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Tutorial M06

David E. Keyes
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http://www.siam.org/news/

 
(“current issue”)
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Presentation Features
• Briefly reflect on recent progress in high-end scientific computing, as 

illustrated on Bell Prize-winning applications –

 

why?
– Bell has attracted high-end attention thru two decades of 

architectures
– Winners document performance issues beyond details found in other 

computational science papers, which instead emphasize science
– PDE-based simulations are the dominant type of Bell submission
– Performance-orientation exposes an interesting fallacy for our 

discussion ☺
• Look generically at PDE-based simulation and the basis of continued 

optimism for its growth –

 

capability-wise, looking at real applications
• Look at some specific hurdles to PDE-based simulation posed by high-

 
end architecture

• Study in detail an unstructured Bell Prize entry to note architectural 
stresses
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Technical aspects of presentation
• Introduce a parameterized highly tunable class of 

algorithms for parallel implicit solution of PDEs
– understand the source of their “weak scalability”
– understand their lack of “strong scalability”
– understand why explicit algorithms generally do 

not scale, even weakly, in the high spatial 
resolution limit

• Note some algorithmic “adaptations”
 

to architectural 
stresses
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Gordon Bell Prize “peak performance”

Five orders 
of magnitude 
in 17 years

   
Year Type Application No. Procs System Gflop/s 
1988 PDE Structures 8 Cray Y-MP 1.0 
1989 PDE Seismic 2,048 CM-2 5.6 
1990 PDE Seismic 2,048 CM-2 14 
1992 NB Gravitation 512 Delta  5.4
1993 MC Boltzmann 1,024 CM-5 60 
1994 IE Structures 1,904 Paragon 143 
1995 MC QCD 128 NWT 179 
1996 PDE CFD 160 NWT 111 
1997 NB Gravitation 4,096 ASCI Red 170 
1998 MD Magnetism 1,536 T3E-1200 1,020 
1999 PDE CFD 5,832 ASCI BluePac 627 
2000 NB Gravitation 96 GRAPE-6 1,349 
2001 NB Gravitation 1,024 GRAPE-6 11,550 
2002 PDE Climate 5,120 Earth Sim 26,500 
2003 PDE Seismic 1,944 Earth Sim 5,000
2004 PDE CFD 4,096 Earth Sim 15,200
2005 MD Solidification 131,072 BG/L 101,700
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Gordon Bell Prize outpaces Moore’s Law

Gordon Moore

Gordon Bell

<<Demi Moore>>

CONCUR- 
RENCY!!!

Four orders 
of magnitude 
in 13 years
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Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR

IBM’s BlueGene/L:
 65536 dual procs, 360 Tflop/s

Present offer from IBM

Single cabinet
5.7 TFlop/s peak
$2M in acad. consortium
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Tally of Peak Prize formulations and apps
• 8 ×

 
Partial differential equations

– Climate, fluids, seismology, structures
• 4 ×

 
N-body dynamics

– Gravitation
• 3 ×

 
Molecular dynamics 

– Electronic structure, magnetism, solidification
• 2 ×

 
Monte Carlo methods 

– Boltzmann, Quantum Chromodynamics
• 1 ×

 
Integral equations

– Structures
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Tally of Gordon Bell Peak Prize hardware
Massively Parallel Processor (MPP)Symmetric Multi-Processor (SMP)

cpu cpu cpu

Fast Interconnect

Shared memory

cpu

Mem

cpu

Mem

cpu

Mem

• two to hundreds of processors

• shared

 

memory

• global addressing

• 4 prizes, last in 1993

Interconnect

• thousands to hundreds of 
thousands of processors

• distributed memory

• local addressing  

• 13 prizes, including last 12
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The “other”
 

Bell prizes
• “Peak”

 

is only one of several types of Gordon Bell Prizes that have 
been awarded over the years
– The only one awarded each

 

time there have been Bell Prizes
• “Price-performance”

 

has been recognized 12 times, but not since 
2001, when it stagnated at about 25 cents per delivered Mflop/s
– A few

 

of these have been for implementations of PDEs
• “Special”

 

was first awarded in 1999 and has sometimes inspired 
multiple awards per year
– Most

 

of these have gone to implementation of PDEs
• “Compiler-derived parallelism”

 

has been awarded three times, most 
recently in 2002 for HPF
– Two of these have gone to implementations of PDEs

• “Speedup”

 

(strong, that is) was explicitly recognized once, in 1992
– For an implementation of a PDE
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Gordon Bell Prize: “price performance”
   
Year  Application System $ per Mflops 
1989  Reservoir modeling CM-2 2,500
1990  Electronic structure IPSC 1,250
1992  Polymer dynamics cluster 1,000
1993  Image analysis custom 154
1994  Quant molecular dyn cluster 333
1995  Comp fluid dynamics cluster 278
1996  Electronic structure SGI 159
1997  Gravitation cluster 56
1998  Quant chromodynamics custom 12.5
1999  Gravitation custom 6.9
2000  Comp fluid dynamics cluster 1.9
2001  Structural analysis cluster 0.24

 

Four orders 
of magnitude 
in 12 years 
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Whimsical remarks on Bell, 1988-2005
• If similar improvements in speed

 
(105) had been 

realized in the airline industry, a 3-hour flight would 
require one-tenth of a second today

• If similar reductions in cost (104) had been realized in 
higher education, tuition room and board would cost 
about $2 per year 

• If similar improvements in storage
 

(104) had been 
realized in the publishing industry, our office 
bookcases could hold the book portion of the 
collection of the Library of Congress (~18M volumes)
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Gedanken experiment: 
How to use a jar of peanut butter

 with a rapidly dropping price?

• In 2006, at $3.19: make sandwiches
• By 2009, at $0.80: make recipe 
substitutions

• By 2012, at $0.20: use as feedstock for 
biopolymers, plastics, etc.

• By 2115, at $0.05: heat homes
• By 2118, at $0.012: pave roads ☺

The cost of computing has been on a curve like this for two decades.  
Can we count on another decade?  If so, like everyone else, scientists 
& engineers should plan increasing uses for it.  If not …
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Performance vs. time-to-solution
• Gordon Bell peak prizes cannot, by definition, go to thread-

 nonuniform, flop-bare simulations
• Prizes tend to concentrate in regular, Cartesian index space, 

flop-rich computations
• There is a conflict between what the peak prize measures and 

– what is good for the computational science community, in 
terms of getting its work done

– what is good for the computational mathematics 
community, in terms of identifying interesting problems 

• The “special”

 

prize attempts to remedy this shortcoming of 
the traditional prize, and is often the most interesting category
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Gordon Bell Prize: “special”
   
Year  Application Discretization System 
1999  Aerodynamics unstructured Intel ASCI Red 
1999  Stellar physics spectral Intel ASCI Red 
2000  Reactive flow Cartesian AMR Intel ASCI Red 
2001  Relativistic fields structured cluster 
2002  Structural dynamics unstructured IBM ASCI White
2002  DNS structured Earth Simulator 
2002  Biomolecular dynamics          ⎯  
2003  Seismic inversion unstructured HP LeMieux 
2004  Bone mechanics unstructured IBM ASCI White
 

8 of 9 “special” awards have gone to PDE simulations
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1999 Gordon Bell “special”
 

prize

Transonic “Lambda”

 

Shock, Mach contours on surfaces

• 1999 Bell Prize in “special category”

 

went to implicit, 
unstructured grid aerodynamics problems

– 0.23 Tflop/s sustained on 3 thousand processors of Intel’s 
ASCI Red

– 11 million degrees of freedom
– incompressible and compressible Euler flow
– employed in NASA analysis/design missions
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2003 Gordon Bell “special”
 

prize
• 2003 Bell Prize in “special category”

 

went to unstructured 
grid geological parameter estimation problem 

– 1 Tflop/s sustained on 2 thousand processors of HP’s 
“Lemieux 

– each explicit forward PDE solve: 17 million degrees of 
freedom

– seismic inverse problem: 70 billion degrees of 
freedom

– employed in NSF seismic research at CMU

reconstruction

target

c/o O. Ghattas, UT Austin
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2004 Gordon Bell “special”
 

prize

Cortical 
bone

Trabecular 
bone

• 2004 Bell Prize in “special category”

 

went to an implicit, 
unstructured grid bone mechanics simulation

– 0.5 Tflop/s sustained on 4 thousand procs of IBM’s ASCI 
White

– 0.5 billion degrees of freedom
– large-deformation analysis
– employed in NIH bone research at Berkeley

c/o M. Adams, Columbia
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Terascale simulation is pitched as an 
alternative to (some) experimentation

Simulation is an important complement 
to experiment in many areas

Lasers & Energy

 
combustion

 

ICF

Engineering

 
aerodynamics

 

crash testing

Environment

 
global climate

 

groundwater

Biology

 
drug design

 

genomics

Applied Physics

 
radiation transport

 

supernovae

Scientific

 
Simulation

Experiments 
controversial

Experiments prohibited 
or impossible

Experiments 
dangerous

Experiments difficult  
to instrument

Experiments 
expensive

ITER

 
$5B
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Context: many recent reports 
promote high-end simulation

• Cyberinfrastructure (NSF, 2003)
– new research environments through cyberinfrastructure

• Facilities for the Future of Science (DOE, 2003)
– “ultrascale simulation facility”

 

ranked #2 behind ITER only
• High End Computing Revitalization Task Force (Interagency, 2004)

– strategic planning on platforms
• Future of Supercomputing (NAS, 2005)

– broad discussion of the future of supercomputing 
• PITAC (Interagency, 2005)

– challenges in software and in interdisciplinary training 
• Simulation-based Engineering Science (NSF, 2006)

– opportunities in dynamic, data-driven simulation and engineering 
design 

• Advanced Nuclear Energy Simulations (DOE, 2006)
¾SCaLeS report, Vol 1 (DOE, 2003) & Vol 2 (DOE, 2004)

– implications of large-scale simulation for basic scientific research
¾Capability Computing Needs (DOE, 2004) 

– profiles of leading edge DOE codes in 11 application domains
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Diverse applications, common 
algorithmic and architectural  infrastructure

2002
2003

2003-2004 (vol 2)

2006
2006
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z Chapter 1. Introduction

z Chapter 2. Scientific Discovery 
through Advanced Computing: a 
Successful Pilot Program

z Chapter 3. Anatomy of a Large-scale 
Simulation

z Chapter 4. Opportunities at the 
Scientific Horizon

z Chapter 5. Enabling Mathematics 
and Computer Science Tools

z Chapter 6. Recommendations and 
Discussion
Volume 2 (2004):

z 11 chapters on applications

z 8 chapters on mathematical methods

z 8 chapters on computer science and 
infrastructure

www.pnl.gov/scales 

315 
contributors

A primary source: SCaLeS
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“What would scientists do 
with 100-1000x?”

 
(SCaLeS)

• Predict future climates
• Probe structure of particles
• Design accelerators
• Design and control tokamaks
• Control combustion
• Probe supernovae
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What would scientists do with 100-1000x?
 Example: predict future climates

• Resolution
– refine horizontal in atmosphere from 160 to 40 km
– refine horizontal in ocean from 105 to 15km

• New “physics”
– atmospheric chemistry
– carbon cycle
– dynamic terrestrial vegetation (nitrogen and sulfur 

cycles and land-use and land-cover changes)
• Improved representation of subgrid processes

– clouds
– atmospheric radiative transfer
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Resolution of Kuroshio Current: Simulations at various resolutions have 
demonstrated that, because equatorial meso-scale eddies have diameters ~10-200 
km, the grid spacing must be < 10 km to adequately resolve the eddy spectrum. 
This is illustrated in four images of the sea-surface temperature.  Figure (a) shows a 
snapshot from satellite observations, while the three other figures are snapshots 
from simulations at resolutions of (b) 2°, (c) 0.28°, and (d) 0.1°.  

What would scientists do with 100-1000x?
 Example: predict future climates
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What would scientists do with 100-1000x?
 Example: probe structure of particles

• Resolution
– take current 4D models from 32×32×32×16 to 

128×128×128×64
• New physics 

– “unquench”

 

the lattice approximation: enable study of 
the gluon structure of the nucleon, in addition to its 
quark structure

– obtain chiral symmetry by solving on a 5D lattice in the 
domain wall Fermion formulation 

– allow precision calculation of the spectroscopy of 
strongly interacting particles with unconventional 
quantum numbers, guiding experimental searches for 
states with novel quark and gluon structure



SC2006 Tutorial © DeBenedictis, Keyes, Kogge
28

Constraints on the Standard Model parameters ρ and η. For the Standard Model to 
be correct, these parameters from the Cabibbo-Kobayashi-Maskawa (CKM) matrix 
must be restricted to the region of overlap of the solidly colored bands. The figure on 
the left shows the constraints as they exist today. The figure on the right shows the 
constraints as they would exist with no improvement in the experimental errors, but 
with lattice gauge theory uncertainties reduced to 3%.  

η η

What would scientists do with 100-1000x?

 Example: probe structure of particles

c/o R. Sugar, UCSB
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What would scientists do with 100-1000x?
 Example: design accelerators

• Resolution
– complex geometry (long assemblies of damped detuned 

structure (DDS) cells, each one slightly different than its 
axial neighbor) requires unstructured meshes with 
hundreds of millions of degrees of freedom

– Maxwell eigensystems for interior elements of the 
spectrum must be solved in the complex cavity formed 
by the union of the DDS cells

• Novel capability
– PDE-based mathematical optimization will replace 

expensive and slow trial and error prototyping 
approach

– each inner loop of optimization requires numerous 
eigensystem analyses



SC2006 Tutorial © DeBenedictis, Keyes, Kogge
30

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given Geometry

Omega3P

S3P

T3P

Tau3P

DDS CELL

Next generation accelerators have complex cavities. Shape optimization is required 
to improve performance and reduce operating cost. 

What would scientists do with 100-1000x?
 Example: design accelerators

c/o K. Ko, SLAC
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What would scientists do with 100-1000x?
 Example: design and control tokamaks

• Resolution
– refine meshes and approach physical 

Lundquist numbers
• Multiphysics 

– combine MHD, PIC, and RF codes in 
a single, consistent simulation

– resolve plasma edge
• Design and control

– optimize performance of 
experimental reactor ITER

 

and 
follow-on production devices

– detect onset of instabilities and 
modify before catastrophic energy 
releases from the magnetic field
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Noise
Detection

Need More
Flights?

Blob
Detection

Compute
Puncture

Plots 

Island
detection

Out-of-core
Isosurface
methods

Feature
Detection

Portal
(Elvis)

XGC-ET Mesh/Interpolation M3D-L
(Linear stability)

Stable?

XGC-ET Mesh/Interpolation M3D

Δt Stable?
B healed?

Mesh/Interpolation Yes

Yes

No

No

Start (L-H)

Distributed
Store Distributed

Store

Distributed
Store

TBs GBs

MBs

I  D  A  V  Ec/o S. Klasky, ORNL

What would scientists do with 100-1000x?
 Example: design and control tokamaks
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What would scientists do with 100-1000x?
 Example: control combustion

• Resolution
– evolve 3D time-dependent large-eddy simulation (LES) 

codes to direct Navier-Stokes (DNS)
– multi-billions of mesh zones required

• New “physics”
– explore coupling between chemistry and acoustics 

(currently filtered out)
– explore sooting mechanisms to capture radiation 

effects
– capture autoignition with realistic fuels

• Integrate with experiments
– pioneer simulation-controlled experiments to look for 

predicted effects in the laboratory
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Images c/o R. Cheng (left), J. Bell (right), LBNL, and NERSC    
2003 SIAM/ACM Prize in CS&E (J. Bell & P. Colella)

Instantaneous flame front imaged by density of inert marker Instantaneous flame front imaged by fuel concentration

What would scientists do with 100-1000x?

 Example: control combustion
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What would scientists do with 100-1000x?
 Example: probe supernovae

• Resolution
– current Boltzmann neutrino transport models are vastly 

under-resolved 
– need at least 5123 spatially, at least 8 polar and 8 

azimuthal, and at least 24 energy groups energy groups 
per each of six neutrino types

– to discriminate between competing mechanisms, must 
conserve energy to within 0.1% over millions of time 
steps

• Full dimensionality
– current models capable of multigroup neutrino radiation 

are lower-dimensional; full 3D models are required
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Stationary accretion shock instability defines shape of supernovae and direction of 
emitted radiation. Lower dimensional models produce insight; full dimensional 
models are ultimately capable of providing radiation signatures that can be 
compared with observations. 

c/o A. Mezzacappa, ORNL

What would scientists do with 100-1000x?

 Example: probe supernovae
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Progress in scaling PDE applications
• Both structured and unstructured grids
• Both explicit and implicit methods
• Multiple decades of spatial “resolution”
• Many-thousand-fold concurrency
• Strong scaling within modest ranges
• Weak scaling (also called “scaled speedup”) 

without obvious limits
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Review: two definitions of scalability
• “Strong scaling”

– execution time decreases in 
inverse proportion to the 
number of processors

– fixed size problem overall
– often instead graphed as 

reciprocal, “speedup”
• “Weak scaling”

– execution time remains 
constant, as problem size 
and processor number are 
increased in proportion

– fixed size problem per 
processor

– also known as “Gustafson 
scaling”

T  

p

good

poor

poor

N ∝

 

p

log T

log p
good

N constant

Slope 
= -1

Slope 
= 0
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SPMD parallelism w/domain decomposition

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned 

to proc “2”

(volume) work to (surface) 
communication is preserved 
under weak scaling
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DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices 

J=

node i

row i
• However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D
• Want to solve in subdomains only, and 
use to precondition full sparse problem
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An algorithm for PDE simulation: 
Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable

nonlinear residual 
evaluations, inner 
products, DAXPYs

sparse MATVECs, 
inner products, 

DAXPYs

local solves, 
small global 

solves
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Krylov-Schwarz parallelization is simple!
• Decomposition into concurrent tasks

– by domain
• Assignment of tasks to processes

– typically one subdomain per process
• Orchestration of communication between processes

– to perform sparse matvec –

 

near neighbor communication
– to perform subdomain solve –

 

nothing
– to build Krylov basis –

 

global inner products
– to construct best fit solution –

 

global sparse solve 
(redundantly)

• Mapping of processes to processors
– typically one process per processor
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Inner Krylov-Schwarz kernel: a 
Bulk Synchronous Process (BSP)

local 
scatter

Jac-vec 
multiply

precond 
sweep

daxpy inner     
product

Krylov 
iteration

…

What happens if, for instance, in this 
(schematicized) iteration, arithmetic 
speed is doubled, scalar all-gather is 
quartered, and local scatter is cut by 
one-third?  Each phase is considered 
separately. Answer is to the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M
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Estimating scalability of stencil computations 
• Given complexity estimates of the leading terms of:

– the concurrent computation (per iteration phase)
– the concurrent communication
– the synchronization frequency

• And a bulk synchronous model of the architecture including:
– internode communication (network topology and protocol 

reflecting horizontal memory structure)
– on-node computation (effective performance parameters 

including vertical memory structure)
• One can estimate optimal concurrency and optimal execution 

time
– on per-iteration basis, or overall (by taking into account any 

granularity-dependent convergence rate)
– simply differentiate time estimate in terms of (N,P)

 

with respect 
to P, equate to zero and solve for P

 

in terms of N
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Estimating 3D stencil costs (per iteration)

• grid points in each direction

 
n, total work

 

N=O(n3)
• processors in each direction 

p, total procs

 

P=O(p3)
• memory per node 

requirements O(N/P)

• concurrent execution time per 
iteration

 

A n3/p3

• grid points on side of each 
processor subdomain

 

n/p
• Concurrent neighbor commun. time 

per iteration

 

B n2/p2

• cost of global reductions in each 
iteration  C log

 

p or

 

C p(1/d)

– C includes synchronization 
frequency

• same dimensionless units for 
measuring

 

A, B, C 
– e.g., cost of scalar floating point 

multiply-add
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3D stencil computation illustration
 Rich local network, tree-based global reductions

• total wall-clock time per iteration

• for optimal p,            , or  

or (with                        ),

• without “speeddown,”
 

p can grow with n
• in the limit as 

pC
p
nB

p
nApnT log),( 2

2

3

3
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∂
∂

p
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3
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Scalability results for DD stencil computations
• With tree-based (logarithmic) global reductions 

and scalable nearest neighbor hardware:
– optimal number of processors scales 

linearly

 

with problem size
• With 3D torus-based global reductions and 

scalable nearest neighbor hardware:
– optimal number of processors scales as 

three-fourths

 

power of problem size (almost 
“scalable”)

• With common network bus (heavy contention):
– optimal number of processors scales as 

one-fourth

 

power of problem size (not 
“scalable”)
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What’s under the rug?

• This generic weak scaling type of argument has 
been made for ten years

– in Petaflops Workshop series (1995 onward)
– in “all-hands”

 
group meetings of SciDAC 

users (2001 onward)
• Why aren’t PDEs “humming”

 
on BG/L?

– Of six announced finalists for Bell in 2006, 
only one is based on PDE simulation, and it 
achieves only 0.5 Tflop/s on 4K nodes of 
BG/L 

– This compares with 200 Tflop/s on 64K 
nodes for MD on BG/L –

 
a factor of 25 better 

in flop/s per node on 16 times more nodes 
for 400 ×

 
performance
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Contraindications of scalability

• Fixed problem size
– Amdahl-type constraints

• “fully resolved”

 

discrete problems (protein 
folding, network problems)

• “sufficiently resolved”

 

problems from the 
continuum

• Scalable problem size
– Resolution-limited progress in “long time”

 

integration
• explicit schemes for time-dependent PDEs
• suboptimal iterative relaxations schemes for 

equilibrium PDEs
– Nonuniformity of threads

• adaptive schemes
• multiphase computations (e.g, particle and field)
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Amdahl’s Law (1967)

• Fundamental limit to strong scaling due to small overheads
• Independent of number of processors available
• Analyze by binning code segments by degree of exploitable 

concurrency and dividing by available processors, up to limit
• Illustration for just two bins:

– fraction f1

 

of work that is purely sequential
– fraction (1-f1

 

) of work that is arbitrarily concurrent
• Wall clock time for p

 
processors

• Speedup 
– for f1

 

=0.01
• Applies to any performance enhancement, not just parallelism

pff /)1( 11 −+∝

]/)1(/[1 11 pff −+=

p 1 10 100 1000 10000

S 1.0 9.2 50.3 91.0 99.0
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Resolution-limited progress (weak scaling)

• Illustrate for CFL-limited 
explicit time stepping

• Parallel wall clock time
dd PST //1 αα+∝

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h mesh cell size
τ

 

time step size 
τ=O(hα) bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ

 

number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ

 

∝ hα ∝ 1/nα = 1/Nα/d  = 1/(PS)α/d )

3 months10 days1 dayExe. time

105×

 

105×105104×

 

104×104103×

 

103×103Domain

• Example: explicit wave 
problem in 3D (α=1, d=3)

27 years3 months1 dayExe. time

105×

 

105104×

 

104103×

 

103Domain

• Example: explicit 
diffusion problem in 2D 
(α=2, d=2)
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Thread nonuniformity
• Evolving state of the simulation can spoil load balance

– adaptive scheme
• local mesh refinement
• local time adaptivity

– state-dependent work complexity
• complex constitutive or reaction terms
• nonlinear inner loops with variable convergence rates

– multiphase simulation
• bulk synchronous alternation between different 

phases with different work distributions

…
P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M PDE Particles
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Algorithmic adaptation
• No computer system is well balanced for all

 computational tasks, or even for all phases of a 
single

 
well-defined task, like solving nonlinear 

systems arising from discretized differential 
equations

• Given the need for high performance in the solution 
of these and related systems, one should be aware 
of which computational phases are limited by which 
aspect of hardware or software.

• With this knowledge, one can design algorithms to 
“play to”

 
the strengths of a machine of given 

architecture, or one can intelligently select or 
evolve architectures for preferred algorithms.
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Four potential limiters on scalability 
in large-scale parallel scientific codes

• Insufficient localized concurrency
• Load imbalance at synchronization points
• Interprocessor message latency
• Interprocessor message bandwidth

“horizontal aspects”
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Four potential limiters 
on arithmetic performance

• Memory latency
– Failure to predict which data items are needed

• Memory bandwidth
– Failure to deliver data at consumption rate of 

processor

• Load/store instruction issue rate
– Failure of processor to issue enough loads/stores 

per cycle

• Floating point instruction issue rate
– Low percentage of floating point operations among 

all operations

“vertical aspects”
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Application Domain: 
Computational Aerodynamics
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Euler Simulation
• 3D transonic flow over ONERA M6 wing, at 

3.06º

 

angle of attack  (exhibits λ-shock

 

at 
M = 0.839)

• Solve

where

ρ = density, u = velocity, p

 

= pressure
E = energy density
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Background of FUN3D Application
• Tetrahedral vertex-centered unstructured grid code 

developed by W. K. Anderson (NASA) for steady 
compressible and incompressible Euler and Navier-

 Stokes
• Used in airplane, automobile, and submarine 

applications for analysis and design
• Standard discretization is second-order Roe

 
scheme 

for convection and Galerkin for diffusion
• Newton-Krylov solver with global point-block-ILU 

preconditioning, with false timestepping for 
nonlinear continuation towards steady state; 
competitive with FAS multigrid in practice

• Legacy implementation/ordering is vector-oriented
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Features of FUN3D Application
• Based on “legacy”

 
(but contemporary) CFD 

application with significant F77 code reuse
• Portable, message-passing library-based 

parallelization, run on NT boxes through Tflop/s ASCI 
platforms

• Simple multithreaded extension between processors 
sharing memory physically 

• Sparse, unstructured data, implying memory 
indirection with only modest reuse

• Wide applicability to other implicitly discretized 
multiple-scale PDE workloads

• Extensive profiling has led to follow-on algorithmic 
research
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Merits of NKS Algorithm/Implementation
• Relative characteristics: the “exponents”

 

are naturally

 

good
– Convergence scalability

• weak (or no) degradation in problem size and parallel granularity 
(with use of small global problems in Schwarz preconditioner)

– Implementation scalability
• no degradation in ratio of surface communication to volume 

work (in problem-scaled limit)
• only modest degradation from global operations (for sufficiently

 
richly connected networks)

• Absolute characteristics: the “constants”

 

can be made good
– Operation count complexity

• residual reductions of  10-9

 

in 103 “work units”
– Per-processor performance

• up to 25% of theoretical peak
• Overall, machine-epsilon solutions require as little as 15 microseconds 

per degree of freedom!
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Additive Schwarz Preconditioning 
for Au=f

 
in Ω

• Form preconditioner B

 

out of 
(approximate) local solves on 
(overlapping) subdomains

• Let Ri

 

and Ri
T

 

be Boolean 
gather and scatter operations, 
mapping between a global 
vector and its ith

 

subdomain 
support

∑=

=

=
−

i i

ii
T
ii

T
iii

BB
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Iteration Count Estimates from the Schwarz Theory

• Krylov-Schwarz iterative methods typically converge in a number 
of iterations that scales as the square-root of the condition 
number of the Schwarz-preconditioned system

• In terms of N

 

and P, where for d-dimensional isotropic problems, 
N=h-d

 

and P=H-d, for mesh parameter

 

h

 

and subdomain diameter H, 
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/3)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi

Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

[ref: Smith, Bjorstad & Gropp, 1996, Camb. Univ. Pr.]
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Time-Implicit 
Newton-Krylov-Schwarz Method

For nonlinear robustness, NKS iteration is wrapped in time-stepping. 

for (l = 0; l < n_time; l++) {
select time step
for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} 
perform preconditioned Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients 
check linear convergence

} 
perform DAXPY update 
check nonlinear convergence

}
}                                                       Steps in red involve global communication.
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Key Features of Implementation Strategy
• Subdomain partitioning by one of the MeTiS graph algorithms 
• SPMD “owner computes”

 

PETSc implementation under the dual 
objectives of minimizing the number of messages  and 
overlapping communication with computation

• Each processor “ghosts”

 

its stencil dependences in its 
neighbors

• Ghost nodes ordered after contiguous owned nodes
• Domain mapped from (user) global ordering into local orderings
• Scatter/gather operations created between local sequential

 vectors and global distributed

 

vectors, based on runtime 
connectivity patterns

• Newton-Krylov-Schwarz operations translated into local tasks 
and communication tasks

• Profiling used to help eliminate performance bugs in 
communication and memory hierarchy
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Background of PETSc
• Developed by Gropp, Smith, McInnes & Balay (ANL) to support 

research, prototyping, and production parallel solutions of 
operator equations in message-passing environments

• Distributed data structures as fundamental objects -

 

index sets, 
vectors/gridfunctions, and matrices/arrays

• Iterative linear and nonlinear solvers, combinable modularly and

 recursively, and extensibly
• Portable, and callable from C, C++, Fortran
• Uniform high-level API, with multi-layered entry
• Aggressively optimized: copies minimized, communication 

aggregated and overlapped, caches and registers reused, 
memory chunks preallocated, inspector-executor model for 
repetitive tasks (e.g., gather/scatter)

• Now part of the Terascale Optimal PDE Simulations project 
(DOE SciDAC)

See http://www.mcs.anl.gov/petsc

http://www.mcs.anl.gov/petsc
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PETSc

PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Separation of Concerns between 
User Code and PETSc Library
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Outline for PDE Performance Study
• General characterization of PDE requirements
• Identification of common algorithmic building blocks
• Simple complexity characterizations (computational 

work, interprocessor communication, intraprocessor 
data motion)

• Identification and illustration of bottlenecks on some 
of today's important platforms

• Experiments with a high-performance port of a NASA 
aerodynamic design code and with a sparse 
unstructured matrix-vector kernel

• Speculation on useful algorithmic research 
directions
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Variety and Complexity of PDEs
• Varieties of PDEs

– evolution (time hyperbolic, time parabolic)
– equilibrium (elliptic, spatially hyperbolic or parabolic)
– mixed, varying by region
– mixed, of multiple type (e.g., parabolic with elliptic 

constraint)
• Complexity parameterized by:

– spatial grid points, Nx
– temporal grid points, Nt
– components per point, Nc
– auxiliary storage per point, Na
– grid points in stencil, Ns

• Memory: M ≈ Nx • (Nc + Na + Nc • Nc • Ns)
• Work:  W ≈ Nx • Nt • (Nc + Na + Nc • Nc • Ns)
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Explicit Solvers

• Concurrency is pointwise, O(N)
• Comm.-to-Comp. ratio is surface-to-volume, O((N/P)-

1/3)
• Communication range is nearest-neighbor, except for 

time-step computation
• Synchronization frequency is once per step, O((N/P)-1)
• Storage per point is low
• Load balance is straightforward for static quasi-

 uniform grids
• Grid adaptivity (together with temporal stability 

limitation) makes load balance nontrivial

)u(uu 11 −
•

− Δ−= llll ft
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Domain-decomposed Implicit Solvers

• Concurrency is pointwise, O(N),
 

or subdomainwise, 
O(P)

• Comm.-to-Comp. ratio still mainly
 

surface-to-
 volume, O((N/P)-1/3)

• Communication still mainly
 

nearest-neighbor, but 
nonlocal communication arises from conjugation, 
norms, coarse grid problems

• Synchronization frequency often more
 

than once 
per grid-sweep, up to Krylov dimension, O(K(N/P)-1)

• Storage per point is higher, by factor of O(K)
• Load balance issues the same as for explicit

∞→Δ
Δ
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Resource Scaling for PDEs
• For 3D problems, work is proportional to four-thirds power of  

memory, because
– For equilibrium problems, work scales with problem size 

times number of iteration steps --

 

proportional to resolution 
in single spatial dimension

– For evolutionary problems, work scales with problems size 
times number of time steps --

 

CFL arguments place latter on 
order of spatial resolution, as well

• Proportionality constant can be adjusted over a very wide 
range by both discretization (high-order implies more work per 
point and per memory transfer) and by algorithmic tuning

• If frequent time frames are to be captured, other resources --

 disk capacity and I/O rates --

 

must both scale linearly with 
work, more stringently than for memory.
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Primary PDE Solution Kernels
 (assumes vertex-based; dual statements for cell-based)

• Vertex-based loops
– state vector and auxiliary vector updates

• Edge-based “stencil op”

 

loops
– residual evaluation
– approximate Jacobian evaluation
– Jacobian-vector product (often replaced with matrix-free form, 

involving residual evaluation)
– intergrid transfer (coarse/fine)

• Sparse, narrow-band recurrences
– approximate factorization and back substitution
– smoothing

• Vector inner products and norms
– orthogonalization/conjugation
– convergence progress and stability checks
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Illustration of Edge-based Loop
• Vertex-centered grid
• Traverse by edges

– load vertex values
– compute intensively

• e.g., for compressible 
flows, solve 5x5 eigen-

 
problem for character-

 
istic directions and 
speeds of each wave

– store flux contributions at 
vertices

• Each vertex appears in 
approximately 15 flux 
computations
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Complexities of PDE Kernels
• Vertex-based loops

– work and data closely proportional
– pointwise concurrency, no communication

• Edge-based “stencil op”
 

loops 
– large ratio of work to data
– colored edge concurrency; local communication

• Sparse, narrow-band recurrences
– work and data closely proportional
– frontal concurrency; no, local, or global 

communication
• Vector inner products and norms

– work and data closely proportional
– pointwise concurrency; global communication
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Candidate stresspoints of PDE kernels
• Vertex-based loops

– memory bandwidth
• Edge-based “stencil op”

 
loops 

– load/store (register-cache) bandwidth
– internode bandwidth

• Sparse, narrow-band recurrences
– memory bandwidth
– internode bandwidth, internode latency, 

network diameter
• Inner products and norms

– memory bandwidth
– internode latency, network diameter
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Observation #1: 
Processor scalability no problem, in principle

• As popularized with the 1986 Karp Prize paper of Benner, 
Gustafson & Montry, Amdahl's law can be defeated if 
serial (or bounded concurrency) sections make up a 
decreasing fraction of total work as problem size and 
processor count scale ---

 

true for most iterative implicit 
nonlinear PDE solvers

• Simple, back-of-envelope parallel complexity analyses 
show that processors can be increased as fast, or almost 
as fast, as problem size, assuming load is perfectly 
balanced

• Caveat: the processor network must also be scalable 
(applies to protocols as well as to hardware); machines 
based on common bus networks will not scale
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Surface Visualization of Test Domain
 for Euler Flow over an ONERA M6 Wing

• Wing surface outlined in green triangles, farfield blue, symmetry plane 
red

• 2.8 M vertices in the actual computational domain (9K in image below)
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Parallel Performance of PETSc-FUN3D 
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

 
TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache

 
BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache 

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache
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Fixed-size Parallel Scaling Results (Flop/s)
Results on older generation of machines
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Parallel Performance of PETSc-FUN3D

P r o c e s s o r s
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3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

 
TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache

 
BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache 

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache 
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Fixed-size Parallel Scaling Results (seconds)
Results on older generation of machines
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Inside Parallel Scaling Results on ASCI Red
 

ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million unknowns) on up 
to 3072 ASCI Red nodes (each with dual Pentium Pro 333 MHz processors)
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Observation #2 (for Fixed-Size Problems):
 Synchronization eventually a bottleneck

• Percentage of time spent in communication phases on ASCI Red 
for NKS unstructured Euler simulation

• Principal nonscaling feature is synchronization at global inner 
products and norms, while cost of halo exchange  grows slowly 
even for fixed-size problem  with deteriorating surface-to-volume

Number of 
Processors 

Global 
reductions 

 

Synchronizations Halo 
Exchanges

128 5% 4% 3% 
256 3% 6% 4% 
512 3% 7% 5% 
768 3% 8% 5% 

1024 3% 10% 6% 
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Observation #3:
 Memory latency no problem, in principle

• Regularity of reference in static grid-based computations can 
be exploited through memory-assist features to cover latency

• PDEs have simple, periodic workingset structure that permits 
effective use of prefetch/dispatch directives, and lots of 
slackness (process concurrency in excess of hardware 
concurrency)

• Combined with coming processors-in-memory (PIM) 
technology for gather/scatter into densely used block transfers 
and multithreading for latency that cannot be amortized by 
sufficiently large block transfers, the solution of PDEs can 
approach zero stall conditions

• Caveat: high bandwidth is critical to covering latency
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Workingset Characterization of Memory Traffic
• Smallest: data for single stencil 
• Largest: data for entire subdomain
• Intermediate: data for a neighborhood 

collection of stencils, reused as many 
times as possible
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Thought Experiment: Cache Traffic for PDEs
• As successive workingsets ``drop'' into a level of memory, 

capacity (and with effort conflict) misses disappear, leaving only 
compulsory, reducing demand on main memory bandwidth
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BW-stretching Strategies Based on Workingsets
• No performance value in memory levels larger than 

subdomain
• Little performance value in memory levels smaller than 

subdomain but larger than required to permit full reuse of 
most data within each subdomain subtraversal (middle 
knee, prev. slide)

• After providing L1 large enough for smallest workingset 
(and multiple independent copies up to desired level of 
multithreading, if necessary all additional resources should 
be invested in large L2

• Tables describing grid connectivity are built (after each grid 
rebalancing) and stored in PIM ---

 

used to pack/unpack 
dense-use cache lines during subdomain traversal
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Three Types of Locality Enhancements
• Edge-reordering

 
for maximal vertex reuse

• Field interlacing
 

for maximal cache-line reuse
– use   U1, V1, W1, U2, V2, W2, …, Un, Vn, Wn
– rather than   U1, U2, …, Un, V1, V2, …, Vn, W1, W2, …, Wn

• Sparse Jacobian blocking
 

for minimal integer 
metadata in manipulating a given amount of floating 
point physical data
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Improvements Resulting from Locality Reordering
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Observation #4:
 Memory bandwidth a major bottleneck

106s122s16s31s120

181s205s34s60s64

331s373s67s117s32

657s746s136s223s16

SingleDoubleSingleDouble 

OverallLinear Solve

Computational Phase
Number of 
Processors

Execution times for NKS Euler Simulation on Origin 2000: 
(standard) double precision matrices versus single precision

Note that times are nearly halved, along with precision, for the BW-limited linear solve 
phase, indicating that the BW can be at least doubled before hitting the next bottleneck!
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ASCI Memory Bandwidth Bottleneck
• Per-processor memory bandwidth versus rate of work

– approximately 10-15 flops per word transferred from memory
– fairly constant across machines, and fairly poor without 

extensive reuse

Peak
(M F/s)

BW /proc
(M W /s)

(M F/s)/
(M W /s)

W hite 1500 125.0 12.0

Blue M tn 500 48.8 10.2

Blue Pac 666 45.0 14.8

Red 333 33.3 10.0



SC2006 Tutorial © DeBenedictis, Keyes, Kogge
95

Implications of Bandwidth Limitations 
in Shared Memory Systems

1521571E07
1411451E06
1441401E05
2381375E04
12966661E04

2 Threads1 ThreadVector Size

Larger vectors in last three rows do not fit into cache and are bandwidth-limited

• The processors on a node compete for the available memory 
bandwidth
• The computational phases that are memory bandwidth limited will 
not scale and may even run slower due to arbitration
• Stream Benchmark on ASCI Red MB/s for the Triad Operation
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BW-stretching Strategies 
Based on Multivectors in Sparse Matvecs 

• The sparse matrix-vector multiply (matvec) is one of the 
most common kernels in scientific computing
– Same data access considerations as stencil-op kernel in 

explicit methods for PDEs
– Same as Krylov kernel and similar to preconditioner 

application kernel in implicit methods for PDEs
• When multiplying a single vector, each element of the sparse 

matrix is used exactly once per matvec
• If the matrix is large, none of its elements will remain in the 

cache from one matvec to the next
• If multiple vectors, say N, are multiplied at once, each 

element of the matrix is reused N
 

times
• A simple complexity model for the sparse matrix-vector 

product illustrates the issues
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Matrix-vector Multiplication 
for a Single Vector

do i=1, n
fetch ia(i+1)
sum = 0
! loop over the non-zeros of the row
do j = ia(i), ia(i + 1)-1  {

fetch ja(j), a(j), x (ja(j))
sum = sum + a(j) * x(ja(j))

enddo
Store sum into y(i)

enddo

This version performs A ×
 

x
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Matrix-Vector Multiplication for 
N

 
Independent Vectors

do i = 1, n
fetch ia(i+1)
! loop over the non-zeros of the row
do j = ia(i), ia(i + 1) - 1

fetch ja(j), a(j), x1 (ja(j)), ..…xN (ja(j))
do N fmadd (floating multiply add)

enddo
Store y1 (i) ..…yN (i)

enddo

This version performs A ×
 

{x1 , …, xN }
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• Assume ideal memory system apart from bandwidth
– Perfect cache (only  compulsory misses; no 

overhead)
– No memory latency
– Unlimited number of loads and stores per cycle

• Specify number of rows and nonzeros, sizes for integers 
and floats

• Assume matrix blocking factor and vector blocking 
factor 

• Compute data volume associated with sparse matvec
• Compute number of floating-point multiply adds  (fmadd) 
• Bytes per floating multiply-add combined with memory 

bandwidth (bytes/second) give a bound on rate of 
execution of multiply-adds

Estimating the Memory Bandwidth Limitation
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Sparse Matvec Performance Summary 

• On 250 MHz MIPS R10000
• Matrix size = 90,708;  number of nonzero entries = 5,047,120, blocksize 

= 4
• Stream performance is 358 MB/sec (for triad vector operation) 

http://www.cs.virginia.edu/stream
• Number of Vectors is either 1 or a block of  4

 
Bandwidth MFlops Format Number of 

Vectors 
Bytes / 
fmadd Required Achieved Ideal Achieved

AIJ 1 12.36 3090 276 58 45 
AIJ 4 3.31 827 221 216 120 

BAIJ 1 9.31 2327  84 55 
BAIJ 4 2.54 635 229 305 175 

 
 • Ratio of 2.7 for AIJ and 3.2 for BAIJ in going from 1 to 4

http://www.cs.virginia.edu/stream
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Performance Summary on 2.4 GHz P4 Xeon

• Matrix size, n = 90,708; number of nonzero entries, Nnz

 
= 5,047,120 (from computational aerodynamics, b=4)

• Stream performance is 1973 MB/sec (for triad vector 
operation, http://www.cs.virginia.edu/stream)

• Number of Vectors, N = 1, and 4

 
Bandwidth (GB/s) MFlops Format Number of 

Vectors 
Bytes / 

flop Required Measured Ideal Achieved
AIJ 1 6.18 14.83 1.97  319 274 
AIJ 4 1.66   3.98 1.97 1188 615 

 
 

http://www.cs.virginia.edu/stream
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Comparison of Domain-Level Parallelism 
for MPI and OpenMP/MPI

# Nodes On each node Sec./W-cycle

128 1 MPI process 14.01

128 2 MPI processes 7.98

128 2 OpenMP threads 7.56

256 1 MPI process 7.59

• Table shows execution times of residual flux evaluation phase for W-cycle FAS Euler 
simulation on ASCI Red (2 processors per node)
• Thread management imposes an overhead of 5% up to more serious levels, depending 
upon the system
• In computational phases that are not memory bandwidth-limited, shared-memory 
multithreading can be more efficient than MPI-mediated domain-based multiprocessing
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Observation #5:
 Load-store functionality may be a bottleneck

45s72s39s76s2560

40s62s33s66s3072

258s456s261s483s256

2 Proc1 Proc2 Thr1 Thr

MPIMPI/OpenMP
Nodes

• Table shows execution times of residual flux evaluation phase for NKS     
Euler simulation on ASCI Red (2 processors per node)
• In each paradigm, the second processor per node contributes another 
load/store unit while sharing fixed memory bandwidth
• Note that 1 thread is worse than 1 MPI process, but that 2-thread 
performance eventually surpass 2-process performance as subdomains 
become small
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Quantifying the Load/Store Bottleneck
• Assume ideal memory system apart from load/store units

– All data items are ready in cache
– Each operation takes only one cycle to complete but 

multiple operations can graduate in one cycle
• If only one load or store can be issued in one cycle (as is 

the case on R10000 and many other processors), the best 
we can hope for is 

• Other restrictions (like primary cache latency, latency of 
floating point units etc.) need to be taken into account while 
creating the best schedule

MFlops/sPeak *
Stores and Loads ofNumber 

nsinstructiopoint  floating ofNumber 
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Observation #6:
 Fraction of Flops may be a Bottleneck

• Estimated number of floating point operations out of the total 
instructions (for the unstructured Euler Jacobian)
– For N=1, If = 0.18
– For

 
N = 4, If = 0.34; this

 

is one-third of peak

do i=1, m
jrow = ia(i+1) // 1Of, AT, Ld
ncol =  ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN //  N Ld
do j=1,ncol // 1 Ld
fetch ja(jrow), a(jrow), x1 (ja(jrow)), ..…xN (ja(jrow)) 

// 1 Of, N+2 AT N+2 Ld
do N fmadd (floating multiply add) // 2N Flop

enddo // 1 Iop, 1 Br
Store sum1 …..sumN in y1 (i) ..…yN (i) // 1 Of, N AT, and St

enddo                                                           // 1 Iop, 1 Br

AT:address transln; Br: branch; Iop: integer op; Flop: floating point op; Of: offset 
calculation; Ld: load; St: store
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Significance of Multivectors
• Using multivectors can improve the performance of 

sparse matrix-vector product significantly
• “Algorithmic headroom”

 
is available for modest 

blocking
• Simple models predict the performance of sparse 

matrix-vector operations on a variety of platforms, 
including the effects of memory bandwidth, and 
instruction issue

 
rates

– achievable performance is a small fraction of stated peak 
for sparse matrix-vector kernels, independent of code 
quality

– compiler improvements and intelligent prefetching can 
help but the problem is fundamentally an architecture-

 
algorithm mismatch and needs an algorithmic solution



SC2006 Tutorial © DeBenedictis, Keyes, Kogge
107

Realistic Measures of Performance 
Sparse Matrix Vector Product 

one vector, matrix size = 90,708, nonzero entries = 5,047,120

0
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SP Origin T3E Pentium Ultra II
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Summary of Observations for Simulation Codes
• Processor scalability is no problem, in principle
• Common bus-based network is a bottleneck
• For fixed-size problems, global synchronization is 

eventually a bottleneck
• Memory latency is no problem, in principle
• Memory bandwidth is a major

 
bottleneck

• Load-Store functionality may
 

be a bottleneck
• Frequency of floating point instructions may be a 

bottleneck
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Lessons for High-end Simulation of PDEs
• Unstructured (static) grid codes can run well on distributed 

hierarchical memory machines, with attention to partitioning, 
vertex ordering, component ordering, blocking, and tuning

• Parallel solver libraries can give new life to the most 
valuable, discipline-specific modules of legacy PDE codes

• Parallel scalability is easy, but attaining high per-processor 
performance for sparse problems gets more challenging with 
each machine generation

• The NKS family of algorithms can be and must be tuned to an 
application-architecture combination; profiling is critical

• Some
 

gains from hybrid parallel programming models 
(message passing and multithreading together) require little 
work; squeezing the last drop is likely much more difficult
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Weighing in at the Bottom Line
• Characterization of a 1 Teraflop/s computer of today

– about 1,000 processors of 1 Gflop/s (peak) each
– due to inefficiencies within the processors, more 

practically characterized as about 4,000 processors of 
250 Mflop/s each

• How do we want to get to 1 Petaflop/s?
– 1,000,000 processors of 1 Gflop/s each (only wider)?
– 10,000 processors of 100 Gflop/s each (mainly deeper)?

• From the point of view of PDE simulations on quasi-static 
Eulerian grids 
– Either!

• Caveat: dynamic grid simulations are not directly covered 
in this discussion
– but see work 2003 SIAM/ACM Prize
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Some noteworthy algorithmic adaptations 
to distributed memory architecture

• Restricted Schwarz in elliptic problems (Cai & Sarkis)
– omit every other local communication (actually leads to better 

convergence, now proved)
• Extrapolated Schwarz in parabolic problems (Garbey & Tromeur-Dervout)

– hide interprocessor latency by extrapolating messages received in 
time integration, with rollback if actual messages have discrepancies 
in lower Fourier modes (higher mode discrepancies decay anyway)

• Nonlinear Schwarz in elliptic problems (Cai & Keyes)
– reduce global Krylov-Schwarz synchronizations by applying NKS 

within well-connected subdomains and performing few

 

global outer 
Newton iterations

• Aggressive coarsening in linear AMG (Falgout, Yang, et al.)
– reduce size of coarse problems to trade-off cost per iteration with 

number of iterations (and many other such preconditioner quality

 
ideas)
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Four Sources of Performance Improvement
• Expanded number of processors

– arbitrarily large factor, through extremely careful 
attention to load balancing and synchronization

• More efficient use of processor cycles, and faster 
processor/memory elements
– one to two orders of magnitude, through memory-

 assist language features, processors-in-memory, and 
multithreading

• Algorithmic variants that are more architecture-friendly
– approximately an order of magnitude, through 

improved locality and relaxed synchronization
• Algorithms that deliver more “science per flop”

– possibly large problem-dependent factor, through 
adaptivity

– This last does not contribute to raw flop/s!
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Source #1: 
Expanded Number of Processors

• Recall Observation #1 and “back-of-envelope 
estimates”: Scalability not a problem.

• Caveat: the processor network must also be 
scalable (applies to protocols as well as to 
hardware)

• Remaining  four orders of magnitude could be 
met by hardware expansion (but this does not

 mean that fixed-size applications of today would 
run 104

 

times faster)



SC2006 Tutorial © DeBenedictis, Keyes, Kogge
114

Source #2: 
More Efficient Use of Faster Processors

• Current low efficiencies of sparse codes can be 
improved if regularity of reference is exploited with 
memory-assist features

• Recall Observation #3: PDEs have exploitable periodic 
workingset structures that can overcome memory 
latency

• Caveat: high bandwidth is critical, since PDE algorithms 
do only O(N)

 
work for O(N)

 
gridpoints worth of loads 

and stores
• One to two orders of magnitude can be gained by 

catching up to the clock, and by following the clock into 
the few-GHz range
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Source #3: 
More “Architecture Friendly”

 
Algorithms

• Algorithmic practice needs to  catch up to architectural 
demands 
– several “one-time”

 

gains remain to be contributed that 
could improve data locality or reduce synchronization 
frequency, while maintaining required concurrency and 
slackness

– “One-time”

 

refers to improvements by small constant 
factors, nothing that scales in N

 

or P

 

–

 

complexities are 
already near information-theoretic lower bounds, and we 
reject increases in flop rates that derive from less

 
efficient algorithms

– Caveat: remaining algorithmic performance 
improvements may cost extra space or may bank on 
stability shortcuts that occasionally backfire, making 
performance modeling less predictable

• Perhaps an order of magnitude of performance remains 
here
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Raw Performance Improvement from Algorithms

• Spatial reorderings that improve locality
– interlacing of all related grid-based data structures
– ordering gridpoints and grid edges for L1/L2 reuse

• Discretizations that improve locality
– higher-order methods (lead to larger denser blocks at each 

point than lower-order methods)
– vertex-centering (for same tetrahedral grid, leads to denser 

blockrows than cell-centering)
• Temporal reorderings that improve locality

– block vector algorithms (reuse cached matrix blocks; 
vectors in block are independent)

– multi-step vector algorithms (reuse cached vector blocks; 
vectors have sequential dependence)
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Raw Performance Improvement from Algorithms, cont.
• Temporal reorderings that reduce synchronization 

penalty
– less stable algorithmic choices that reduce 

synchronization frequency (deferred 
orthogonalization, speculative step selection)

– less global methods that reduce synchronization 
range by replacing a tightly coupled global process 
(e.g., Newton) with loosely coupled sets of tightly 
coupled local processes (e.g., Schwarz)

• Precision reductions that make bandwidth seem larger
– lower precision representation of preconditioner 

matrix coefficients or poorly known coefficients 
(arithmetic is still performed on full precision 
extensions) 
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Source #4: 
Algorithms Packing More Science Per Flop

• Some algorithmic improvements do not improve 
flop rate, but lead to the same scientific end in the 
same time at lower hardware cost (less memory, 
lower operation complexity)

• Caveat: such adaptive programs are more 
complicated and less thread-uniform than those 
they improve upon in quality/cost ratio

• Desirable that petaflop/s machines be general 
purpose enough to run the “best”

 
algorithms

• Not daunting, conceptually, but puts an enormous 
premium on dynamic load balancing

• An order of magnitude or more can be gained here 
for many problems
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Example of Adaptive Opportunities
• Spatial Discretization-based adaptivity

– change discretization type and order to attain required 
approximation to the continuum everywhere without over-

 
resolving in smooth, easily approximated regions

• Fidelity-based adaptivity
– change continuous formulation to accommodate required 

phenomena everywhere without enriching in regions 
where nothing happens

• Stiffness-based adaptivity
– change solution algorithm to provide more powerful, 

robust techniques in regions of space-time where  discrete 
problem is linearly or nonlinearly stiff without extra work in 
nonstiff, locally well-conditioned regions 
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Status and Prospects
 for Advanced Adaptivity

• Metrics and procedures well developed in only a few areas
– method-of-lines ODEs for stiff IBVPs and DAEs, FEA for 

elliptic BVPs
• Multi-model methods used in ad hoc

 

ways in production
– Boeing TRANAIR code

• Poly-algorithmic solvers demonstrated in principle but 
rarely in the “hostile”

 

environment of high-performance 
computing

• Requirements for progress
– management of hierarchical levels of synchronization
– user specification of hierarchical priorities of different 

threads
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Summary of Suggestions
 for High Performance

• Algorithms that deliver more “science per flop”
– possibly large problem-dependent factor, through 

adaptivity (but we won't count this towards rate 
improvement)

• Algorithmic variants that are more architecture-friendly
– expect half

 

an order of magnitude, through improved 
locality and relaxed synchronization

• More efficient use of processor cycles, and faster 
processor/memory
– expect one-and-a-half

 

orders of magnitude, through 
memory-assist language features, PIM, and 
multithreading

• Expanded number of processors
– expect two

 

orders of magnitude, through dynamic 
balancing and extreme care in implementation 
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It’s not
 

about the solver

CS

Math

Applications

Enabling 
technologies 
respond

Applications 
drive
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It’s all
 

about the solver (at the terascale)
• Given, for example: 

– a “physics”

 

phase that 
scales as O(N)

– a “solver”

 

phase that 
scales as O(N3/2)

– computation is almost 
all solver after several 
doublings

• Most applications groups 
have not yet “felt”

 

this 
curve in their gut

– BG/L will change this
– 64K-processor machine 

delivered in 2005

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes 
50% time 
on 64 procs

Solver takes 
97% time on 
64K procs

Weak scaling limit, assuming efficiency of 
100%  in both physics and solver phases

problem size
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The power of optimal algorithms
• Advances in algorithmic efficiency can rival advances 

in hardware architecture
• Consider Poisson’s equation on a cube of size N=n3

• If  n=64, this implies an overall reduction in flops of 
~16 million

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann & 
Goldstine

n5 n7

1950 Optimal SOR Young n3 n4

 

log

 

n

1971 CG Reid n3 n3.5

 

log

 

n

1984 Full MG Brandt n3 n3

∇2u=f 64

64 64

*Six-months is reduced to 1 s
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year

relative 
speedup

Algorithms and Moore’s Law
• This advance took place over a span of about 36 years, or 24 doubling 

times for Moore’s Law
• 224≈16 million ⇒ the same as the factor from algorithms alone!
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• Algebraic multigrid a key algorithmic technology
– Discrete operator defined for finest grid by the application, itself, 

and

 

for many recursively derived levels with successively fewer 
degrees of freedom, for solver purposes

– Unlike geometric multigrid, AMG not restricted to problems with 
“natural”

 

coarsenings derived from grid alone
• Optimality (cost per cycle) intimately tied to the ability to coarsen 

aggressively
• Convergence scalability (number of cycles) and parallel efficiency 

also sensitive to rate of coarsening

c/o U. M. Yang, LLNL

Algebraic multigrid on BG/L

While much research and 
development remains, multigrid will 
clearly be practical at BG/L-scale 
concurrency

Figure shows weak scaling result for AMG out 
to 131,072 processors, with one 25×

 

25×25 
block per processor (from 15.6K dofs up to 
2.05B dofs) 

procs
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“Moore’s Law”
 

for MHD simulations

“Semi-implicit”:

All waves treated 
implicitly, but still 
stability-limited by 
transport

“Partially implicit”:

Fastest waves 
filtered, but still 
stability-limited by 
slower waves

Figure from SCaLeS report, Volume 2
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Scaling fusion simulations up to ITER

w/ S. Jardin, PPPL

1012

 

needed

International 
Thermonuclear

 
Experimental

 
Reactor

2017 –

 

first 
experiments, in 
Cadaraches, 
France
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• 1.5 orders: increased processor speed and efficiency
• 1.5 orders: increased concurrency
• 1 order: higher-order discretizations 

– Same accuracy can be achieved with many fewer elements
• 1 order: flux-surface following gridding

– Less resolution required along than across field lines
• 4 orders: adaptive gridding

– Zones requiring refinement are <1% of ITER volume and 
resolution requirements away are ~102

 

less severe
• 3 orders: implicit solvers

– Mode growth time 9 orders longer than Alfven-limited CFL

Where to find 12 orders of magnitude in 10 years?

H
ar

dw
ar

e:
 3

So
ftw

ar
e:

 9

Algorithmic 
improvements bring 

yottascale (1024) 
calculation down to 

petascale (1015)!
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• PDEs continue to drive the highest-end computing, as they 
have since ca. 1945

• There appears to be no fundamental limit to solving PDEs on 
arbitrarily fine spatial meshes in fixed execution time with 
arbitrarily high numbers of processors provided…
– one does not have to resolve timescales correspondingly 

finely in a CFL sense
– one can do a very fine load balancing and amortize it over 

many steps
– one has a near optimal linear implicit solver, like Krylov-

 MG
– for nonlinear problems, one can use Newton in a 

resolution-independent asymptotic regime 
• One should expect to have to work! to achieve such ends, and 

should start with good solver components as building blocks 

Summary
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Reminder about the Source 
of  Simulations

• Computational science and engineering is not about 
individual large-scale analyses, done fast and “thrown over 
the wall”

• Both “results”

 

and their sensitivities are desired; often 
multiple operation points to be simulated are known a priori, 
rather than sequentially

• Sensitivities may be fed back into optimization process
• Full CFD analyses may also be inner iterations in a 

multidisciplinary computation
• In such contexts, “petaflop/s”

 

may mean 1,000 analyses 
running somewhat asynchronously with respect to each 
other, each at 1 Tflop/s –

 

clearly a less daunting challenge 
and one that has better synchronization properties for 
exploiting “The Grid”

 

–

 

than 1 analysis running at 1 Pflop/s 
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Insight From A Dinner Conversation

• I have dinner with a 
physicist at a joint ITRS 
and electron device 
meeting in DC 12/2005

• The fellow tells me in 
hushed tones that he 
knows the future to 
Moore’s Law
– Is this trivial or 

profound?
• I ask what it is?

• Answer: More Parallelism.
– I knew this: trivial

• I say there may not be 
enough parallelism in 
problems – and has he 
talked to programmers

• Answer: “no”
– Oh boy, the future of 

Moore’s Law depends 
on YOU programming 
smarter and you don’t 
know this: profound
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Applications and $100M Supercomputers

1 Zettaflops

100 Exaflops
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100 Teraflops

System 
Performance

2000 2010 2020 2030 Year Æ
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f Quantum Computing
Requires Rescaled

Graph (see later slide)

↑d Architecture: IBM 
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by 
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet. 
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report. 
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!” 
NASA/TM-1999-209715, available on Internet. 
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/. 
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as 
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

2000 20202010

No schedule provided by 
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet. 
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report. 
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!” 
NASA/TM-1999-209715, available on Internet. 
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/. 
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as 
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

Compute as fast 
as the engineer 

can think 
[NASA 99]

↓

 

100× ↑1000×

 

[SCaLeS 03]

Full Global Climate 
[Malone 03]

Plasma 
Fusion 

Simulation 
[Jardin 03]

MEMS 
Optimize



ISAT LCC: 6 August 24, 2001

Future potential of novel architecture is 
large (1000 vs 30)
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From here, reproduced with permission
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Trends Align Pretty Well, But 
Mismatches are Instructive
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Let’s Build On The “Capability Gap”
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What Path Will You Follow?

• Capability Gap reference 
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Single Core Chips

• Although this is not the 
industry trend!
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One Core of a Multicore CPU

• Industry trend is to put 
benefit of Moore’s Law into 
more cores in multicore 
μPs. 

• For code that uses one 
core, performance would 
be nearly flat
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Multicore CPU Programmed Efficiently

• If you could code to 
efficiently use all the cores 
on a multicore CPU AND

• Industry put all the benefit 
of Moore’s Law into more 
cores THEN

• You would realize 
performance gains in line 
with BIT throughput
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Thermal Limit

• However, there is a limit 
for AND-OR-NOT logic 
beyond which heat 
production becomes a 
bottleneck

• Heat production is starting 
to be a problem now, but 
there are several orders of 
magnitude to go before 
reaching the real limit

100kB T Limit
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Reversible Logic

• The thermal limit can be 
circumvented in principle, 
but you have to give up 
AND-OR-NOT logic

100kB T Limit
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Super Roadmap

• c Nearly flat
– Single core, commodity

• d Single core chip
– C++, Fortran, etc.

• e Full benefit of speedup
– More parallel code

• f Fully exploit transistors
– Custom hardware

• g Full benefit of physics
– Ditch AND-OR-NOT

• h Go beyond bits

100kB T Limit

h Quantum Computing
Requires

Rescaled Slide

c

d

e

f

g
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• Remind audience that the last slide shows the 
impact of Moore’s Law (horizontal axis) and 
architecture (multiple curves) on applications 
performance (vertical axis)
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*** THIS IS A PREVIEW ***

• High node visit rate
• Small size
• Fast propagation velocity
• Parallel
• Organize program graph 

for short distances
• Programming language 

must aid programmer in 
creating short, parallel 
graphs

• Programmer must use 
language effectively
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Quantum Computing (Starting Point)

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System 
Performance

2000 2010 2020 2030 Year Æ

↑ c Red Storm/Cluster

Technology

e Nanotech +
Reversible Logic μP

(green) best-case logic 
(red)Æ

f Quantum Computing
Requires Rescaled

Graph (see later slide)

↑d Architecture: IBM 
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by 
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet. 
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report. 
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!” 
NASA/TM-1999-209715, available on Internet. 
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/. 
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as 
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

2000 20202010

No schedule provided by 
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet. 
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report. 
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!” 
NASA/TM-1999-209715, available on Internet. 
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/. 
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as 
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.
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Rescale Graph
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Relabel Key Trends
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Emergence of Quantum Computing

• There appears to be an 
engineering case for 
quantum computers of 
1-100 Q-FLOPS

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

• One would expect an 
exponential growth rate 
for quantum computers 
similar to Moore’s Law, 
but the rate constant is 
impossible to predict, 
so three possibilities 
have been graphed

Opti
mist

ic:
 10

0 Q
FL

OPS + 
3x

/ye
ar

Top500: 10 QFLOPS + 2x/y
ear

Moore’s Law: 1 QFLOPS + 1.3x/year

Cluster Projection
“Advanced Architecture”

Ref. “How to build a 300 bit, 1 Gop quantum computer,” Andrew M. Steane, Clarendon Laboratory, UK, quant-ph/0412165

NOTE: Years are gone because 
I hesitate to predict!
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Quantum Applications

• Consider the classical 
computer equivalent to 
a Quantum Computer

• First use believed to be 
factoring in crypt- 
analysis, with expo- 
nential speedup over 
classical computers (blue)

E
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• Second, a quantum 
computer can also be 
used for other 
applications (pink) with 
quadratic speedup (e. g. 
searching)
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GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

Cluster Projection
“Advanced Architecture”

NOTE: Years are gone because 
I hesitate to predict!
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Super Roadmap Summary

• The Upside Potential for Innovative Computing is 
Growing

• The industry shift to multi-core just about freezes 
the performance of non-parallel C++, Fortran, …

• However, there is not even a theoretical 
contemplated end to computer speed boost that 
could be termed Moore’s Law

• However, many people will be disappointed…
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Outline

• Overview
– Insight From a Dinner 

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling 

Limits per ITRS
– Consequence to 

System Performance 
per Burger and Keckler 
Study 

• What It Means and What 
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing
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End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling
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ITRS Construction Method and Limitations

• ITRS Looks Perfectly 
Smooth
– Yes indeed, this is due 

to the concept of 
“targets”

• √2 reduction in line 
width every 3 years

• 17%/year increase in 
clock rate

– Roadmap based on 
Excel spreadsheet with 
targets, inputs, and 
dependent variables

• Limitations of ITRS 
Approach
– System performance 

involves dozens of 
interrelated variables

– Smooth scaling is 
targeted for the dozen 
variables reported

– By tying a dozen 
variables to a straight 
line, other variables 
become “dependent”
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Technology Model

• Two or three year interval 
between √2 reductions in 
line width
– Reducing line width by 
√2 doubles the number 
of devices

• However, ability to predict 
the future is imperfect Æ

ITRS 2001 edition Executive Summary
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End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling
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Per Core SpecFP Data and Trends

• Plot of 785 SpecFP 
submissions, considering 
only one core

• 43% per year is an 
important figure
– ITRS projection
– Excel’s trendline
– Erik’s plot of “top of 

envelope”
• However, we are falling 

short of 43% growth
0

500

1000

1500

2000

2500

3000

3500

4000

Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06

43% 
growth/year

45%-25%-17% 
growth/year

17% growth/year

Trendline

Data from Spec.org, per core numbers, 
entered into Excel spreadsheet for graphing
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End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling
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ITRS Spreadsheet

• Review spreadsheet 
interactively in Excel

• Points to make
– Illustrate role and 

implementation of 
“targets”

• Line width
• Clock rate

– Illustrate user inputs
• Sub threshold adjustment 

factors rows 34 & 36
– Illustrate rows derived by 

calculation

– Illustrate iteration to 
target

– Illustrate HP LOP LSTP
• Draw conclusions

– Industry defines targets
– Table preparer adds 

value by scheduling 
innovations to meet 
targets

– Validity depends on 
innovations occurring 
on schedule

• Limited example next slide
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ITRS Spreadsheet Structure

Target is exponential 
in “Years in Future”

Fprocessor is result of 
96 rows of targets, 
inputs, and iterative 

calculation

Result usually 
matches to one 
decimal place!

Line Width 
Scaling

ITRS 2003 
supplementary 
material
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User Inputs

• Some factors will scale exponentially by 
definition, yet others will scale based on 
projections of engineers

• Supply voltage, doping levels, layer thicknesses, 
leakage, geometry, mobility, parasitic capacitance

These values are 
typed-in, based on 

schedule in next slide

ITRS 2003 supplementary material
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Schedule of Innovations

• To make the calculations 
fit the projection of a 
smooth “Moore’s Law,” 
certain variables must be 
adjustable

• The independent variables 
are a “schedule of 
innovations,” or 
technology advances that 
must enter production on 
certain years MOSFET Scaling Trends, Challenges, and Key Technology 

Innovations through the End of the Roadmap, Peter M. 
Zeitzoff
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ITRS Transistor Geometries

ITRS 2003 Emerging Devices Section Pages 4 and 5
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ITRS Technology Progression

ITRS 2003 Emerging Devices Section Page 12
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End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling
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Power Dissipation

• By targeting a smooth 
exponential increase in 
performance over time, 
power dissipation 
becomes a dependent 
variable

• Power dissipation per μP 
chip is not a reported 
parameter

• Chart shows result
MOSFET Scaling Trends, Challenges, and Key Technology 
Innovations through the End of the Roadmap, Peter M. 
Zeitzoff
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Processor Clock Rate

• Processor operating 
frequency 10 gate delays 
with 30% latch overhead

• Gate delay assumes FO3, 
2×

 

parasitic capacitance

• Gate delay assumes CV2 

charging, hence supply 
voltage dependence

• However, these are gate 
level, not system level

ITRS 2003 supplementary material
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ITRS Scaling Conclusions

• Optimism
– Density doubles every 

three years
• 26% per year

– Clock rate rises 17% per 
year

– Sum is 43%/year!
• Reasonably close to 

the 41%/year of ideal 
scaling!

• Limits of Applicability
– Power dissipation 

partially covered
• However, power 

dissipation per chip 
rises

• Leakage power not 
covered

– Timing based on gates, 
not architecture

• Wiring delay 
calculated, but not part 
of timing model
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End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling
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Outline

• Overview
– Insight From a Dinner 

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling 

Limits per ITRS
– Consequence to 

System Performance 
per Burger and Keckler 
Study 

• What It Means and What 
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing
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Scaling of Microprocessor Performance

• For a given design, 
performance proportional 
to clock rate

• However, designs change 
with technology
– More transistors lead to 

architectures with more  
“instructions per clock”

– Signal propagation 
(wire) delays lead to 
more pipelining

– More pipelining leads to 
larger cache miss 
penalty

– Cache miss penalty and 
desire to run larger 
programs (a. k. a. “code 
bloat”) leads to larger 
caches

• Question: What is the 
roadmap for 
microprocessor 
performance?
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How to Project Uniprocessor Performance

• Let’s assume industry 
makes the innovations 
called for by the ITRS on 
schedule

• However, companies will 
not be constrained to do 
everything like the ITRS
– Engineers can choose 

any power supply 
voltage they like

– Doping levels can be 
changed

• Evaluate 

and report performance 
and architecture as a 
function of years into the 
future

max(SpecFP)
engineering
Å choices,

architecture
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UT Austin Study (2000)

• The Study
– Clock Rate versus IPC: 

The End of the Road for 
Conventional 
Microarchitectures, 
Vikas Agarwal, M.S. 
Hrishikesh, Stephen W. 
Keckler, Doug Burger. 
27th Annual 
International 
Symposium on 
Computer Architecture

• Conclusions (to be 
Explained)
– Modified ITRS roadmap 

predictions to be more 
friendly to architectures

– Concluded there would 
be a 12%/year growth…

– However, recent growth 
has been ~30%, with 
industry’s maneuver to 
cheat the analysis 
instructive 
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Wire Delay Coverage in ITRS

• Wire delay added to ITRS 
2002 edition
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Modeling Wire Delay

• For some year in the future
– ITRS and other models 

project a clock rate
– ITRS and other models 

project a signal 
propagation velocity

– Divide the two figures 
to get d=distance 
traveled in one clock 
cycle

– Chip area/d2 is plotted 
at right Æ

• Figure 4 from “Clock Rate versus IPC: The 
End of the Road for Conventional 
Microarchitectures,” Vikas Agarwal, M.S. 
Hrishikesh, Stephen W. Keckler, and Doug 
Burger
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Cache Performance

• Authors used ECacti 
cache modeling tool

• ECacti lays out caches in 
terms of banks, 
associatively, etc.

• As technology progresses, 
size of cache accessible in 
3 cycles decreases

• Remedy is obvious, but 
has consequences: 
increase depth of 
pipelining

• Figure 5 from “Clock Rate versus IPC: The 
End of the Road for Conventional 
Microarchitectures Vikas Agarwal, M.S. 
Hrishikesh, Stephen W. Keckler, and Doug 
Burger

This graph for a
3 cycle cache access

Å
tim
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Modeling Pipelined μP

• Authors used 
SimpleScalar, cycle 
accurate simulator of a 
DEC Alpha 21264

• However, actually models 
hypothetical future μPs 
with parameterized
– Cache parameters
– Pipeline depth
– Branch prediction
– Technology (clock 

speed)

• Authors used 
SimpleScalar to model the 
18 SPEC95 benchmarks 
for 500 million instructions 
each
– Adjustments to avoid 

initialization
• Question to answer: What 

is the best architecture, 
and how well does it work?
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Simulation Results

• Results shown at right Æ
are noted by author to be 
“remarkably consistent”

• If fact, the results are 
almost the same as the 
clock rate increase

• Conclusion: To first order, 
SPEC ratings will increase 
with speed of clock
– Noting that this analysis 

is per μP core, and 
SPEC is for one core

• Figure 7 from “Clock Rate versus IPC: 
The End of the Road for Conventional 
Microarchitectures Vikas Agarwal, 
M.S. Hrishikesh, Stephen W. Keckler, 
and Doug Burger

Pipeline = caches same size 
but more pipelining  to keep 
access rate same
Capacity = cut cache size so 
access is possible without 
cutting clock rate
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Study Conclusions and Discussion

• UT Austin study concluded 
that μP performance should 
increase at about 12%/year

• However, it actually increased 
at 30%/year

• What is the discrepancy?
– It is difficult to predict 

future
– Vendors broke study 

assumptions by 
increasing power

– Study was before its time 
(vendors went multicore 
this year)

• Figure 8 from “Clock Rate versus IPC: 
The End of the Road for Conventional 
Microarchitectures Vikas Agarwal, 
M.S. Hrishikesh, Stephen W. Keckler, 
and Doug Burger
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Memory

Cache

CPU
bdf
hj

c

e
g

i

k

Model of CPU Performance (Will Be Reused)

• Diagram’s physical size 
corresponds to 
processor’s physical size

• Program executes by 
visiting nodes 
bcdefghijk, 
moving at a propagation 
velocity αc

• Evens at center due to Von 
Neumann architecture

• Performance is rate at 
which nodes are visited
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Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization 

overhead
• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Technology Scaling and Algorithms

• Assumptions
– You have a fixed budget to 

buy and run computers
– Technology scales 

according to ITRS
• Question

– How will the performance 
of algorithms change as a 
function of time?

• Solution Approach
– Find the scalability of an 

algorithm as a function of 
the “scaling” of the 
computer’s technology

• Issues Generating Rules
– Thread speed & 

parallelism
– Inner loop memory
– FLOPS/watt
– Devices per chip (or 

whatever)
– Surface-to-area ratio
– Load balance

• App. Determined
• Stability
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Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization 

overhead
• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Thread Speed and Parallelism

• Runtime ≥

 

sequential 
ops÷thread speed

• Single thread FLOPS rate 
determined by
– Gate speed 

• ITRS tell you this
– Architecture

• ~9 gate delays in a μP
• Inflexible

– Communications speed
• Memory latency

• The best algorithms have 
variable parallelism
– Each thread controls an 

array of cells
– Size of the array can be 

cut, but not below 1 cell
• Some algorithms have 

fixed parallelism
– Tough luck

• Conclusion
– Optimization
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Projected Clock Rate Increases

• 2004 Update shows clock 
rates rising to 53 GHz by 
2018
– Not based on 

architecture

• The ITRS table projects 
clock rates based on 
inverter and latch delay, 
not accounting for system 
issues

• Recent historical 
information suggests 
much slower clock rate 
increases
– Cancellation of certain 

microprocessors and 
shift to multi-core
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Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization 

overhead
• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Inner Loop Working Set

• The application’s inner 
loop will have a “cache 
working set” of storage
– This working set will 

take up d×d chip area
• Minimum access time will 

be 2d÷v
– v is signal propagation 

velocity
– modulo constants

• Is this some hypothetical 
architectural thing?
– Not necessarily, applies 

to existing μPs where 
working set is in 
existing cache

• Implication to algorithm
– Cutting working set size 

can cut running time
– Physics supercedes 

complexity theory 
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Implications of Inner Loop Working Set 

• Runs against Area-Volume 
Rule
– Fewer cells per CPU 

increases 
communications cost /

– At some point cutting 
cells per CPU lets all 
cells fit in cache, or 
other local memory ☺

• Impacts tables
• Option A: compute f(x) 

when needed
• Option B: precompute 

f(x), store in a x 
Megabyte table

– Option B may cut clock 
rate for everything else

• No universal answer 
here

• Allocate data structures to 
memories at different 
distances?
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Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization 

overhead
• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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FLOPS/Watt

• Thermodynamic limit at 
kB T log 2
– Currently operating at 

100,000 kB T
– ITRS goes to about 100 

kB T
– Unexplored gulf 

between 100 kB T and .7 
kB T

• Thermodynamic limit can 
be beat with reversible 
logic and Quantum

• Implications
– Corollary: everything 

proportional to power
• Mfg cost
• Operating cost

– Cost of running an 
algorithm depends on 
total FLOPS

• Cut FLOPS
• Running time is a 

different story
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Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization 

overhead
• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Device Density Scaling

• Device density is projected to scale at 2×
 

per 
three years

• There is a lot of innovation
– Lithographic line width continues to shrink
– DNA self assembly
– Others

• We don’t seem close to theoretical limits
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Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization 

overhead
• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Bandwidth Scaling

• Overview: Bandwidth will 
continue to scale

• Theoretically, the limit on 
bandwidth is way out

• According to the ITRS 
Roadmap
– Number of bonding 

pads on a chip 
becomes constant

– Bandwidth per bonding 
pad equals internal 
clock rate (?)

• However, there are 
innovative solutions in the 
works
– Optical interconnect
– Capacitive interconnect

• For long haul 
communications
– Optics has practically 

infinite bandwidth
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Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization 

overhead
• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Load Balance

Barrier Barrier

Workload

Jo
bs

Average 
completion 

time

Actual 
completion 

time

If we don’t 
know 

anything 
about running 
time, assume 

standard 
distribution
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Maximum IQ of a Class in Your Kids School

• Each child has average IQ 
100 and std of 15
– Mean and std of task 

runtime
• Each class has total IQ of 

n×100 and std of n½×15
– Statistics of per node 

time between barriers
• Max average is inverse of 

cumulative normal 
distribution evaluated at n

Classroom 1

Student
IQs

Classroom n

Student
IQs

∑ IQs will have
bell curve
as well

n-1
n

1
n
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Efficiency Loss Due To Load Balance

• Load imbalance becomes 
an issue when there are 
less than 10s to 100s of 
tasks per node
– Presuming mean≈std

• Implications
– This creates a ceiling to 

the amount of 
parallelism, unless

– tasks can be shared

• Plot Mean=Std
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E
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Increasing Parallelism

[Defining equations in PowerPoint notes]
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Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization 

overhead
• Example

– Instructor led example of projecting performance of 
a mesh algorithm
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Example Problem: Future Mesh Problem

• We are given year 20XX
• 1. Outer Loop of Process: 

Pick Number of Cores
– Processors are likely to 

be available with 
different numbers of 
cores – and there is no 
obligation to use all the 
cores on a chip

– Repeat the following 
with 1, 2, 4… up to the 
max cores that will fit 
on a 20XX die

• 2. Look up 20XX in ITRS
– Note device density
– Note clock rate

• 3. Figure out how much 
cache you should have
– Chip area goes to cores 

and cache
– After taking out the area 

occupied by cores, the 
rest is cache

– Track heat production 
(for use later)

Page 70 & 71 chip page 79 clock rate
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Example, Part 2

• 4. Using algorithmic 
information and cache 
size, figure out at what tier 
the code will run, per 
discussion earlier. The 
level may strongly 
influence performance

• Levels are
– Stencil in cache
– Vertices in cache
– Subdomain in cache

• 5. From level and “grind 
time,” figure out B:F ratio 
between CPU chip and 
main memory

• 6. Figure out likely memory 
bandwidth, either by using 
pins per ITRS specs or 
standard memory busses

Page 76 bandwidth
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Example, Part 3

• 7. Calculate interchip 
communications rates
– This generally involves 

sending and receiving 
the “halo” from each 
node

– Depending on 
architecture, could be 
from memory or CPU

– Also in B:F ratios

• 8. Overall throughput will 
be minimum of
– FLOPS
– Memory bandwidth 

divided by B:F ratio for 
memory

– MPI bandwidth divided 
by B:F ratio for MPI

– There has been some 
discussion of throttling 
chips due to excessive 
power
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Example, Part 4

• Note: All rates should be 
adjusted for “percentage 
of peak.” If nothing else is 
known, use percentage of 
peak numbers for similar 
architectures

• 9. Iterate to best solution, 
by going to step 1
– varying the number of 

cores in a chip, 
devoting all area not 
occupied by cores with 
cache

– turning off cores, 
sharing their cache

– spreading problem over 
more or fewer nodes
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Example, Part 5

• 10. Final step: The process just described is a 
mixture of analysis and design. The result will be 
meaningless if a vendor doesn’t produce the 
required chip. For example, if your ideal design 
requires 2½ cores, you’re probably out of luck.
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• Cooling method: 9
• Back of envelope: 21 THz
• Conclusion: Faster than 

CMOS slower than 
Quantum Computer

• No research in this area

Fastest Possible C++ or Fortran Program

• How fast could a C++ or 
Fortran program ever run?

• Limited  by memory 
access time to ~100 
MBytes of data

• Ref. K. Eric Drexler, 
Nanosystems: Molecular 
Machinery, Manufacturing, 
and Computation

• Parameters for 100
Å megabytes memory

Å 4μmÆ

CPU + 100 MB 
memory

10W cooling to 
moving metal
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Memory

Cache

CPU
bdf
hj

c

e
g

i

k

Single CPU Performance

• Program executes by 
visiting nodes 
bcdefghijk

• To go fast
– Raise speed of motion
– Shrink physical size
– Organize to put nodes 

closer to center
– Predict order of access

• C++ and Fortran programs 
have little predictability 
and stochastic distribution

Å 4μm          Æ
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Systolic Architectures

• Overview
– “Special purpose hardware”
– Efficient on all fronts
– General, albeit not “programmed”
– Leads to other things

• Nodes comprise registers holding a few numbers
• Arcs convey numbers in lock-step 

communications
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* +

C00

… A02 Æ A01 Æ A00 Æ

* +

C01

* +

C10

* +

C11

Systolic Array Matrix Multiply

• Initialize Acc to 0
• A x B appears in Acc

… A12 Æ A11 Æ A10 Æ

… B
20 Æ B

10 Æ B
00 Æ

… B
21 Æ B

11 Æ B
01 Æ
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Systolic Array Generality

• Numerical
– Filtering, convolution
– FFT
– Matrix-vector, matrix- 

matrix multiplication
– Matrix triangularization
– QR decomposition
– Linear systems solution
– Matrix inversion

• Non-numeric
– Searching, sorting
– Transitive closure, 

minimum spanning 
trees

– Regular expressions
– Dynamic programming
– Database operations
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Systolic Array Efficiency & Discussion

• The efficiency of a systolic 
array is just about obvious 
by inspection
– The resource 

consuming components 
(space and energy) are 
drawn on the paper 
surface

– Speed is one operation 
per clock

– Not all cells are used 
every cycle

• Discussion
– You get what you pay 

for
– Programmer specifies 

data placement, data 
movement, and 
operations

– Reward is full efficiency
– This VLSI tool for non- 

complex operations, but 
the principles 
generalize (next)
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Systolic Array Performance Model

• Program executes by 
visiting nodes 
bcdbcdbcd…

• Paths are regular, short, 
and predictable

Cell 
bcd

Cell 
bcd

Cell 
bcd

Cell 
bcd
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Components of Cyclops Chip

• 80 Float point processors
– 40 KBytes scratch

• 160 Integer Processors
– or 20 KBytes scratch

• Or on chip memory can 
fuse to to 3.2 MBytes

• External 1 GByte DRAM
– 2 GBytes in a few years

• 3D Mesh Interconnect
– 4 GBytes/sec IPC

• Disk per node I/O
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Processor Architecture

• Chip Architecture on Left
• System is 24×24×24 3D 

mesh

P P IC P P P P P P IC P P
P P IC P P P P P P IC P P
P P IC P P P P P P IC P P
P P IC P P P P P P IC P P

Pipelined Crossbar Switch

P P IC P P P P P P IC P P
P P IC P P P P P P IC P P
P P IC P P P P P P IC P P
P P IC P P P P P P IC P P

A-Switch
(Message Passing)

Four DDR2 Memory
Controllers I/O Port

I/O

I/O
I/O

I/O

I/O PortsTo/From
Adjacent PC cards

External Memory
(Four Banks)

Utility
(Disk, Ethernet)

P = Processor,
IC = I-Cache (32 KB SRAM)

32 KB SRAM0 32 KB SRAM1

Thread Unit 0 Thread Unit 1

Floating-Point/MAC

Shared Port to Crossbar

0   1   2   3   4   5

16 1664
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Network

• Network is 3D mesh very much like Red Storm or 
Blue Gene

Main Memory

Crossbar Switch

From
Adjacent
Nodes

To
Adjacent
Nodes

A-Switch

0
1
2
3
4
5

0
1
2
3
4
5



95

Memory Map

• Memory Hierarchy
– Fastest: Your local 

memory (20K)
– Another local node’s 

local memory (80x20K)
– On-chip aggregated 

memory (3.2 MB)
– External memory (1 GB)

• User and supervisor mode
• Moveable barrier for 

aggregation

External DRAM

0

2G

4G

Node 0 32K (20K)

Node 79 32K (20K)

Node 0..79 
aggregated

I/O

…
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Cyclops Programming

• Legacy Mode (my term)
– Run a legacy code, 

using internal 
processors and external 
memory, forget about 
on-chip memories

– Bottleneck at external 
memory bus

– Will run anything, but 
without advantage

• Tuned Mode (my term)
– Rewrite “inner loop” to 

use local and 
aggregated on-chip 
memories by managing 
pointers

– Use message passing, 
shared memory, or both

– Run outer loop from 
external memory

– Could work really well
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Cyclops Performance

• Cycle-accurate simulation 
of Cyclops shows 
promising speedup on 
scientific benchmarks

Juan del Cuvillo Weirong Zhu Ziang Hu Guang R. Gao, TiNy Threads: a Thread Virtual Machine for the Cyclops64 Cellular Architecture, 
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop 14 - Volume 15
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Cyclops Suitability Guide
Suitability Rules:
1. Inner loop data should fit 
in 80×64K≈5.25 MBytes/chip 
PIM high speed memory so 
inner loop runs at full speed
2. All other data goes in in 
per node DRAM of 1 or 2 
GBytes and runs somewhat 
slower  than a cluster – 
which is OK because if it is 
the outer loop, I/O, OS, etc.

The following trick is not 
available on Cyclops: you can’t run a big 
problem on a small machine by adding 
DRAM and running longer!

Cyclops Maximum DSMC Problem Size:
Inner loop data is molecular simulators at 
50 bytes/molecular simulator
z 100K simulators/chip
z 1.4G simulators/1 Petaflops system
z 20M simulators/rack

(goal is 100M simulators)

x, y, z, vx, 
vy, vz, 
species Æ
25 bytes

Inner loop
data

Other data
(outer loop 
I/O, OS,
etc.)

Å X Spatial Æ

Å
Y Spa

tia
l Æ

Å
M

em
or

yÆ

Chip
Memory Usage

DRAM

Å
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Multi-Core Performance Model

• Compared to a single core 
chip, there are four threads 
visiting nodes rather than 
one

• Compared to a single core 
chip, the nodes are closer 
and the visit rate higher

• This doesn’t tell you how 
to program your 
application, but tells you 
that if you can the machine 
will run fast

External memory
Memory

CPU
bdf
hj

c

e g

k

i

Memory

CPU
bdf
hj

c

e g

k

i

Memory

CPU
bdf
hj

c

e g

k

i
Memory

CPU
bdf
hj

c

e g

k

i
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Custom 
hardware for 
“inner loop”

Application-Specific Attached Processor

• Idea
– Develop custom 

hardware for main 
calculation in the “inner 
loop”

– C++ or Fortran outer 
loop

– Examples Æ
• In ideal case, runs with 

speed of full custom 
hardware with flexibility of 
C++ and Fortran 

CPU with C++ 
or Fortran for 
“outer loop”

Inner Loop Hardware Examples:
CPU Floating Point
GPU Polygon Render
MD Molecular Force
xxx FPGA

Node

Your favorite 
interconnect
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Memory

Cache

CPU
bdf
hj

c

e g

i

k

Attached Hardware Performance Model

• Program executes by 
visiting nodes 
bcdefghijk…

• The special hardware is 
organized to execute a lot 
of nodes with short paths

• While a CPU exists, its 
contribution is diluted by 
the special hardware

Special Hardware 
bcdefghijk
kjihgfedcb
bcdefghijk
kjihgfedcb
bcdefghijk
kjihgfedcb
bcdefghijk
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Going Beyond Moore’s Law with 
Analog and Bio-inspired 

Processing
Rahul Sarpeshkar

Associate Professor
Electrical Engineering and Computer 

Science
MIT

July 9th 2006
ITRS Talk



From R. Sarpeshkar, "Analog Versus Digital: Extrapolating from Electronics 
to Neurobiology," Neural Computation, Vol. 10, pp. 1601-1638, 1998 
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S T A T E

D I G I T A L

COMBINATIONAL LOGIC

A     N    A     L     O     G    S      T    A    T     E

ANALOG PROCESSING

AOAI

Spike-triggered FSM

Analog Dynamical System

DI DO

Spikes
Binary�
Control�
Vector

FINITE STATE MACHINE HYBRID STATE MACHINE (HSM)
HYBRID ANALOGHYBRID ANALOG--DIGITAL ARCHITECTURESDIGITAL ARCHITECTURES

1. “Spike” = Pulse or Digital Event. 
2. Each discrete state in the HSM is like a ‘behavior’ in which a rapidly reconfigurable analog dynamical system changes its parameters or topolog
3. Resulted in  an extremely energy efficient  time-based A/D converter with linear scaling in bit precision vs. exponential compared with other time-based 

converters.

From R. Sarpeshkar and M. O'Halloran, "Scalable Hybrid Computation with
Spikes," Neural Computation, Vol. 14, No. 9, pp. 2003-2024, September 2002
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Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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Applications and $100M Supercomputers

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System 
Performance

2000 2010 2020 2030 Year Æ

↑ c Red Storm/Cluster

Technology

e Nanotech +
Reversible Logic μP

(green) best-case logic 
(red)Æ

f Quantum Computing
Requires Rescaled

Graph (see later slide)

↑d Architecture: IBM 
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by 
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet. 
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report. 
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!” 
NASA/TM-1999-209715, available on Internet. 
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/. 
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as 
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

2000 20202010

No schedule provided by 
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet. 
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report. 
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!” 
NASA/TM-1999-209715, available on Internet. 
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/. 
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as 
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

Compute as fast 
as the engineer 

can think 
[NASA 99]

↓

 

100× ↑1000×

 

[SCaLeS 03]

Full Global Climate 
[Malone 03]

Plasma 
Fusion 

Simulation 
[Jardin 03]

MEMS 
Optimize
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Simulation of Global Climate

Stott et al, Science 2000“Simulations of the response to natural forcings alone … do not 
explain the warming in the second half of the century”

“..model estimates that take into account both greenhouse 
gases and sulphate aerosols are consistent with observations 
over this*period” - IPCC 2001
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FLOPS Increases for Global Climate

1 Zettaflops

1 Exaflops

10 Petaflops

100 Teraflops

10 Gigaflops

Ensembles, scenarios 
10×

Embarrassingly 
Parallel

New parameterizations 
100×

More Complex 
Physics

Model Completeness 
100×

More Complex 
Physics

Spatial Resolution 
104×

 

(103×-105×)
Resolution

Issue Scaling

Clusters Now In Use
(100 nodes, 5% efficient)

100 Exaflops Run length 
100×

Longer Running 
Time

Ref. “High-End Computing in Climate Modeling,” Robert C. Malone, LANL, John B. 
Drake, ORNL, Philip W. Jones, LANL, and Douglas A. Rotman, LLNL (2004) 
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Exemplary Exa- and Zetta-Scale Simulations

• Sandia MESA facility using 
MEMS for weapons

• Heat flow in MEMS not 
diffusion; use DSMC for 
phonons

• Shutter needs 10 Æ
Exaflops on an overnight 
run for steady state

• Geometry optimization Æ
100 Exaflops overnight run
– Adjust spoke width for 

high b/w no melting

500 μm
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FLOPS Increases for MEMS

10 Exaflops

30 Petaflops

600 Gigaflops

5 Gigaflops

Run length 
300×

Longer Running 
Time

Scale to 500μm2×12μm 
disk 50,000×

Size

2D Æ 3D
120×

Size

Issue Scaling

2μm×.5μm×3μs 2D film 
10 ×

 

1.2 GHz PIII

100 Exaflops Optimize 
10×

Sequential
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Outline

• Overview
– Insight From a Dinner 

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling 

Limits per ITRS
– Consequence to 

System Performance 
per Burger and Keckler 
Study 

• What It Means and What 
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing
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Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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Beyond Transistors

• Narrowing the Space
– We’ll assume this 

audience is interested 
only in programmable 
digital computers

– We’ll assume this 
audience wants 
imperative 
programming, not AI

– (I. e. ignore neural nets, 
analog computers , 
biochemical reactions, 
evolution of DNA, …)

• Options Within the Space
– Thread Speed & 

Parallelism: it looks like 
all paths to the future 
will require the 
programmer to expose 
more parallelism, but 
not equally

– Power and Heat: Cost of 
electricity and danger of 
overheating become 
dominate issues
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Thermal Limit

• The probability of a “logic 
glitch” due to thermal 
noise is approximately e-N, 
where N=Esig /kB T

• To keep a multi Petaflops 
supercomputer running for 
several years without a 
glitch requires 60 <

 

N <

 

100
• Current logic design styles 

thermalize all the signal 
energy at the output of 
every AND, OR, NOT gate

• Thus, it would be a 
reasonable “rule of thumb” 
that current design styles will 
have a hard barrier at 60-100 
kB T energy per gate 
operation.

• ITRS predicts 30 kB T. While 
Erik thinks such devices 
might be manufacturable, 
redundancy in logic design 
should outweigh benefit
– Also, MPF observation 

about information 
representation
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Metaphor: FM Radio on Trip to Orlando

• You drive to Orlando 
listening to FM radio

• Music clear for a while, but 
noise creeps in and then 
overtakes music

• Analogy: You live out the 
next dozen years buying 
PCs every couple years

• PCs keep getting faster
– clock rate increases
– fan gets bigger
– won’t go on forever

• Why…see next slide

Details: Erik DeBenedictis, “Taking ASCI Supercomputing to the End Game,” 
SAND2004-0959
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FM Radio and End of Moore’s Law

Driving away from FM transmitterÆless signal
Noise from electrons Æ no change

Increasing numbers of gatesÆless signal power
Noise from electrons Æ no change

Shrink

Distance
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Personal Observational Evidence

• Have radios become better able to receive distant 
terrestrial stations over the last few decades with 
a rate of improvement similar to Moore’s Law?
– XM is a different story

• You judge from your experience, but the answer 
should be that they have not.

• Therefore, electrical noise does not scale with 
Moore’s Law.
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Landauer’s Arguments

• Landauer makes three 
arguments in his 1961 
paper
– Kintetics of a bistable 

well (next slide)
– Entropy generation Æ

• Entropy of a system in 
statistical mechanics:

S = kB loge (W)
W is number of states

• Entropy of a mechanical 
system containing a flip 
flop in an unknown state:

S = kB loge (2W)
• After clearing the flip flop:

S = kB loge (W)
• Difference kB loge (2)

Sorry, I don’t have a cute 
story (like the FM radio) for 

Landauer’s argument
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Landauer’s Limit

• The Landauer limit says 
you can reduce power 
dissipation for irreversible 
functions below 100 kB T, 
but not below kB T loge 2

• In the diagram on the right, 
when the energy barrier 
drops to below about kB T, 
the state will 
spontaneously switch and 
dissipate remaining energy 
as heat

0 1

En
er

gy

State 
(Position)

0 1

kB T

0 1
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Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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Cutting Temperature
100 Watts

Thermo 
Micro 

100kB T, 
T=300°K

100 Watts

Thermo 
Micro 

100kB T, 
T=3°K

Motor

99   Watts 1  Watt

cold
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Cutting Temperature

Carnot Efficiency ηc = Tc
Th -Tc

Specific Power 1/ηc = Th -Tc
Tc

Specific power is watts input power 
required to remove one watt at the
cooling temperature

Idea: 
To cut computer power, let’s cool 
the active devices to 3° K. This will
cut minimum power per reliable
operation from 100kB ×300 to 100kB ×3,
cutting device power by 100 fold!

Specific Power 1/ηc = Th -Tc
Tc

= 300 - 3
3

= 99

Thus, we cut device power to 1% 
of original power at the price of a 
refrigerator consuming 99% of the 
original power, for resulting total 
power consumption of 100% of 
original power.

However, refrigerators are typically 
<20% efficient, so we’re actually 
in the hole by 5×

 

… 
but it is cheaper to dissipate power 
in a big motor than an expensive
chip.



130

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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8 Petaflops

80 Teraflops

Projected ITRS 
improvement to 22 nm 

(100×)

Lower supply voltage 
(2×)

ITRS committee of experts

ITRS committee of experts

Expert 
Opinion

Scientific Supercomputer Limits

Reliability limit 
750KW/(80kB T)2×1024 logic ops/s

Esteemed physicists 
(T=60°C junction temperature)

Best-Case 
Logic

Microprocessor 
Architecture

Physical 
Factor

Source of 
Authority

Assumption: Supercomputer 
is size & cost of Red Storm: 
US$100M budget; consumes 
2 MW wall power; 750 KW to 
active components

100 Exaflops

Derate 20,000 convert 
logic ops to floating point

Floating point engineering
(64 bit precision)

40 Teraflops Red Storm contract

1 Exaflops

800 Petaflops

Å 125:1 Æ

Uncertainty (6×) Gap in chartEstimate

Improved devices (4×) Estimate
4 Exaflops 32 Petaflops

Derate for manufacturing 
margin (4×)

Estimate

25 Exaflops 200 Petaflops
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Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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Transistors vs. Other Irreversible Devices

• Erik’s View
– My contacts on the ITRS staff tell me they believe 

transistors will get to the ~30 kB T level. If this is so, 
transistors will be difficult to beat in this domain.

– At 30 kB T, logic would have a spontaneous error 
rate > e-30 (one error in a billion operations).

– I have no doubt that computing with a 10-9 error 
rate is possible, but the overhead in error 
correction would consume more than a factor of 3. 
Remember Triple Modular Redundancy (TMR) 
consumes 3×

 
hardware!
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Really Advanced Technology

• International Technology 
Roadmap for 
Semiconductors (ITRS) 
Emerging Research 
Devices (ERD) architecture 
panel. All new devices are 
inadequate except CNFET

• ITRS ERD [see below]
– Influential over 

industrial and 
government funding
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ITRS Device Review 2016 + QDCA 
Technology Speed 

(min-max)
Dimension 
(min-max)

Energy per 
gate-op

Comparison

CMOS 30 ps-1 μs 8 nm-5 μm 4 aJ

RSFQ 1 ps-50 ps 300 nm- 1μm 2 aJ Larger

Molecular 10 ns-1 ms 1 nm- 5 nm 10 zJ Slower

Plastic 100 μs-1 ms 100 μm-1 mm 4 aJ Larger+Slower

Optical 100 as-1 ps 200 nm-2 μm 1 pJ Larger+Hotter

NEMS 100 ns-1 ms 10-100 nm 1 zJ Slower+Larger

Biological 100 fs-100 μs 6-50 μm .3 yJ Slower+Larger

Quantum 100 as-1 fs 10-100 nm 1 zJ Larger

QDCA 100 fs-10ps 1-10 nm 1 yJ Smaller, faster, 
cooler

Data from ITRS ERD Section, data from Notre Dame
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Nantero NRAM™ Device
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Nanoarray Architecture

• Low Road
– Planar, conventional 

architecture

• High Road
– Fabricate nanotech 

array on top of chip

Column

R
ow

Row 
Drivers

Column 
Drivers
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n×n

n2×n2

Thought Experiment – Skewed Nanoarray

• Problem is that molecular 
scale mask alignment is 
very hard

• However, regular arrays of 
lines are more easily 
drawn Æ

• Diagram to right (from 
Likharev) uses 2n2 drivers 
to drive n4 crosspoints
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Thought Experiment – Skewed Nanoarray

• Actual design 
superimposes row and  
column drivers with the 
crosspoint array



140Architectures at the End of Silicon: Performance Projections and Promising Paths – Doug Burger
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Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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Reversible Logic – Toffoli Gate

• The Toffoli gate is logically 
complete

• Reversible logic notation 
shown to right Æ
– Bits shown as 

horizontal lines
– Time nominally flows to 

right, but reverses 
naturally

• Function
– If A and B true, invert C

• Note: self-inverse

A

B

C
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Reversible Logic Can Beat Landauer’s Limit

• Any function can be made reversible by saving its 
inputs

• Diagram below outlines an asymptotically zero- 
energy way to perform the AND function, in 
composition with other logical operations

G(x) G-1(x)
A B C

Answer

Dissipation-less 
Information ErasureF F-1
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Reversible Logic Example

• One photon headed to a 
glass plate goes through

• Two photons also go 
through, but phase shift 
each other a little bit

• By appropriate 
recombinations, a 
“controlled not” can be 
created

• A glass plate needs no 
power supply

• Measuring a Photonic 
Qubit without Destroying 
It. GJ Pryde, JL O’Brien, 
AG White, 
SD Bartlett, and TC Ralph. 
Centre for Quantum 
Computer Technology, ... 
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Today’s Universal Logic & Reliability Limit

• Today’s logic operates on 
a simple principle
– Create a “1” by taking 

charge from the 
positive supply

– Create a “0” by sending 
charge to the negative 
supply

• Energy Consumption
– Each gate switch 

generates Esw = ½ CV2 > 
~100kB T heat

Vdd

Gnd

In Out

Signal energy must be 
greater than ~100 kB T to 

avoid spontaneous glitches. 
To change a bit, convert 

energy to heat.
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“Recycling” Power

• The 100kB T limit appears 
unbeatable, but the energy 
can be “recycled”

• Diagram shows a “SCRL” 
circuit with regular 
transistors

• Power comes through a 
largely loss less resonant 
device (tuning fork)

• No apology offered for the 
mechanical device; this is 
the price of progress

φ1

φ2

In

Signal energy must be 
greater than ~100 kB T to 

avoid spontaneous glitches. 
However, signal energy is 

recycled by tuning fork

Out
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Resonant Clocks

• A Resonant Clock is not 
perpetual motion, but 
instead reduces energy 
similarly to:
– (a) lifting you child from 

the ground to the 
countertop 20 times

– (b) giving your child a 
good push on a 
swingset and letting 
him/her go 20 cycles

Ref.: M. Frank

• Tuning Fork
– Nice idea but slow

• MEMs Resonator
– Moderate speed and 

compatible with silicon 
fabrication
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Resonator Activity

1.51-GHz nanocrystalline diamond micromechanical disk 
resonator with material-mismatched isolating support, J 
Wang, JE Butler, T Feygelson, CTC Nguyen - Tech. Dig., 
17 th Int. IEEE Micro Electro Mech. Syst. Conf.

• Nano resonators of 
appropriate frequency and 
1 nW energy levels are 
available for cell phone 
filters.

• Frequency-Q products 
over 1013

• However, power levels are 
too low

• For logic, engineer would 
like to design a non 
sinusoidal waveform
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A New Computing Device: Quantum Dots

• Pairs of molecules create a 
memory cell or a logic gate

Ref. “Clocked Molecular Quantum-Dot Cellular Automata,” Craig S. Lent and Beth Isaksen 
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 9, SEPTEMBER 2003
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Upside Potential of Quantum Dots
Next Slide

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent, 
JOURNAL OF APPLIED PHYSICS 15 JULY 2003
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Upside Potential of Quantum Dots

>104 ×

 
Improvement
@ 100 GHz

& 60°

 

K

100 GHz1 THz10 THz100 THz
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

En
er

gy
/E

k

“Reliability Limit”

1000 ×

2004 Device Level

150 ×

“Landauer Limit”

Dissipation for 
reversible 
operations

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent, 
JOURNAL OF APPLIED PHYSICS 15 JULY 2003
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Reversible Multiplier Status

• 8×8 Multiplier Designed, 
Fabricated, and Tested by 
IBM & University of 
Michigan

• Power savings was up to 
4:1
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Reversible Microprocessor Status

• Status
– Subject of Ph. D. thesis
– Chip laid out (no 

floating point)
– RISC instruction set 
– C-like language
– Compiler
– Demonstrated on a PDE
– However: really weird 

and not general to 
program with +=, -=, etc. 
rather than =
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Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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Outline

• Overview
– Insight From a Dinner 

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling 

Limits per ITRS
– Consequence to 

System Performance 
per Burger and Keckler 
Study 

• What It Means and What 
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing
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Why Quantum Computing is Interesting

• A Superset of Digital
– Spin “up” is a 1
– Spin “down” is a 0
– Other spins

• Sidewise
• Entangled
• Phase

– Like wildcards
• 1011??????  
• Up to  2N states Æ

in “quantum parallel”
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Ion Trap Quantum Gates

• Hyperfine (internal qubit) 
frequencies are ω0 and ω1

• Vibrational center of mass 
frequency is ωc

• Laser at frequency ω0 ± ωc 
or ω1 ± ωc couples qubit 
from hyperfine state to 
vibrational state and back

• Appropriate frequencies 
selectively move qubits 
based on data

• Works on superpositions

• Two ions in an ion trap

• Laser beam frequency ω

ϕ1

θ1

ϕ0

θ0

Vibrational 
“spring” 

f= ωc
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Reliable Quantum Operations

• Microprocessors use ECC 
for memory and crash 
when logic errors occur

• QEC includes technology 
for error detection and 
correction on both 
memory and operations

• Example on right performs 
Toffoli operation on 
protected blocks, 
producing a protected 
block

• Toffoli Gate

“Fault-Tolerant Logical Gate Networks for CSS 
Codes,” Steane, A, Ibinson, B, quant-ph/0311014 
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Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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Quantum “Algorithms”

• Category 1: No Speedup
– A quantum computer will 

be able to execute 
conventional computer 
logic – with no advantage

• Category 2: Grover’s 
Algorithm with Quadratic 
Speedup
– Given an “Oracle” 

function, a QC can search, 
average, min, max, 
integrate, in n1/2 steps to 
same accuracy as a 
classical computer gets in 
n steps 

• Category 3: Shor’s 
Algorithm with Exponential 
Speedup
– There are a series of 

problems related to the 
“hidden subgroup 
problem” that can be 
solved with exponential 
speedup over a 
classical computer.

– Includes code cracking 
and physics simulation
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Emergence of Quantum Computing

• There appears to be an 
engineering case for 
quantum computers of 
1-100 Q-FLOPS

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

• One would expect an 
exponential growth rate 
for quantum computers 
similar to Moore’s Law, 
but the rate constant is 
impossible to predict, 
so three possibilities 
have been graphed

Opti
mist

ic:
 10

0 Q
FL

OPS + 
3x

/ye
ar

Top500: 10 QFLOPS + 2x/y
ear

Moore’s Law: 1 QFLOPS + 1.3x/year

Cluster Projection
“Advanced Architecture”

Ref. “How to build a 300 bit, 1 Gop quantum computer,” Andrew M. Steane, Clarendon Laboratory, UK, quant-ph/0412165

NOTE: Years are gone because 
I hesitate to predict!
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Quantum Applications

• Consider the classical 
computer equivalent to 
a Quantum Computer

• First use believed to be 
factoring in crypt- 
analysis, with expo- 
nential speedup over 
classical computers (blue)

E
xp

on
en

tia
l

S
pe

ed
up

C
ry

pt
an

al
ys

is
E

. g
. F

ac
to

rin
g

• Second, a quantum 
computer can also be 
used for other 
applications (pink) with 
quadratic speedup (e. g. 
Actinide chemistry)

Qua
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t
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h 
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GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

Cluster Projection
“Advanced Architecture”

NOTE: Years are gone because 
I hesitate to predict!
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Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation
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One Slide Taxonomy of Quantum Algorithms

• Exponential speedup for
– Period finding (see Æ)
– Hidden subgroup 

problem
• Factoring
• Discrete logarithms
• Algorithms for 

problems I never heard 
about except for QC

• Quadratic speedup for
– Searching
– Average, min, max

• Feynman asserted that a 
QC could combat low 
efficiency of classical 
computer for simulating 
quantum problems
– This assertion has been 

repeatedly proven, but 
there are few concrete 
algorithms

– This could be a “killer 
app” domain for 
supercomputing
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Overall Prescription for Fast Computing

• High node visit rate
• Small size
• Fast propagation velocity
• Parallel
• Organize program graph 

for short distances
• Programming language 

must aid programmer in 
creating short, parallel 
graphs

• Programmer must use 
language effectively

D
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A
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e
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m
m
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Remember 
the dinner 

conversation
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Overall Summary

• Find more parallelism. While device technology 
will continue to improve exponentially for some 
time, exploiting these advances will require more 
parallelism in code.

• There is parallelism to exploit for many 
supercomputing applications areas.

• Single-node C++, Fortran, etc. codes will not 
improve in speed very much at all.

• Innovative programming methods will be 
rewarded by higher performance for a very long 
time into the future.

Please fill out the survey
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The International Technology Roadmap 
for Semiconductors

 and Its Effect on 
Scalable High End Computing

Peter M. Kogge 
McCourtney Prof. of CS & Engr, Concurrent Prof. of EE

Assoc. Dean for Research, University of Notre Dame
IBM Fellow (ret)
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Why Is Supercomputing Hard 
In Silicon: Little’s Tyranny

Concurrency =    Throughput
Latency

ILP: Getting tougher & tougher to increase
• Must extract from program
• Must support in very complex H/W

Getting worse fast!!!!
(The Memory Wall)

Much less than peak
and degradingdegrading rapidly
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Technology Limits to Applications
 (from NRC’s

 

“Getting Up to Speed”)
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Performance 
Flops 1 X X X

Memory 
Capacity X 3 2 X

Memory 
Bandwidth X X X X 4

Memory 
Latency X X X X 4

Interconnect 
Bandwidth X X X X 4

Interconnect 
Latency X X X X 4

1 Radar Cross section
2 Genomics
3 Automobile Noise
4 Biological Systems Modeling

It’s
NOT
Just
Flops



SC06 Tutorial © DeBenedictis, Keyes, Kogge
4

Why Look at Technology Scaling

• What are the basic units of memory & logic 
– In terms of functionality per sq. cm

• How will these change over time
• How with their individual performance characteristics 

change
• When do real-world limits come into play

– Power and inter-chip bandwidth
• What’s the likely best “chip” architectures
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What Seems to Be The Consensus

• Silicon will remain with us, but
– Power becoming dominating concern
– Individual CPU core complexity flattening
– Clock rate increases flattening
– Commodity memory bandwidths stagnant
– Chip-to-chip growing in importance

• Impact on building-block chip architecture
– Moore’s Law converts to parallelism –

 

within the chip
– Line between “Logic”

 

and “Memory”

 

chips blurs
• We will increase “threads per die” not

 
“IPS/core”
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Outline

• Silicon Fundamentals
• Scaling
• ITRS Roadmap
• Limits on Classical Chips
• Multi-threading & Multi-core 
• Processing in Memory
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Silicon Fundamentals

• MOSFET Transistor
• Simple  Logic Circuits
• Variations of Memory
• Multiple Levels of Metal
• Off-Chip Interconnect
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A MOSFET Transistor

Silicon Substrate

Metal

Polysilicon
Source Gate Drain

Diffusion
Silicon Dioxide 

Insulator

An Electric field Here

Causes tunneling here
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Key Device Parameters

tox

W

L
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A Logic Inverter

Ground

Input

Output

Vdd (Positive)

Input

OutputGnd Vdd

N-Type Diffusion/Transistor
• electron rich
• Turns on with + gate

P-Type Diffusion/Transistor
• electron poor
• Turns on with - gate

N-Type
Transistor

P-Type
Transistor
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Logic Examples

In1 In2 In3 In4

Vdd

GND

Out

4 Input NAND Gate Full Adder
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Memory Arrays

1 out of 16
Decoder

Column Precharge Logic

Sense Amplifiers

Data0 Data1 Data2 Data3

Address (6 bits)

4

2

Sample 4 bit x
64 word array

Gnd
DRAM

Gnd

Vdd

Left
Column

Right
Column

Row Address

Column
Address

Row Select

SRAM
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Key Types of Memory Cells

• Commodity DRAM
• Embedded DRAM
• SRAM
• Flash

– NAND Type
– NOR Type

Peak Bandwidth

L
at

en
cy DRAM

EDRAM

SRAM

Better

Power

D
en

si
ty

DRAM

EDRAM

SRAM

Better

No single optimal choice!
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Compact DRAM Cells for Memory Arrays

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

E. Adler, et al, “

 

The evolution of IBM CMOS DRAM technology,”

 

IBM J. R&D, Vol. 39, No. ½, p.167, 1995.

Row Select Line

Bit Column Line
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Compact DRAM Cells for Memory Arrays

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

E. Adler, et al, “

 

The evolution of IBM CMOS DRAM technology,”

 

IBM J. R&D, Vol. 39, No. ½, p.167, 1995.
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Multiple Levels of Metal

Bonding
Pad
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Off-Chip Interconnect

Wire Bond

Wire “welded” to pad

C4 Solder Ball
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3D Chip Stacks

Flip chip

Thru-Die Vias

Metal wires on side of Cube
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Scaling & ITRS Roadmap
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Device Scaling

Key parameters: Gate length L, width W 
• “On”

 

resistance ~ to L/W
• “Delay”

 

~ LW/tox
• Decreasing L thus a “good thing”
• Other “shrinkable” dimensions: 

– tox

 

, metal width, spacing between wires, …

“Scaling:” shrink some feature by factor “S” and:
• Reduce chip area to perform some function
• Increase frequency of operation
• Reduce operating voltage
• Reduce circuit power

Key Metric: Power density = power per unit area

tox

W

L
tox

W

L
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Variations in Real World Scaling:
 Primarily Coupling with Vdd

• Full scaling: Ideal if possible
– Keep gate capacitor E-field constant
– Requires scaling L, W, tox,

 

, Vdd
– Area shrinks, power drops, higher 

clock
• Fixed Vdd Scaling: Common until late 

1990s
– Scale only L, W
– Keep Vdd

 

constant
– Same area shrink, very high clock, 

terrible power
• General Scaling: Typical today

– Different scale factors for different 
parameters

– Vdd

 

does not drop as fast 
(approaching another limit)

– Lower peak clock, but better power & 
power density
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Approximate Scaling Relationships

Parameter Full Fixed V General Full Fixed V General
W, L 1/S 1/S 1/S 1/S 1/S 1/S
tox 1/S 1/S 1/S 1/S 1/S 1/S
Vdd 1/S 1 1/U 1/S 1 1/U

Circuit Area 1/S^2 1/S^2 1/S^2 1/S^2 1/S^2 1/S^2
Clock S S^2 S^2/U S S S

Circuit Power 1/S^2 S S/U^3 1/S^2 1 1/U^2
Power Density 1 S^3 S^3/U^3 1 S^2 S^2/U^2

"Long Channel" Devices "Short Channel" Devices

The Original Moore’s Law: 
• 4X “functionality” every 3 years
• “Interpreted” as ~ S=2 every 3 years
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International Technology 
Roadmap for Semiconductors 

• Goal: predict scaling for next 15 years
– Convert “Moore’s Law”

 
into detailed projections

– Identify technical roadblocks
• Result of a worldwide consensus

– U.S.A, Europe, Japan, Korea, and Taiwan
• Dating back to 1994

– Initially every three years
– But now significant yearly “updates”

• This data from 2005 update (released Dec. 2005)
– http://www.itrs.net/Links/2005ITRS/Home2005.htm
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Trends And Challenges Addressed

Trends Charted:
• Integration Level: 

Components/chip
• Cost: $ per function
• Speed: Microprocessor clock 

rate, GHz
• Power: Laptop or cell phone 

battery life
• Compactness: Small and 

light-weight products
• Functionality: Nonvolatile 

memory, imager

Challenges Identified:
• System Drivers & Design
• Test & Test Equipment
• Process Integration, Devices, 

& Structures
• Front End Processes
• Lithography
• Interconnect
• Factory Integration
• Assembly & Packaging
• Environmental Safety & 

Health
• Yield Enhancement
• Metrology
• Modeling & Simulation
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Types of Chip Technologies 
Discussed

• Logic: high speed transistor, lots of metal layers
– High Performance Microprocessors
– Cost Performance Microprocessors
– Low Power Microprocessors
– ASICS (Application Specific ICs)
– Also includes memory options: SRAM, Embedded DRAM

• DRAM: high threshold transistors, few metal, cheap fab processes
– High Volume Commodity Dense memory part
– Also includes Flash

• Analog and Mixed Circuits
• Emerging Alternative Technologies
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Common Device Features to Track:
 (With values termed “Feature Sizes”)

• Gate length of a transistor gate “as printed”
• Gate length of a microprocessor transistor 

gate “as physically fabricated”

• ½

 

of minimum pitch between two logic poly 
lines

• ½ of minimum pitch between two DRAM 
metal lines

L

LPHYSICAL

LPRINT

Pitch

Pitch
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Key Terms
• Technology Generation for Year X:

–Minimum feature size in any product in that 
year

• Technology Node: 
–Year in which ~4X growth over prior Node
–Typically tied to DRAM (usually smallest)
–Based on Year of Production
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Feature Size Projections
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Flash 1/2 Pitch MPU Printed Gate Length
MPU Physical Gate Length

Reduction Factor: 0.88 per year or 0.7 per 3 years
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Projected Density Growth (S^2)

Basic area scaling doubles every 3 years

1

10

100

2000 2005 2010 2015 2020

D
en

si
ty

 R
el

at
iv

e 
to

 2
00

4

Raw DRAM Density vs 2004 Raw MPU Density vs 2004
Raw Flash Density vs 2004 2X every 3 Years



SC06 Tutorial © DeBenedictis, Keyes, Kogge
30

Comparison to Moore’s Law
• Moore’s Law: ~4X functionality per 3 years
• But feature scaling provides only 2X
• Providing difference for microprocessors

– Clock frequency increase
– More parallelism in CPU microarchitecture

• Providing difference for DRAMs
– Denser cell design
– Bigger die area

• Both are reaching limits
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Commodity DRAM Capacity

• Cell Area: area of one bit
– Function of technology scaling & circuit features

• Array area %: % of chip that is cell
– Constant at 63% in production

• Chip Capacity: 
– (Chip size * Array area %) / Cell area

• Chip Size:
– Initially increased to achieve Moore’s Law
– Now chosen to maximize yield
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Memory Density: Cells Only
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Chip Capacity

Chip Capacity is No Longer Following Original Moore’s Law
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Logic Chip Density Scaling

Logic functions per unit area: ~2X every 3 years
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Peak Logic Clock Rates
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and we didn’t make it in production.
Further, we’re still stuck at 3+GHz in production.

3 GHz
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Why the Clock Flattening? POWERPOWER
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The Power Equation

• Dissipated Power = Dynamic + Static
• Dynamic Power ~ CV2FA

– V = Vdd

– F = Clock Rate
– A = Activity Rate = % of transistors that switch at each clock
– C = Effective capacitance switched at each clock

• ~ # of transistors switched x transistor gate capacitance

• Static Power: leakage from each device
– GROWING with # of devices

~ (1/S)2 = “Growing” ~ S2 = “Decreasing”

Approx. 
Constant
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Constraining Clock Rate 
for Flat Power Density

And we haven’t accounted for increase in static leakage power!!!
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What Are Our Options?

• Live with lower clock rates than technology allows?
• Use higher threshold transistors to lower static 

leakage power
– Still fits in lower clock regime
– Possibly requires higher Vdd

• Decrease amount of “speculative execution”
– Eg. shorter pipes, less out-of-order

• Lower the average number of transistors per unit 
area that switch per cycle
– Increase % of die that’s memory
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Off Chip Bandwidth 

• Today’s Architectures: need to go off-chip for memory 
access
– And we don’t have enough bandwidth today

• Upper limit = product of:
– # of off-chip pins/contacts
– % not used as power/ground
– Max signaling rate per pin

• Density & signal rate improve with time
– With 50% power/ground
– But they don’t match growth in performance potential
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Off-Chip Parameters
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Does Logic Performance Match 
Off-chip Bandwidth Potential?
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What Are Our Options for Bandwidth

• Place much faster interface logic on memory 
chips
– And raise power and fabrication cost

• Add additional memory ports to MPU chips
– And raise power and packaging

• Switch to narrow but very high speed memory 
channels
– And require external memory controller chips
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On-Chip Wire Speed
 (Very Simplistic Approximation)

• C ~ LxW
• R ~ L/(WxH)
• Thus RC ~ L/H
• Scenario #1: L scales with technology

– Such as inside a core that shrinks in size
– And so does W, H
– Then RC ~ same (no scaling with clock)

• Scenario #2: L is constant 
– As in crossing a die of a fixed size
– Then RC goes up as H shrinks

• Conclusion: on-die interconnect getting slower!!!
• AND THIS IS ONLY A SIMPLE APPROXIMATION!

W

WL

H

See for example: Banerjee, et al, “Interconnect Modeling and Analysis in the Nanometer Era: Cu and Beyond,”

 

22nd Advanced Metallization Conference
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The  Way We Were:
 A Brief Romp Thru
 Single Core Microprocessor Land

• Data from last 30 years of real chips
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Historical Changes in Single-Core MPU 
Parameters
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Functionality

• ~ 4X per die every 3 years
• But: Most in cache
• And partially due to larger die
• And off-chip clock rates lagging

• Historically ~ 2.3X every 3 years
• But: increasing clock increases memory 
wall
• And clock rates stagnating
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How Are We Using These Transistors
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Let’s Look at Transistor Usage
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The  Way We Were:
 A Brief Romp Thru
 Memory Land

• Data from last 30 years of real chips
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• Memory mats: ~ 1 Mbit

 

each
• Row Decoders
• Primary Sense Amps
• Secondary sense amps & “page”

 

multiplexing
• Timing, BIST, Interface
• Kerf

Classical DRAM
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Basic Memory Operations

Read:
• Send Row Address to chip
• Start row access in memory array

– This results in up to 2048 bits read into “sense 
amps,”

 
“row buffers,”

 
…

• Send Column Address to chip
– This selects small (4, 8, 16) # of bits from 

previously read row for off-chip
Page Mode:
• Continue with multiple Column Addresses
Refresh:
• Write current row back into memory array

Memory
Latency
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Conventional DRAM Part PinOut

Row Address (14)

Column Address (13)

66 Pin Package

Bank Address (2)

Shared Data Bus (4, 8, 16)

Command Strobes
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Chip-Level Memory Bandwidth
• Memory Bandwidth: Bits per second that move across chip
• Early parts: Unbuffered: One transfer per memory latency

– Separate address/command/data pins
• Improvements:

– Pipeline different accesses
• Fast Page Mode, Synchronous

– Include multiple independent banks within chip
• DDR: up to 4; RDRAM: up to 32

– Run interface at higher clock rate channel
– Point to point synchronous data channels

• XDR
– Multiple data transfers per clock

• Double Data Rate (DDR); XDRAM: 8 transfers per clock
– Change from parallel to serial packet protocols

• RDRAM
• State of Art:

– DDR2-800: 2 transfers/clock x 400MHz x {4, 8, 16b} ≤

 

1.6GB/s
– XDR:  2 channels x 3.2GHz x 8b/channel ≤

 

6.4GB/s
– RDRAM: 2 x 8b x 1.6GHz ≤

 

3.2GB/s
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Alternative Chip Interfaces
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8b Data Channel

Adr/Cmd

 

(12)

Clock (400MHz)

@ 8xClock

@ 8xClock
XD

R
A

M

9b Packet Bus

9b Packet Bus

Strobes

Clocks

R
D

R
A

M

Commands & Addresses
Serialized into Split Packets



SC06 Tutorial © DeBenedictis, Keyes, Kogge
58

Packaging Multiple Memory Chips

http://upload.wikimedia.org/wikipedia/commons/d/d3/RAM_n.jpg
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Typical Electrical Configuration
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Controller
• Functions:

– Aggregate bandwidth from many separate chips
– Convert parallel memory ops from CPU to specific memory 

chip timing
– And reassembling data from memory for relay to CPU
– Handle refresh cycling of memory
– Parity generation and/or checking
– Southbridge connection to I/O interfaces

• Until recently, a separate chip:
– Adds latency
– But allows same MPU to use different memory types

• Additional functionality:
– Interleave different requests to better utilize memory
– More pipelining to increase pipelining
– Multiple memory interfaces for concurrent memory bands
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A New Alternative: RL DRAM
 (Reduced Latency DRAM)

. . .

• Enter requests 1/cycle
• Request traverse to correct card
• Correct card starts operation, and forwards nop
• At end of line, “empty slot”

 

returned other way
• When empty slot reaches card, replaced by data

AMB: 
Advanced
Memory
Buffer Chip
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Our Brave New World:
 Adding More Threads to a Single Die

• Multi-Threading
• Multi-Core
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Technology Trends Forcing 
Parallelism

• ITRS predictions

– Growing chip density

– Power becoming paramount

– Single core complexity becoming overwhelming

• Result: Classical Single thread preformance
 

flattening

• Answer: Relentless Parallelism: 

– Break program into independent threads

– Chip-level Multi-processing (CMP): multiple cores on same die

– Multi-thread parallelism: executing multiple threads on same 
core (“virtual multi-core”)

• Both

 

are possible –

 

on same die
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Performance Gains from 
Explicit Parallelism

• Application speedup: run all threads for one application 
execution at same time
– Ideal speedup from N concurrent threads = N
– Limited by Amdahl’s Law

• Throughput increase: pipeline execution of different 
data sets through N steps/cores
– Ideal throughput increase = N
– Limited by pipelining effects

• Different multi-core architectures emphasize different 
performance metrics
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Multi-Threading

• Thread: execution of a series of inter-dependent 
instructions in support of a single program

• Today’s single threaded CPUs
– Dependencies reduce ability to keep function units busy
– Limited support for memory operations “in flight”

• Multi-threading: allowing multiple threads to take turns 
using same CPU logic
– Typical requirement: multiple register sets

• Variations:
– Coarse-grained MT: Change thread only at some major event
– Fine grained MT: Change thread every few instructions
– Simultaneous MT: interleave instructions from multiple threads



SC06 Tutorial © DeBenedictis, Keyes, Kogge
66

MT Advantages

• Hide long-latency memory operations 
• Larger pool of unrelated instructions to feed 
function units

• Simplify scheduling of multiple activities 
• In SMT designs: guaranteed independent 
instructions in pipelines eliminates need for 
expensive forwarding and reordering
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A Brief History
 of Multi-threaded Processors
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Multi-Core

• More complex CPU cores no longer cost effective
– High complexity & design costs
– “Slow wires”

 

make high clocks tough
– Decreasing efficiency due to relatively slower memory
– Need bigger caches for latency 
– Power, Power, Power, …

• Solution: “reuse”

 

simpler design in better technology & place 
multiple cores on same die
– Combine with shared memory hierarchy
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The Tide of Announcements
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The Number of Cores per 
Announcement
Multi-core Announcements
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Scaling Today’s Single Core uP
 

Chips

ITRS Projected 280 mm2 uP die
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What’s The Multi-core Potential

Assume we scale entire current single core chip & replicate to fill 280 sq mm die
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Examples of Multi-Core Designs

• Microprocessors
– 1993: EXECUBE
– IBM POWER4 dual-core
– Intel XEON dual-core
– Sun dual core UltraSPARC
– IBM CELL 9 way 
– IBM Bluegene/L dual core with embedded DRAM
– Sun Niagara 8 way core
– Clearspeed

 

Array Processors
• Specialized chips

– Network processors (up to 100s of cores)
– Graphics & game processors

• Many multi-core designs also using multi-threaded cores
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Why are MC Cores Going Simple? Today’s Single 
Threaded Core Performance = IPC x Clock

• More stages => higher branch & 
forwarding penalties

• Higher clock => larger relative memory 
latency

– Requires bigger caches
• Result: performance now dominated by 

# of permitted outstanding loads 

Issue Width Drives 
Microarchitectural Performance

- At an Area Cost 
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Notional Core Design Space
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What is Today’s Multi-Core Design Space

Cache/Memory

Cache

Core Core

. . .

. . .
Cache

Core Core

. . .

(a) Hierarchical Designs

C
O
R
E

C
O
R
E

C
O
R
E

M
E
M . . .

Cache/Memory

(b) Pipelined Designs

Cache/
Memory

Core

Cache/
Memory

Core
. . .

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Interconnect & Control

(c) Array Designs

• Intel Core Duo
• IBM Power5
• Sun Niagara
• …

• IBM Cell
• Most Router chips
• Many Video chips

• Terasys
• Execube
• Yukon
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Multi-Core Projection Models

• “Fill the die”: Add cores to fill die
– Contacts for external memory bandwidth will dominate die 

area
• “Processing in Memory”: merge with memory

– Lots of local bandwidth, single part type design
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See P. Kogge, “An Exploration of the Technology Space for Multi-Core Memory/Logic Chips for  Highly Scalable Parallel Systems,” IEEE Int. 
Workshop on Innovative Architectures, Turtle Bay, Hawaii, Jan. 2005.
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Another Reason for Multi-Core: 
Yield Enhancement

• Add extra cores for redundancy
– Requires associated interconnect

• Sell die with less than full performance
• Recent case study (Kogge, IWIA, Jan. 2006)

– Goal: “cheapest”

 

chip with constant storage/MIPS/I/O
– Core IPC assumed sqrt(area)
– Parameters: ITRS roadmap, die size, core complexity
– Approach: sweep parameter space for highest perf/wafer

• Key results
– Yield considerations favor smaller die
– Optimal core microarchitecture: simplest
– Adding purely redundant cores of little value
– Selling partially good die reasonable good idea
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Silicon Alone is not the Complete Story

• Only 20% of MCM is silicon
• And we haven’t accounted for the heat sink! 
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Observations

• Silicon growing irregularly in
– Memory density per square cm
– Performance possible per square cm
– Off-chip I/O bandwidth per square cm

• 99% of today’s logic chips
– Do no computation
– And are mostly memory

• And we pay a huge overhead when 
– Densest memory technology not used
– Memory & logic on separate chips

• It’s the interconnect to memory, stupid!
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A Contrarian’s View
 Processing in Memory:

 The Grand Synthesis 
of Logic and Memory
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How can we use a sq. cm?
 (with no overhead)
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Knee Curves with Basic Overheads
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Knee Curves with Today’s Overheads
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Minimal Size for a “Peta”
 

System
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• In terms of silicon area: “It’s the memory!”
• We extract little benefit from most of our high cost logic
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“Processing-In-Memory”
• High density memory on same chip with 

reasonable dense logic
– Not just caches

• Very fast access from logic to memory
• Very high bandwidth
• ISA/microarchitecture designed to utilize 

high  bandwidth
• Tile with “memory+logic”

 

nodes

Interconnect
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parcels

outgoing
parcels
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The PIM 
“Bandwidth Bump”
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PIM Chip 
MicroArchitectural Spectrum
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PIM System Design Space: 
Historical Evolution

• Variant One: Accelerator

 

(historical)
• Variant Two: Smart Memory

– Attach to existing SMP (using an existing memory bus interface)
– PIM-enhanced memories, accessible as memory if you wish
– Value: Enhancing performance of status quo

• Variant Three: Heterogeneous Collaborative
– PIMs become “independent,”

 

& communicate as peers
– Non PIM nodes “see”

 

PIMs as equals
– Value: Enhanced concurrency and generality over variant two

• Variant Four: Uniform Fabric (“All PIM”)
– PIM “fabric”

 

with fully distributed control and emergent behavior
– Extra system I/O connectivity required
– Value: Simplicity and economy over variant three

• Option for any of above: Extended Storage
– Any of above where each PIM supports separate dumb memory chips
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TERASYS SIMD PIM 
(circa 1993)

• Memory part for CRAY-3 
• “Looked like” SRAM memory

• With extra command port
•128K SRAM bits (2k x 64)
• 64 1 bit ALUs
• SIMD ISA
• Fabbed by National
• Also built into workstation with 64K 
processors

• 5-48X Y-MP on 9 NSA benchmarks

Gokhale, M., Holmes, B., Iobst, K.: Processing in Memory: the Terasys

 

Massively 
Parallel PIM Array. Computer , 28(3):23--31, April 1995.
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EXECUBE: An Early MIMD PIM 
& 1st

 
True MC (1st Silicon 1993)

• First DRAM-based Multi-Core with Memory
• Designed from onset for “glueless” one-part-type scalability
• On-chip bandwidth:

 

6.2 GB/s; Utilization modes > 4GB/s

8 
Compute Nodes

on ONE Chip

MEMORY MEMORY MEMORY MEMORY

MEMORY MEMORY MEMORY MEMORY

CPU

CACHE CACHE

Include
“High Bandwidth”
Features in ISA

EXECUBE: 
3D Binary Hypercube
SIMD/MIMD on a chip

Kogge, “EXECUBE,”

 

ICPP, 1994.
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RTAIS: The First ASAP
 (circa 1993)
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• Application: “Linda in Memory”
• Designed from onset to perform wide ops “at the sense amps”
• More than SIMD: flexible mix of VLIW
• “Object oriented” multi-threaded memory interface
• Result: 1 card 60X faster than state-of-art R3000 card
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Mitsubishi M32R/D

DRAM
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DRAM

DRAM

24 bit address bus16 bit data bus

Also two 1-bit I/Os

• 32-bit fixed point CPU + 2 MB DRAM
• “Memory-like” Interface
• Utilize wide word I/F from DRAM macro for cache line

Yasuhiro Nunomura et al, “M32R/D-Integrating DRAM and Microprocessor,”

 

IEEE Micro, Nov/Dec 1997
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DIVA: Smart DIMMs
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Irregular Data Structures
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• Treat memory as 
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DIVA Functions:
• Prefix operators
• Dereferencing & pointer 
chasing
• Compiled methods
• Multi-threaded
• May generate parcels

CPU
C

A
C

H
E

Conventional
Motherboard

• 1 CPU + 2MB
• MIPS + “Wide Word”

Draper, et al. The Architecture of the DIVA Processing-In-Memory Chip. ICS'05
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Micron Yukon

• 0.15μm eDRAM/ 0.18μm logic process
• 128Mbits DRAM

– 2048 data bits per access
• 256 8-bit integer processors

– Configurable in multiple topologies
• On-chip programmable controller
• Operates like an SDRAM

SDRAM-like interface

FIF

 

O
Task Dispatch Unit

FIFO FIFO

M16 PE 
sequenc

 

er

DRAM 
Control 

Unit

256 
Processing 
Elements

Register Files

16MBytes 
Embedded 

DRAM

HMI

Synchronisation

Host 
(remote)

G. Kirsch, “Active Memory: Micron’s Yukon,”

 

IPDPS 2003.
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Berkeley VIRAM

• System Architecture: single chip 
media processing

• ISA: MIPS Core + Vectors + DSP ops
• 13 MB DRAM in 8 banks
• Includes flt

 

pt
• 2 Watts @ 200 MHz, 1.6GFlops

4 “Vector Lanes”

MIPS

http://iram.cs.berkeley.edu/papers/2000.HotChips.VIRAM.pdf#search=%22VIRAM%22
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The HTMT Architecture &
 PIM Functions

• Compress/Decompress
• Spectral Transforms

• Compress/Decompress
• ECC/Redundancy

• Compress/Decompress
• Routing

3D
Mem

DRAM
PIM

OPTICAL SWITCH

SRAM
PIM

RSFQ
Nodes

I/O FARM

• RSFQ Thread Management
• Context Percolation
• Scatter/Gather Indexing
• Pointer chasing
• Push/Pull Closures
• Synchronization Activities

• Data Structure 
Initializations 
•“In the Memory”

 

Operations

New Technologies:
• Rapid Single Flux Quantum (RSFQ) devices for 100 GHz CPU nodes
• WDM all optical network for petabit/sec bi-section bandwidth
• Holographic 3D crystals for Petabytes of on-line RAM
• PIM           for active memories to manage latency

PIMs in Charge
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Bluegene/L

• Two simple cores with dense embedded DRAM technology
• Included 4MB of on-chip embedded DRAM
• Designed to scale simply to bigger systems
• Basis for several of world’s TOP500 machines

4 MB EDRAM
L2 Cache

Interface Logic

L1I L1D

PPC 440

DP FPU

L1I L1D

PPC 440

DP FPU

Memory I/FNode-Node I/F

S. S. Iyer, et al, “Embedded DRAM: Technology platform for the Blue Gene/L chip,”
IBM J. R&D, Volume 49, Number 2/3, Page 333 (2005)
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PIM Lite

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

• “Looks like memory”

 

at Interfaces
• ISA: 16-bit multithreaded/SIMD

– “Thread”

 

= IP/FP pair
– “Registers”

 

= wide words in frames
• Designed for multiple nodes per chip
• 1 node logic area ~ 10.3 KB SRAM 

(comparable to MIPS R3000)
• TSMC 0.18u 1-node 1st

 

pass success
• 3.2 million transistors (4-node)

Thread
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Frame
Memory

Instr
Memory ALU Data

Memory

Write-
Back
Logic

Parcel in (via chip data bus) Parcel out (via chip data bus)

Instruction Memory
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Data Memory
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Thread Pool

Write-Back Logic
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Instruction Memory
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Data Memory
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CELL 
(A Pipelined, Array, Hierarchical MC Chip)

http://www.research.ibm.com/cell/cell_chip.html

SPE SPE SPE SPE

SPE SPE SPE SPE

I/O

PPC

Mem
XDR

XDR

Each SPE has
256KB local

memory

Roadrunner system: 16K MC Opterons
+ 16K Cell chips
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Projecting Ahead: 
Optimizing the Multi-Core PIM Chip

What is optimal # cores/die?
• Assuming fixed memory per unit of processing
• Considering yield effects (smaller die=>more good die)
• Assuming cross-bar inter-core interconnect
• Considering adding redundant cores
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See Kogge & Brockman, “Redundancy in Multi-core Memory-rich Application-Specific PIM Chips, “

 

IWIA 2006
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One Step Further: 
Allowing the Threads to Travel

• “Overprovision”
 

memory with huge numbers of 
anonymous processors
– Each multi-threaded

• Reduce state of a thread to ~ a cache line
• Make creating a new thread “near”

 
some memory 

a cheap operation
• Allow thread to “move”

 
to new site when locality 

demands
Latency reduced by huge factors
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Next: An “All-PIM”
 

Supercomputer

PIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIM

Interconnection
Network

PIM Cluster
PIM Cluster

“Host”
PIM Cluster

I/O

A “PIM Cluster”

A “PIM DIMM”
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Summary
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Summary

• When it comes to silicon: It’s the Memory, Stupid!
• Technology scaling progressing at uneven rates

– Transistor density continuing improvement
– Power limiting clock rate growth
– Voltage improvement slowing
– Off-chip I/O becoming a killer

• Today’s solution: multi-core, multi-threaded uP
 

dies
– Increases # of threads per core 
– But doesn’t solve bandwidth to memory problem

• State bloat consumes huge amounts of silicon
– That does no useful work!
– And all due to focus on “named”

 
processing logic



SC06 Tutorial © DeBenedictis, Keyes, Kogge
107

How Might We Make It Better?

• Reduce thread state
– Cost of moving/copying state => line reference

• Relentless multi-threading execution models
• Simplify cores and “overprovision”

– “Pitch-match”
 

to memory macro
• Focus on “cheap”

 
logic in dense memory fab process

– Don’t fret the clock rate
• Change execution model from “named”

 
core to 

anonymous core “nearest”
 

memory object
– A “Traveling Thread”

 
need never “wait”

 
for 

processing resources
– Convert two way latencies to one way
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