaling Trends, Challenges, and Key Technology 
Innovations through the End of the Roadmap, Peter M.
Zeitzoff

mid 2004 Strained Si
2008 Elevated S/D
mid 2007 High-k
mid 2007 Metal gate
mid 2008 Ultra-Thin Body (UTB)

SOI, single gate 
mid 2008 Metal Gate
mid 2010 Multiple Gate
mid 2013 Quasi-ballistic

transport
Etc.

mid 2004 Strained Si
2008 Elevated S/D
mid 2007 High-k
mid 2007 Metal gate
mid 2008 Ultra-Thin Body (UTB)

SOI, single gate 
mid 2008 Metal Gate
mid 2010 Multiple Gate
mid 2013 Quasi-ballistic

transport
Etc.
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ITRS Transistor Geometries

ITRS 2003 Emerging Devices Section Pages 4 and 5
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ITRS Technology Progression

ITRS 2003 Emerging Devices Section Page 12
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End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling
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Power Dissipation

• By targeting a smooth 
exponential increase in 
performance over time, 
power dissipation 
becomes a dependent 
variable

• Power dissipation per µµµµP
chip is not a reported 
parameter

• Chart shows result

MOSFET Scaling Trends, Challenges, and Key Technology 
Innovations through the End of the Roadmap, Peter M.
Zeitzoff

See “MOSFET Scaling Trends,
Challenges, and Key Technology

Innovations through the
End of the Roadmap,”

Peter M. Zeitzoff
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Processor Clock Rate

• Processor operating 
frequency 10 gate delays 
with 30% latch overhead

• Gate delay assumes FO3, 
2×××× parasitic capacitance

• Gate delay assumes CV2

charging, hence supply 
voltage dependence

• However, these are gate 
level, not system level

ITRS 2003 supplementary material
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ITRS Scaling Conclusions

• Optimism

– Density doubles every 
three years

• 26% per year

– Clock rate rises 17% per 
year

– Sum is 43%/year!

• Reasonably close to 
the 41%/year of ideal 
scaling!

• Limits of Applicability

– Power dissipation 
partially covered

• However, power 
dissipation per chip 
rises

• Leakage power not 
covered

– Timing based on gates, 
not architecture

• Wiring delay 
calculated, but not part 
of timing model
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End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications

– The Big Spreadsheet

– Total power and clock rate model

• Review of Burger and Keckler Study

– Study of throughput under technology scaling

• Implications
– Throughput scaling

– Cache scaling

– Bandwidth Scaling
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Scaling of Microprocessor Performance

• For a given design, 
performance proportional 
to clock rate

• However, designs change 
with technology

– More transistors lead to 
architectures with more  
“instructions per clock”

– Signal propagation 
(wire) delays lead to 
more pipelining

– More pipelining leads to 
larger cache miss 
penalty

– Cache miss penalty and 
desire to run larger 
programs (a. k. a. “code 
bloat”) leads to larger 
caches

• Question: What is the 
roadmap for 
microprocessor 
performance?
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How to Project Uniprocessor Performance

• Let’s assume industry 
makes the innovations 
called for by the ITRS on 
schedule

• However, companies will 
not be constrained to do 
everything like the ITRS

– Engineers can choose 
any power supply 
voltage they like

– Doping levels can be 
changed

• Evaluate

and report performance 
and architecture as a 
function of years into the 
future

max(SpecFP)
engineering
 choices,
architecture
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UT Austin Study (2000)

• The Study

– Clock Rate versus IPC: 
The End of the Road for 
Conventional 
Microarchitectures, 
Vikas Agarwal, M.S. 
Hrishikesh, Stephen W. 
Keckler, Doug Burger. 
27th Annual 
International 
Symposium on 
Computer Architecture

• Conclusions (to be 
Explained)

– Modified ITRS roadmap 
predictions to be more 
friendly to architectures

– Concluded there would 
be a 12%/year growth…

– However, recent growth 
has been ~30%, with 
industry’s maneuver to 
cheat the analysis 
instructive 
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Wire Delay Coverage in ITRS

• Wire delay added to ITRS 
2002 edition
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Modeling Wire Delay

• For some year in the future

– ITRS and other models 
project a clock rate

– ITRS and other models 
project a signal 
propagation velocity

– Divide the two figures 
to get d=distance 
traveled in one clock 
cycle

– Chip area/d2 is plotted 
at right ����

• Figure 4 from “Clock Rate versus IPC: The 
End of the Road for Conventional 
Microarchitectures,” Vikas Agarwal, M.S.
Hrishikesh, Stephen W. Keckler, and Doug 
Burger

See Figure 4 from
“Clock Rate versus IPC: The End
of the Road for Conventional

Microarchitectures”,
Vikas Agarwal, M.S. Hrishikesh,

Stephen W. Keckler, and Doug Burger
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Cache Performance

• Authors used ECacti
cache modeling tool

• ECacti lays out caches in 
terms of banks, 
associatively, etc.

• As technology progresses, 
size of cache accessible in 
3 cycles decreases

• Remedy is obvious, but 
has consequences: 
increase depth of 
pipelining

• Figure 5 from “Clock Rate versus IPC: The 
End of the Road for Conventional 
Microarchitectures Vikas Agarwal, M.S.
Hrishikesh, Stephen W. Keckler, and Doug 
Burger

This graph for a
3 cycle cache access


tim

e

reduction in cache size
re
d
u
c
ti
o
n
 i
n
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c
c
e
s
s
 t
im
e

See Figure 5 from
“Clock Rate versus IPC: The End
of the Road for Conventional

Microarchitectures”,
Vikas Agarwal, M.S. Hrishikesh,

Stephen W. Keckler, and Doug Burger
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Modeling Pipelined µµµµP

• Authors used 
SimpleScalar, cycle 
accurate simulator of a 
DEC Alpha 21264

• However, actually models 
hypothetical future µµµµPs 
with parameterized

– Cache parameters

– Pipeline depth

– Branch prediction

– Technology (clock 
speed)

• Authors used 
SimpleScalar to model the 
18 SPEC95 benchmarks 
for 500 million instructions 
each

– Adjustments to avoid 
initialization

• Question to answer: What 
is the best architecture, 
and how well does it work?
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Simulation Results

• Results shown at right ����
are noted by author to be 
“remarkably consistent”

• If fact, the results are 
almost the same as the 
clock rate increase

• Conclusion: To first order, 
SPEC ratings will increase 
with speed of clock

– Noting that this analysis 
is per µµµµP core, and 
SPEC is for one core

• Figure 7 from “Clock Rate versus IPC: 
The End of the Road for Conventional 
Microarchitectures Vikas Agarwal, 
M.S. Hrishikesh, Stephen W. Keckler, 
and Doug Burger

Pipeline = caches same size 
but more pipelining  to keep 
access rate same
Capacity = cut cache size so 
access is possible without 
cutting clock rate

See Figure 7 from
“Clock Rate versus IPC: The End
of the Road for Conventional

Microarchitectures”,
Vikas Agarwal, M.S. Hrishikesh,

Stephen W. Keckler, and Doug Burger
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Study Conclusions and Discussion

• UT Austin study concluded 
that µµµµP performance should 
increase at about 12%/year

• However, it actually increased 
at 30%/year

• What is the discrepancy?

– It is difficult to predict 
future

– Vendors broke study 
assumptions by 
increasing power

– Study was before its time 
(vendors went multicore 
this year)

• Figure 8 from “Clock Rate versus IPC: 
The End of the Road for Conventional 
Microarchitectures Vikas Agarwal, 
M.S. Hrishikesh, Stephen W. Keckler, 
and Doug Burger

See Figure 8 from
“Clock Rate versus IPC: The End
of the Road for Conventional

Microarchitectures”,
Vikas Agarwal, M.S. Hrishikesh,

Stephen W. Keckler, and Doug Burger



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
28

Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Technology Scaling and Algorithms

• Assumptions

– You have a fixed budget to 
buy and run computers

– Technology scales 
according to ITRS

• Question

– How will the performance 
of algorithms change as a 
function of time?

• Solution Approach

– Find the scalability of an 
algorithm as a function of 
the “scaling” of the 
computer’s technology

• Issues Generating Rules

– Thread speed & 
parallelism

– Inner loop memory

– FLOPS/watt

– Devices per chip (or 
whatever)

– Surface-to-area ratio

– Load balance

• App. Determined

• Stability
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Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Thread Speed and Parallelism

• Runtime ≥≥≥≥ sequential 
ops÷÷÷÷thread speed

• Single thread FLOPS rate 
determined by

– Gate speed 

• ITRS tell you this

– Architecture

• ~9 gate delays in a µµµµP

• Inflexible

– Communications speed

• Memory latency

• The best algorithms have 
variable parallelism

– Each thread controls an 
array of cells

– Size of the array can be 
cut, but not below 1 cell

• Some algorithms have 
fixed parallelism

– Tough luck

• Conclusion

– Optimization
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Projected Clock Rate Increases

• 2004 Update shows clock 
rates rising to 53 GHz by 
2018

– Not based on 
architecture

• The ITRS table projects 
clock rates based on 
inverter and latch delay, 
not accounting for system 
issues

• Recent historical 
information suggests 
much slower clock rate 
increases

– Cancellation of certain 
microprocessors and 
shift to multi-core
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Implications of Thread Speed & Parallelism

FLOPS from 
ITRS

App with Fixed 
Parallelism

Cell-based 
App.

Years into the Future �
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Follows clock increase
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Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Inner Loop Working Set

• The application’s inner 
loop will have a “cache 
working set” of storage

– This working set will 
take up d××××d chip area

• Minimum access time will 
be 2d÷÷÷÷v

– v is signal propagation 
velocity

– modulo constants

• Is this some hypothetical 
architectural thing?

– Not necessarily, applies 
to existing µµµµPs where 
working set is in 
existing cache

• Implication to algorithm

– Cutting working set size 
can cut running time

– Physics supercedes 
complexity theory 



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
36

Implications of Inner Loop Working Set 

• Runs against Area-Volume 
Rule

– Fewer cells per CPU 
increases 
communications cost ����

– At some point cutting 
cells per CPU lets all 
cells fit in cache, or 
other local memory ☺☺☺☺

• Impacts tables
• Option A: compute f(x) 

when needed

• Option B: precompute 
f(x), store in a x 
Megabyte table

– Option B may cut clock 
rate for everything else
• No universal answer 

here

• Allocate data structures to 
memories at different 
distances?
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Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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FLOPS/Watt

• Thermodynamic limit at 
kBT log 2

– Currently operating at 
100,000 kBT

– ITRS goes to about 100 
kBT

– Unexplored gulf 
between 100 kBT and .7 
kBT

• Thermodynamic limit can 
be beat with reversible 
logic and Quantum

• Implications

– Corollary: everything 
proportional to power

• Mfg cost

• Operating cost

– Cost of running an 
algorithm depends on 
total FLOPS

• Cut FLOPS

• Running time is a 
different story
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Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Device Density Scaling

• Device density is projected to scale at 2×××× per 
three years

• There is a lot of innovation

– Lithographic line width continues to shrink

– DNA self assembly

– Others

• We don’t seem close to theoretical limits
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Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Bandwidth Scaling

• Overview: Bandwidth will 
continue to scale

• Theoretically, the limit on 
bandwidth is way out

• According to the ITRS 
Roadmap

– Number of bonding 
pads on a chip 
becomes constant

– Bandwidth per bonding 
pad equals internal 
clock rate (?)

• However, there are 
innovative solutions in the 
works

– Optical interconnect

– Capacitive interconnect

• For long haul 
communications

– Optics has practically 
infinite bandwidth
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Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Load Balance

Barrier Barrier

Workload

J
o
b
s

Average 
completion 

time

Actual 
completion 

time

If we don’t 
know 

anything 
about running 
time, assume 
standard 
distribution
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Maximum IQ of a Class in Your Kids School

• Each child has average IQ 
100 and std of 15

– Mean and std of task 
runtime

• Each class has total IQ of 
n××××100 and std of n½××××15

– Statistics of per node 
time between barriers

• Max average is inverse of 
cumulative normal 
distribution evaluated at n

Classroom 1

Student
IQs

Classroom n

Student
IQs

∑ IQs will have
bell curve
as well

n-1
n

1
n
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Efficiency Loss Due To Load Balance

• Load imbalance becomes 
an issue when there are 
less than 10s to 100s of 
tasks per node

– Presuming mean≈≈≈≈std

• Implications

– This creates a ceiling to 
the amount of 
parallelism, unless

– tasks can be shared

• Plot Mean=Std
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Projecting Applications Performance

• Review of Issues

– Thread speed & parallelism

– Inner loop memory requirements

– FLOPS/watt

– Devices per chip (multi-core scaling)

– Surface-to-area ratio

– Load imbalance revealed by synchronization 
overhead

• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Example Problem: Future Mesh Problem

• We are given year 20XX

• 1. Outer Loop of Process: 
Pick Number of Cores

– Processors are likely to 
be available with 
different numbers of 
cores – and there is no 
obligation to use all the 
cores on a chip

– Repeat the following 
with 1, 2, 4… up to the 
max cores that will fit 
on a 20XX die

• 2. Look up 20XX in ITRS

– Note device density

– Note clock rate

• 3. Figure out how much 
cache you should have

– Chip area goes to cores 
and cache

– After taking out the area 
occupied by cores, the 
rest is cache

– Track heat production 
(for use later)
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Example, Part 2

• 4. Using algorithmic 
information and cache 
size, figure out at what tier 
the code will run, per 
discussion earlier. The 
level may strongly 
influence performance

• Levels are

– Stencil in cache

– Vertices in cache

– Subdomain in cache

• 5. From level and “grind 
time,” figure out B:F ratio 
between CPU chip and 
main memory

• 6. Figure out likely memory 
bandwidth, either by using 
pins per ITRS specs or 
standard memory busses
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Example, Part 3

• 7. Calculate interchip 
communications rates

– This generally involves 
sending and receiving 
the “halo” from each 
node

– Depending on 
architecture, could be 
from memory or CPU

– Also in B:F ratios

• 8. Overall throughput will 
be minimum of

– FLOPS

– Memory bandwidth 
divided by B:F ratio for 
memory

– MPI bandwidth divided 
by B:F ratio for MPI

– There has been some 
discussion of throttling 
chips due to excessive 
power
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Example, Part 4

• Note: All rates should be 
adjusted for “percentage 
of peak.” If nothing else is 
known, use percentage of 
peak numbers for similar 
architectures

• 9. Iterate to best solution, 
by going to step 1

– varying the number of 
cores in a chip, 
devoting all area not 
occupied by cores with 
cache

– turning off cores, 
sharing their cache

– spreading problem over 
more or fewer nodes
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Example, Part 5

• 10. Final step: The process just described is a 
mixture of analysis and design. The result will be 
meaningless if a vendor doesn’t produce the 
required chip. For example, if your ideal design 
requires 2½ cores, you’re probably out of luck.
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Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and 
applications reference materials

• Problem #1: Project parameters of a $10M 
supercomputer in year 2016

• Problem #2: Performance on an application 
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture 
supercomputer
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Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and 
applications reference materials

• Problem #1: Project parameters of a $10M 
supercomputer in year 2016

• Problem #2: Performance on an application 
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture 
supercomputer
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Problem 1: Hardware Projection

• Say you are in charge of buying a $10M 
supercomputer in the year 2016

• Project parameters for the supercomputer you’d 
like to buy, based on

– Extrapolations from cost, performance, and 
configuration parameters of a recently constructed 
supercomputer of your choice

• Instructors can provide information on Red Storm

– Roadmap documents distributed in the session
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Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and 
applications reference materials

• Problem #1: Project parameters of a $10M 
supercomputer in year 2016

• Problem #2: Performance on an application 
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture 
supercomputer
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Problem 2: Black Box Software

• A chemist runs CHARMM on a 32 node cluster, 8 
jobs at a time (4 node jobs)

• The user can’t get scaling  beyond 4 nodes, and 
the user is a chemist uninterested in recoding

• Question: How much faster will each job run in 
2016?

• Question: How many nodes will be required in 
2016 to get 100×××× throughput increase?
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Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and 
applications reference materials

• Problem #1: Project parameters of a $10M 
supercomputer in year 2016

• Problem #2: Performance on an application 
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture 
supercomputer
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Problem 3: Mesh Application

• Your task is to solve a mesh-based application on 
a billion point (10003) mesh

• Algorithm parameters

– 256 bytes data per mesh point

– 6 point stencil

– 5 global reductions per time step

• The year is 2014 and you have $20M to buy a 
machine

• How much wall clock time can you expect per 
time step?
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Hands-On Exercises

• Organization
– Group divides into sections of 3-6 people each

– Will hand out pertinent sections of ITRS and 
applications reference materials

• Problem #1: Project parameters of a $10M 
supercomputer in year 2014

• Problem #2: Performance on an application 
without source code available

• Problem #3: Performance on mesh application

• Problem #4: Performance on a PIM architecture 
supercomputer
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Problem 4: PIM Application 

• You are to specify a supercomputer to solve a 100 million 
molecule DSMC problem in 2010

• Each DSMC molecule has float parameters x, y, z, vx, vy, vz, 
and may be one of 100 species

• Molecules spend about 3 time steps in a cell before moving 
to an adjacent cell

• Calculating the interactions and/or chemical reactions takes 
5000 floating operations per molecule per timestep

• Assume the region is a regular cubic mesh

• How many cores and how much RAM per PIM chip would 
be required to solve the problem optimally



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
62

Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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Applications and $100M Supercomputers

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System 
Performance

2000 2010 2020 2030 Year �

↑ � Red Storm/Cluster

Technology

� Nanotech +
Reversible Logic µP

(green) best-case logic 
(red) �

� Quantum Computing
Requires Rescaled

Graph (see later slide)

↑� Architecture: IBM 
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by 
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.
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[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.
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[NASA 99]

↓ 100× ↑1000× [SCaLeS 03]

Full Global Climate 
[Malone 03]

Plasma 
Fusion 

Simulation 
[Jardin 03]

MEMS
Optimize
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Simulation of Global Climate

Stott et al, Science 2000“Simulations of the response to natural forcings alone … do not 
explain the warming in the second half of the century”

“..model estimates that take into account both greenhouse 
gases and sulphate aerosols are consistent with observations 
over this*period” - IPCC 2001
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FLOPS Increases for Global Climate

1 Zettaflops

1 Exaflops

10 Petaflops

100 Teraflops

10 Gigaflops

Ensembles, scenarios 
10×

Embarrassingly
Parallel

New parameterizations 
100×

More Complex
Physics

Model Completeness 
100×

More Complex
Physics

Spatial Resolution
104× (103×-105×)

Resolution

Issue Scaling

Clusters Now In Use
(100 nodes, 5% efficient)

100 Exaflops Run length
100×

Longer Running
Time

Ref. “High-End Computing in Climate Modeling,” Robert C. Malone, LANL, John B. 
Drake, ORNL, Philip W. Jones, LANL, and Douglas A. Rotman, LLNL (2004) 
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Exemplary Exa- and Zetta-Scale Simulations

• Sandia MESA facility using 
MEMS for weapons

• Heat flow in MEMS not 
diffusion; use DSMC for 
phonons

• Shutter needs 10 ����
Exaflops on an overnight 
run for steady state

• Geometry optimization ����
100 Exaflops overnight run

– Adjust spoke width for 
high b/w no melting

500 µm
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FLOPS Increases for MEMS

10 Exaflops

30 Petaflops

600 Gigaflops

5 Gigaflops

Run length
300×

Longer Running
Time

Scale to 500µm2×12µm 
disk 50,000×

Size

2D � 3D
120×

Size

Issue Scaling

2µm×.5µm×3µs 2D film
10 × 1.2 GHz PIII

100 Exaflops Optimize
10×

Sequential
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Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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Beyond Transistors

• Narrowing the Space

– We’ll assume this 
audience is interested 
only in programmable 
digital computers

– We’ll assume this 
audience wants 
imperative 
programming, not AI

– (I. e. ignore neural nets, 
analog computers , 
biochemical reactions, 
evolution of DNA, …)

• Options Within the Space

– Thread Speed & 
Parallelism: it looks like 
all paths to the future 
will require the 
programmer to expose 
more parallelism, but 
not equally

– Power and Heat: Cost of 
electricity and danger of 
overheating become 
dominate issues
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Landauer’s Arguments

• Landauer makes three 
arguments in his 1961 
paper

– Kintetics of a bistable
well (next slide)

– Entropy generation ����

• Entropy of a system in 
statistical mechanics:

S = kB loge(W)

W is number of states

• Entropy of a mechanical 
system containing a flip 
flop in an unknown state:

S = kB loge(2W)

• After clearing the flip flop:

S = kB loge(W)

• Difference kB loge(2)
Sorry, I don’t have a cute 
story (like the FM radio) for 

Landauer’s argument
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Landauer’s Limit

• The Landauer limit says 
you can reduce power 
dissipation for irreversible 
functions below 100 kBT, 
but not below kBT loge2

• In the diagram on the right, 
when the energy barrier 
drops to below about kBT, 
the state will 
spontaneously switch and 
dissipate remaining energy 
as heat

0 1
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y

State
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����

0 1

����
kBT

0 1

����



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
72

Thermal Limit

• The probability of a “logic 
glitch” due to thermal 
noise is approximately e-N, 
where N=Esig/kBT

• To keep a multi Petaflops 
supercomputer running for 
several years without a 
glitch requires 60 <<<< N <<<< 100

• Current logic design styles
thermalize all the signal 
energy at the output of 
every AND, OR, NOT gate

• Thus, it would be a 
reasonable “rule of thumb”
that current design styles will 
have a hard barrier at 60-100 
kBT energy per gate 
operation.

• ITRS predicts 30 kBT. While 
Erik thinks such devices 
might be manufacturable, 
redundancy in logic design 
should outweigh benefit

– Also, MPF observation 
about information 
representation
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Metaphor: FM Radio on Trip to Portland

• You drive to Portland 
listening to FM radio

• Music clear for a while, but 
noise creeps in and then 
overtakes music

• Analogy: You live out the 
next dozen years buying 
PCs every couple years

• PCs keep getting faster

– clock rate increases

– fan gets bigger

– won’t go on forever

• Why…see next slide

Details: Erik DeBenedictis, “Taking ASCI Supercomputing to the End Game,”
SAND2004-0959
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FM Radio and End of Moore’s Law

Driving away from FM transmitter�less signal
Noise from electrons � no change

Increasing numbers of gates�less signal power
Noise from electrons � no change

Shrink

Distance
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Personal Observational Evidence

• Have radios become better able to receive distant 
stations over the last few decades with a rate of 
improvement similar to Moore’s Law?

• You judge from your experience, but the answer 
should be that they have not.

• Therefore, electrical noise does not scale with 
Moore’s Law.
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Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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Cutting Temperature

100 Watts

Thermo
Micro
100kBT,
T=300°K

100 Watts

Thermo
Micro
100kBT,
T=3°K

Motor

99 Watts 1  Watt

cold



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
78

Cutting Temperature

Carnot Efficiency ηc = 
Tc

Th-Tc

Specific Power 1/ηc = 
Th-Tc

Tc

Specific power is watts input power
required to remove one watt at the
cooling temperature

Idea:
To cut computer power, let’s cool
the active devices to 3° K. This will
cut minimum power per reliable
operation from 100kB×300 to 100kB×3,
cutting device power by 100 fold!

Specific Power 1/ηc = 
Th-Tc

Tc

= 
300 - 3

3
= 99

Thus, we cut device power to 1%
of original power at the price of a
refrigerator consuming 99% of the
original power, for resulting total
power consumption of 100% of
original power.

However, refrigerators are typically
<20% efficient, so we’re actually 
in the hole by 5× …
but it is cheaper to dissipate power
in a big motor than an expensive
chip.
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Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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8 Petaflops

80 Teraflops

Projected ITRS 
improvement to 22 nm 

(100×)

Lower supply voltage
(2×)

ITRS committee of experts

ITRS committee of experts

Expert
Opinion

Scientific Supercomputer Limits

Reliability limit 
750KW/(80kBT)2×1024 logic ops/s

Esteemed physicists
(T=60°C junction temperature)

Best-Case
Logic

Microprocessor
Architecture

Physical
Factor

Source of 
Authority

Assumption: Supercomputer 
is size & cost of Red Storm: 
US$100M budget; consumes 
2 MW wall power; 750 KW to 
active components

100 Exaflops

Derate 20,000 convert 
logic ops to floating point

Floating point engineering
(64 bit precision)

40 Teraflops Red Storm contract

1 Exaflops

800 Petaflops

 125:1 �

Uncertainty (6×) Gap in chart
Estimate

Improved devices (4×) Estimate
4 Exaflops 32 Petaflops

Derate for manufacturing 
margin (4×)

Estimate

25 Exaflops 200 Petaflops
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Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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Transistors vs. Other Irreversible Devices

• Erik’s View

– My contacts on the ITRS staff tell me they believe 
transistors will get to the ~30 kBT level. If this is so, 
transistors will be difficult to beat in this domain.

– At 30 kBT, logic would have a spontaneous error 
rate > e-30 (one error in a billion operations).

– I have no doubt that computing with a 10-9 error 
rate is possible, but the overhead in error 
correction would consume more than a factor of 3. 
Remember Triple Modular Redundancy (TMR) 
consumes 3×××× hardware!
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Really Advanced Technology

• International Technology 
Roadmap for 
Semiconductors (ITRS) 
Emerging Research 
Devices (ERD) architecture 
panel. All new devices are 
inadequate except CNFET

• ITRS ERD [see below]

– Influential over 
industrial and 
government funding
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ITRS Device Review 2016 + QDCA 

Larger1 zJ10-100 nm100 as-1 fsQuantum

Smaller, faster, 
cooler

1 yJ1-10 nm100 fs-10psQDCA

Slower+Larger.3 yJ6-50 µµµµm100 fs-100 µµµµsBiological

Slower+Larger1 zJ10-100 nm100 ns-1 msNEMS

Larger+Hotter1 pJ200 nm-2 µµµµm100 as-1 psOptical

Larger+Slower4 aJ100 µµµµm-1 mm100 µµµµs-1 msPlastic

Slower10 zJ1 nm- 5 nm10 ns-1 msMolecular

Larger2 aJ300 nm- 1µµµµm1 ps-50 psRSFQ

4 aJ8 nm-5 µµµµm30 ps-1 µµµµsCMOS

ComparisonEnergy per
gate-op

Dimension
(min-max)

Speed
(min-max)

Technology

Data from ITRS ERD Section, data from Notre Dame
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Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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Reversible Logic – Toffoli Gate

• The Toffoli gate is logically 
complete

• Reversible logic notation 
shown to right ����

– Bits shown as 
horizontal lines

– Time nominally flows to 
right, but reverses 
naturally

• Function

– If A and B true, invert C

• Note: self-inverse

A

B

C
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Reversible Logic Can Beat Landauer’s Limit

• Any function can be made reversible by saving its 
inputs

• Diagram below outlines an asymptotically zero-
energy way to perform the AND function, in 
composition with other logical operations

G(x) G-1(x)
A B C

Answer

Dissipation-less
Information ErasureF F-1
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Reversible Logic Example

• One photon headed to a 
glass plate goes through

• Two photons also go 
through, but phase shift 
each other a little bit

• By appropriate 
recombinations, a 
“controlled not” can be 
created

• A glass plate needs no 
power supply

• Measuring a Photonic
Qubit without Destroying 
It. GJ Pryde, JL O’Brien, 
AG White,
SD Bartlett, and TC Ralph.
Centre for Quantum 
Computer Technology, ... 
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Today’s Universal Logic & Reliability Limit

• Today’s logic operates on 
a simple principle

– Create a “1” by taking 
charge from the 
positive supply

– Create a “0” by sending 
charge to the negative 
supply

• Energy Consumption

– Each gate switch 
generates Esw = ½ CV2 >
~100kBT heat

Vdd

Gnd

In Out

Signal energy must be 
greater than ~100 kBT to 

avoid spontaneous glitches. 
To change a bit, convert 

energy to heat.
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“Recycling” Power

• The 100kBT limit appears 
unbeatable, but the energy 
can be “recycled”

• Diagram shows a “SCRL”
circuit with regular 
transistors

• Power comes through a 
largely loss less resonant 
device (tuning fork)

• No apology offered for the 
mechanical device; this is 
the price of progress

φ1

φ2

In

Signal energy must be 
greater than ~100 kBT to 

avoid spontaneous glitches. 
However, signal energy is 

recycled by tuning fork

Out
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Resonant Clocks

• Tuning Fork

– Nice idea but slow

• MEMs Resonator

– Moderate speed and 
compatible with silicon 
fabrication

• Carbon Nanotube

– Simulated to 50 GHz but 
not known how to 
fabricate at present

Ref.: M. Frank
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A New Computing Device: Quantum Dots

• Pairs of molecules create a 
memory cell or a logic gate

Ref. “Clocked Molecular Quantum-Dot Cellular Automata,” Craig S. Lent and Beth Isaksen
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 9, SEPTEMBER 2003
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Upside Potential of Quantum Dots

Next Slide

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent, 
JOURNAL OF APPLIED PHYSICS 15 JULY 2003
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Upside Potential of Quantum Dots

>104 ××××

Improvement
@ 100 GHz

& 60°°°° K

100 GHz1 THz10 THz100 THz

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
n

e
rg

y
/E

k

“Reliability Limit”

1000 ××××

2004 Device Level

150 ××××

“Landauer Limit”

Dissipation for 
reversible 
operations

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent, 
JOURNAL OF APPLIED PHYSICS 15 JULY 2003
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Reversible Multiplier Status

• 8××××8 Multiplier Designed, 
Fabricated, and Tested by 
IBM & University of 
Michigan

• Power savings was up to 
4:1
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Reversible Microprocessor Status

• Status

– Subject of Ph. D. thesis

– Chip laid out (no 
floating point)

– RISC instruction set 

– C-like language

– Compiler

– Demonstrated on a PDE

– However: really weird 
and not general to 
program with +=, -=, etc. 
rather than =
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Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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Why Quantum Computing is Interesting

• A Superset of Digital

– Spin “up” is a 1

– Spin “down” is a 0

– Other spins

• Sidewise

• Entangled

• Phase

– Like wildcards

• 1011??????  

• Up to  2N states ����
in “quantum parallel”
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Ion Trap Quantum Gates

• Hyperfine (internal qubit) 
frequencies are ωωωω0 and ωωωω1

• Vibrational center of mass 
frequency is ωωωωc

• Laser at frequency ωωωω0 ±±±± ωωωωc

or ωωωω1 ±±±± ωωωωc couples qubit 
from hyperfine state to 
vibrational state and back

• Appropriate frequencies 
selectively move qubits 
based on data

• Works on superpositions

• Two ions in an ion trap

• Laser beam frequency ωωωω

ϕϕϕϕ1

θθθθ1

ϕϕϕϕ0

θθθθ0

Vibrational 
“spring”

f= ωωωωc
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Reliable Quantum Operations

• Microprocessors use ECC 
for memory and crash 
when logic errors occur

• QEC includes technology 
for error detection and 
correction on both 
memory and operations

• Example on right performs 
Toffoli operation on 
protected blocks, 
producing a protected 
block

• Toffoli Gate

“Fault-Tolerant Logical Gate Networks for CSS 
Codes,” Steane, A, Ibinson, B, quant-ph/0311014 
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Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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Quantum “Algorithms”

• Category 1: No Speedup

– A quantum computer will 
be able to execute 
conventional computer 
logic – with no advantage

• Category 2: Grover’s 
Algorithm with Quadratic 
Speedup

– Given an “Oracle”
function, a QC can search, 
average, min, max, 
integrate, in n1/2 steps to 
same accuracy as a 
classical computer gets in 
n steps 

• Category 3: Shor’s 
Algorithm with Exponential 
Speedup

– There are a series of 
problems related to the 
“hidden subgroup 
problem” that can be 
solved with exponential 
speedup over a 
classical computer.

– Includes code cracking 
and physics simulation
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Emergence of Quantum Computing

• There appears to be an 
engineering case for 
quantum computers of
1-100 Q-FLOPS

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

2000 20502020 204020302010

• One would expect an 
exponential growth rate
for quantum computers 
similar to Moore’s Law,
but the rate constant is 
impossible to predict,
so three possibilities
have been graphed

O
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im
is
tic
: 1
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Ref. “How to build a 300 bit, 1 Gop quantum computer,” Andrew M. Steane, Clarendon Laboratory, UK, quant-ph/0412165
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Quantum Applications

• Consider the classical 
computer equivalent to
a Quantum Computer

• First use believed to be 
factoring in crypt-
analysis, with expo-
nential speedup over 
classical computers (blue)

E
xp
o
n
e
n
ti
a
l

S
p
e
e
d
u
p

C
ry
p
ta
n
a
ly
s
is

E
. 
g
. 
F
a
c
to
ri
n
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• Second, a quantum 
computer can also be
used for other
applications (pink) with 
quadratic speedup (e. g. 
Actinide chemistry)

Q
ua
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ed
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A
S
C
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Beyond Transistors

• Applications Requirements

• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle

• Upside potential of advanced architectures/PIM

• Some nanotech technologies on the horizon

• Reversible logic may defeat thermodynamic limitations

• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential

– Algorithms numerical/cryptanalysis, simulation
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One Slide Taxonomy of Quantum Algorithms

• Exponential speedup for

– Period finding (see ����)

– Hidden subgroup 
problem

• Factoring

• Discrete logarithms

• Algorithms for 
problems I never heard 
about except for QC

• Quadratic speedup for

– Searching

– Average, min, max

• Feynman asserted that a 
QC could combat low 
efficiency of classical 
computer for simulating 
quantum problems

– This assertion has been 
repeatedly proven, but 
there are few concrete 
algorithms

– This could be a “killer 
app” domain for 
supercomputing
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Nanotech, Architecture, and Memory Wall

• There are many paths to 

future architectures, yet 

one looks especially likely 

to appear in a ~5 years

– Logic per ITRS roadmap 

for transistors

– Nanotech memory

• Cleverly embedded

• Multiple options

– Architecture per 

continuation of “multi-

core” trend

• Resulting computers 

would be of recognizable 

architecture, but more 

parallelism.

– I believe the increase in 

parallelism will cause a 

crisis.
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Nanotech Memory

• Common Feature

– Some new device 

structure that holds 

information

– CMOS process 

compatibility, typically 

through additional 

layers

• Many options

– We’ll review carbon 

nanotube arrays in the 

next few slides

– We’ll look at a table with  

other options
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Nantero NRAM™ Device
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Electrode Layer Nanotube Film

Patterned Surface

Electromechanical 

Array
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Nantero’s Collaboration 

with ASML

Nanotubes

•Proof of compatibility between equipment and nanotube process

•Creation of very-high-density bit arrays using 250nm stepper
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Present Day Baseline 

Technologies 

Phase 

Change 

Memory* 

Floating 

Body 

DRAM 

Nano-

floating 

Gate 

Memory** 

Single/Few 

Electron 

Memories*

* 

Insulator 

Resistance 

Change 

Memory
**

 

Molecular 

Memories** 

Storage 

Mechanism 

 

 

 

 
 

 
 

 

Device 

Types 
DRAM 

NOR 

Flash 
OUM 

1TDRAM 

eDRAM 

Engineered 

tunnel 

barrier or 

nanocrystal 

SET 
MIM 

oxides 

Bi-stable 

switch 

Molecular 

NEMS 

Availability 2004 2004 ~2006 ~2006 ~2006 >2007 ~2010 >2010 

Cell 

Elements 
1T1C 1T 1T1R 1T 1T 1T 1T1R 1T1R 

 

1D-1R

>2008

Cross point

Unipolar
switching 
Memories
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Nanoarray Architecture

• Low Road

– Planar, conventional 

architecture

• High Road

– Fabricate nanotech 

array on top of chip

Column

R
o
w

Row

Drivers

Column

Drivers
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n×n

n2×n
2

Thought Experiment – Skewed Nanoarray

• Problem is that molecular 

scale mask alignment is 

very hard

• However, regular arrays of 

lines are more easily 

drawn ����

• Diagram to right (from

Likharev) uses 2n2 drivers 

to drive n4 crosspoints
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Thought Experiment – Skewed Nanoarray

• Actual design 

superimposes row and  

column drivers with the 

crosspoint array
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Nano Memory Conclusions

• There seem to be a host of 

proposals for nano 

memory

• Some of these will appear 

in the next year

• The technologies tend to 

retain data with power off

• The technologies are 

pretty fast – DRAM speed 

or better

• Densities based on a cell 

with dimensions

– Line-space ×××× line-space

– ×××× sub lithographic 

linewidth

• 1 cm ×××× 1 cm chip (@ 6F2)

– 180 nm ���� 60 MBytes

– 65 nm ���� 500 MBytes

– 22 nm ���� 4 GBytes

– 10 nm ���� 20 GBytes

• Multiple layers possible
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Architecture Trends

• Memory wall will disappear

– If you can live with 360 

MBytes-116 GBytes 

memory per chip 

(previous slide)

• Peak thread speed will 

grow more slowly than we 

like

• Power per gate-operation 

will level out (ugh) at 

thermodynamic limit

• Efficiency of architecture 

in converting power to 

FLOPS may be subject to 

improvement

• Chip-to-chip interconnect 

speeds difficult to predict 

at present
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Burger’s Architecture, Erik’s Example

• Produce lots of puny cores 

that can be used 

individually or ganged 

together

• Roughly, n cores will have

– n××××power dissipation

– n××××memory

– log n performance

• Why does Erik show this 
as an example?

– It seems to exemplify all 
the needed new 
features in proper 
balance

– Practical systems may 
be a linear combination 
of Burger’s architecture 
and present-day ones

– Also, future PCs may 
end up heterogeneous

• Integrated graphics, …

This is no joke. 

Imposes huge win for 

parallelism in code
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Floorplan of First-cut Prototype

Architectures at the End of Silicon: Performance Projections and Promising Paths – Doug Burger
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Stacked Memory & Rack Parameters

• Say we stack NRAM on top of a CPU chip like 

Burger proposes

• Arithmetic on amount of NRAM

– 35 nm ½-pitch

– chip is 1.5 cm x 1.5 cm

– Bit cell is 2 x 2 linewidths or 4 x 4 ½-pitches

– This would be (.015 m chip edge)2/(35nm ½

pitch)2/(16 sq ½-pitches/cell)/(8 bits/byte)/(109

bytes/GByte) = 1.5 GBytes
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Stacked Memory & Rack Parameters

• Rack architecture (limited by 10 KW dissipation 

or 100 chips)

– 150 GBytes “on chip” memory divided into 100 

modules of 1.5 GBytes (how much external 

memory needed?)

– 100 256-way SMPs – total 25,000 processors (but 

“flexible mapping” possible to give appearance of 

fewer processors with more memory each)

– 200 Tflops peak/rack

– Memory bandwidth: Not specifically limited due to 

PIM architecture



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
21



SC2005 Tutorial © DeBenedictis, Keyes, Kogge
22

n

n

n2

n2

Thought Experiment – Skewed Nanoarray

• Problem is that molecular 

scale mask alignment is 

very hard

• Solution is to pattern only 

regular arrays of lines at 

the molecular scale ����

• Diagram to right (from 

Likharev) uses 2n2 drivers 

to drive n4 crosspoints

• Published design overlays 

everything

Standard CMOS

driver/sensor
Crosspoint

array
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One Slide Taxonomy of Quantum Algorithms

• Exponential speedup for

– Period finding (see ����)

– Hidden subgroup 

problem

• Factoring

• Discrete logarithms

• Algorithms for 

problems I never heard 

about except for QC

• Quadratic speedup for

– Searching

– Average, min, max

• Feynman asserted that a 

QC could combat low 

efficiency of classical 

computer for simulating 

quantum problems

– This assertion has been 

repeatedly proven, but 

there are few concrete 

algorithms

– This could be a “killer 

app” domain for 

supercomputing



Draw floor plan of CPU here

SMP

Nano Memory Array?

____ Commodity or custom

____ DRAM bytes/chip

Bandwidth

____ # signal pins on chip

____ internal clock rate

____ total bandwidth =

____ memory bandwidth +

____ SMP bandwidth +

____ network bandwidth

production”

table

↑ Generation at  “production” or 

“introduction” table 1c, 1d, 1e, 1f

↓ Table 3a, 3b; note that 

1/2to 2/3 of 

pins are 

power

100 Watts air cooling or 

higher for water cooling

Don’t exceed chip area:

140 mm2 high volume

280 mm2 maximum 

Example CPU floor plan:
(Cyclops, 130 nm)

Network 4
GBytes/sec

External Memory
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Workbook

SC 2005 Tutorial M09

Impact of Moore's Law and Architecture on 

Application Performance

K bytes memory

max of:

G/FLOPS

K/link bandwidth

3 Dimensions

Need n3 × K bytes memory

Each timestep max of:

tcomp = n3 × G/FLOPS

tcomm = 6 × n2 × K/link bandwidth

tsync = *

Performance estimation:

Lay out data to maximize data access bandwidth.

Will data be on chip, off chip, will it stream properly? The answer to

this will allow compute time to be estimated

Estimate communications time based on data and communications

Express answer as FLOPS or percentage of peak.

the relative standard deviation of the grind time is 

large or the grain size of the concurrent phases becomes relatively 

either because the problem size is small relative to the number

n

surface cells on 4 edges 

(2D) or 6 planes (3D)  

are swapped with 

neighbors

K bytes of state

G floating operations

(grind time) per

update



Example: Cyclops

Network

External Memory

____ Linewidth

____ Commodity or custom

CPU

____ cores

____ cache/core

____ watts

____ DRAM bytes/chip

Bandwidth

____ # 

____ internal clock rate

____ total bandwidth =

____ memory bandwidth +

____ SMP bandwidth +

____ Network bandwidth

↑ Choose “production”

vs. “introduction” table

� 100 Watts ±

Don’t exceed

chip area

↑

Note: 1/2 to 

2/3 of all pins 

must go to 

power and 

ground; 

remainder are 

available for 

signaling 

purposes. 

Typically, there 

are two 

conductors per 

signal.

90 nm

Custom

80

64 KBytes
150

64 M

1216

533M

0

16 GBytes/s

4 GBytes/s

20 GBytes/s
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