
Review & Approval System - Search Detail https://cfwebprod.sandia.gov/cfdocs/RAA/templates/index.cfm

1 of 1 1/2/2008 3:01 PM

 New Search
Refine Search
Search Results

Clone Request
Edit Request
Cancel Request

 Search Detail

Submittal Details
Document Info

 Title : Issues for the Future of Supercomputing: Impact of Moore's Law and
Architecture on Application Performance

 Document Number : 5246357 SAND Number : 2006-5989 P
 Review Type : Electronic Status : Approved
 Sandia Contact : DEBENEDICTIS,ERIK P. Submittal Type : Viewgraph/Presentation
 Requestor : DEBENEDICTIS,ERIK P. Submit Date : 09/26/2006

 Comments : This is a tutorial at SC 06 performed in conjunction with Peter
Kogge and David Keyes

 Peer Reviewed? : N
Author(s)
 DEBENEDICTIS,ERIK P.
Event (Conference/Journal/Book) Info
 Name : Supercomputing 2006 Tutorial M06
 City : Tampa State : FL Country : USA
 Start Date : 11/13/2006 End Date : 11/13/2006
Partnership Info
 Partnership Involved : No
 Partner Approval : Agreement Number :
Patent Info
 Scientific or Technical in Content : Yes
 Technical Advance : No TA Form Filed : No
 SD Number :
 Classification and Sensitivity Info

 Title : Unclassified-Unlimited Abstract : Document : Unclassified-Unlimited

 Additional Limited Release Info : None.

 DUSA : DIS-CS

Routing Details
Role Routed To Approved By Approval Date

Manager Approver PUNDIT,NEIL D. PUNDIT,NEIL D. 09/27/2006
Conditions:

Administrator Approver LUCERO,ARLENE M.

Created by WebCo Problems? Contact CCHD: by email or at 845-CCHD (2243).

For Review and Approval process questions please contact the Application Process Owner

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
1

Tutorial M06

David E. Keyes

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
2

0)(=Φ u

http://www.siam.org/news/

(“current issue”)

http://www.siam.org/news/

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
3

Presentation Features
• Briefly reflect on recent progress in high-end scientific computing, as

illustrated on Bell Prize-winning applications –

why?
– Bell has attracted high-end attention thru two decades of

architectures
– Winners document performance issues beyond details found in other

computational science papers, which instead emphasize science
– PDE-based simulations are the dominant type of Bell submission
– Performance-orientation exposes an interesting fallacy for our

discussion ☺
• Look generically at PDE-based simulation and the basis of continued

optimism for its growth –

capability-wise, looking at real applications
• Look at some specific hurdles to PDE-based simulation posed by high-

end architecture

• Study in detail an unstructured Bell Prize entry to note architectural
stresses

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
4

Technical aspects of presentation
• Introduce a parameterized highly tunable class of

algorithms for parallel implicit solution of PDEs
– understand the source of their “weak scalability”
– understand their lack of “strong scalability”
– understand why explicit algorithms generally do

not scale, even weakly, in the high spatial
resolution limit

• Note some algorithmic “adaptations”

to architectural
stresses

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
5

Gordon Bell Prize “peak performance”

Five orders
of magnitude
in 17 years

Year Type Application No. Procs System Gflop/s
1988 PDE Structures 8 Cray Y-MP 1.0
1989 PDE Seismic 2,048 CM-2 5.6
1990 PDE Seismic 2,048 CM-2 14
1992 NB Gravitation 512 Delta 5.4
1993 MC Boltzmann 1,024 CM-5 60
1994 IE Structures 1,904 Paragon 143
1995 MC QCD 128 NWT 179
1996 PDE CFD 160 NWT 111
1997 NB Gravitation 4,096 ASCI Red 170
1998 MD Magnetism 1,536 T3E-1200 1,020
1999 PDE CFD 5,832 ASCI BluePac 627
2000 NB Gravitation 96 GRAPE-6 1,349
2001 NB Gravitation 1,024 GRAPE-6 11,550
2002 PDE Climate 5,120 Earth Sim 26,500
2003 PDE Seismic 1,944 Earth Sim 5,000
2004 PDE CFD 4,096 Earth Sim 15,200
2005 MD Solidification 131,072 BG/L 101,700

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
6

Gordon Bell Prize outpaces Moore’s Law

Gordon Moore

Gordon Bell

<<Demi Moore>>

CONCUR-
RENCY!!!

Four orders
of magnitude
in 13 years

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
7

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR

IBM’s BlueGene/L:
 65536 dual procs, 360 Tflop/s

Present offer from IBM

Single cabinet
5.7 TFlop/s peak
$2M in acad. consortium

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
9

Tally of Peak Prize formulations and apps
• 8 ×

Partial differential equations

– Climate, fluids, seismology, structures
• 4 ×

N-body dynamics

– Gravitation
• 3 ×

Molecular dynamics

– Electronic structure, magnetism, solidification
• 2 ×

Monte Carlo methods

– Boltzmann, Quantum Chromodynamics
• 1 ×

Integral equations

– Structures

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
10

Tally of Gordon Bell Peak Prize hardware
Massively Parallel Processor (MPP)Symmetric Multi-Processor (SMP)

cpu cpu cpu

Fast Interconnect

Shared memory

cpu

Mem

cpu

Mem

cpu

Mem

• two to hundreds of processors

• shared

memory

• global addressing

• 4 prizes, last in 1993

Interconnect

• thousands to hundreds of
thousands of processors

• distributed memory

• local addressing

• 13 prizes, including last 12

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
11

The “other”

Bell prizes
• “Peak”

is only one of several types of Gordon Bell Prizes that have
been awarded over the years
– The only one awarded each

time there have been Bell Prizes
• “Price-performance”

has been recognized 12 times, but not since
2001, when it stagnated at about 25 cents per delivered Mflop/s
– A few

of these have been for implementations of PDEs
• “Special”

was first awarded in 1999 and has sometimes inspired
multiple awards per year
– Most

of these have gone to implementation of PDEs
• “Compiler-derived parallelism”

has been awarded three times, most
recently in 2002 for HPF
– Two of these have gone to implementations of PDEs

• “Speedup”

(strong, that is) was explicitly recognized once, in 1992
– For an implementation of a PDE

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
12

Gordon Bell Prize: “price performance”

Year Application System $ per Mflops
1989 Reservoir modeling CM-2 2,500
1990 Electronic structure IPSC 1,250
1992 Polymer dynamics cluster 1,000
1993 Image analysis custom 154
1994 Quant molecular dyn cluster 333
1995 Comp fluid dynamics cluster 278
1996 Electronic structure SGI 159
1997 Gravitation cluster 56
1998 Quant chromodynamics custom 12.5
1999 Gravitation custom 6.9
2000 Comp fluid dynamics cluster 1.9
2001 Structural analysis cluster 0.24

Four orders
of magnitude
in 12 years

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
13

Whimsical remarks on Bell, 1988-2005
• If similar improvements in speed

(105) had been

realized in the airline industry, a 3-hour flight would
require one-tenth of a second today

• If similar reductions in cost (104) had been realized in
higher education, tuition room and board would cost
about $2 per year

• If similar improvements in storage

(104) had been
realized in the publishing industry, our office
bookcases could hold the book portion of the
collection of the Library of Congress (~18M volumes)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
14

Gedanken experiment:
How to use a jar of peanut butter

 with a rapidly dropping price?

• In 2006, at $3.19: make sandwiches
• By 2009, at $0.80: make recipe
substitutions

• By 2012, at $0.20: use as feedstock for
biopolymers, plastics, etc.

• By 2115, at $0.05: heat homes
• By 2118, at $0.012: pave roads ☺

The cost of computing has been on a curve like this for two decades.
Can we count on another decade? If so, like everyone else, scientists
& engineers should plan increasing uses for it. If not …

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
15

Performance vs. time-to-solution
• Gordon Bell peak prizes cannot, by definition, go to thread-

 nonuniform, flop-bare simulations
• Prizes tend to concentrate in regular, Cartesian index space,

flop-rich computations
• There is a conflict between what the peak prize measures and

– what is good for the computational science community, in
terms of getting its work done

– what is good for the computational mathematics
community, in terms of identifying interesting problems

• The “special”

prize attempts to remedy this shortcoming of
the traditional prize, and is often the most interesting category

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
16

Gordon Bell Prize: “special”

Year Application Discretization System
1999 Aerodynamics unstructured Intel ASCI Red
1999 Stellar physics spectral Intel ASCI Red
2000 Reactive flow Cartesian AMR Intel ASCI Red
2001 Relativistic fields structured cluster
2002 Structural dynamics unstructured IBM ASCI White
2002 DNS structured Earth Simulator
2002 Biomolecular dynamics ⎯
2003 Seismic inversion unstructured HP LeMieux
2004 Bone mechanics unstructured IBM ASCI White

8 of 9 “special” awards have gone to PDE simulations

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
17

1999 Gordon Bell “special”

prize

Transonic “Lambda”

Shock, Mach contours on surfaces

• 1999 Bell Prize in “special category”

went to implicit,
unstructured grid aerodynamics problems

– 0.23 Tflop/s sustained on 3 thousand processors of Intel’s
ASCI Red

– 11 million degrees of freedom
– incompressible and compressible Euler flow
– employed in NASA analysis/design missions

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
18

2003 Gordon Bell “special”

prize
• 2003 Bell Prize in “special category”

went to unstructured
grid geological parameter estimation problem

– 1 Tflop/s sustained on 2 thousand processors of HP’s
“Lemieux

– each explicit forward PDE solve: 17 million degrees of
freedom

– seismic inverse problem: 70 billion degrees of
freedom

– employed in NSF seismic research at CMU

reconstruction

target

c/o O. Ghattas, UT Austin

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
19

2004 Gordon Bell “special”

prize

Cortical
bone

Trabecular
bone

• 2004 Bell Prize in “special category”

went to an implicit,
unstructured grid bone mechanics simulation

– 0.5 Tflop/s sustained on 4 thousand procs of IBM’s ASCI
White

– 0.5 billion degrees of freedom
– large-deformation analysis
– employed in NIH bone research at Berkeley

c/o M. Adams, Columbia

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
20

Terascale simulation is pitched as an
alternative to (some) experimentation

Simulation is an important complement
to experiment in many areas

Lasers & Energy

combustion

ICF

Engineering

aerodynamics

crash testing

Environment

global climate

groundwater

Biology

drug design

genomics

Applied Physics

radiation transport

supernovae

Scientific

Simulation

Experiments
controversial

Experiments prohibited
or impossible

Experiments
dangerous

Experiments difficult
to instrument

Experiments
expensive

ITER

$5B

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
21

Context: many recent reports
promote high-end simulation

• Cyberinfrastructure (NSF, 2003)
– new research environments through cyberinfrastructure

• Facilities for the Future of Science (DOE, 2003)
– “ultrascale simulation facility”

ranked #2 behind ITER only
• High End Computing Revitalization Task Force (Interagency, 2004)

– strategic planning on platforms
• Future of Supercomputing (NAS, 2005)

– broad discussion of the future of supercomputing
• PITAC (Interagency, 2005)

– challenges in software and in interdisciplinary training
• Simulation-based Engineering Science (NSF, 2006)

– opportunities in dynamic, data-driven simulation and engineering
design

• Advanced Nuclear Energy Simulations (DOE, 2006)
¾SCaLeS report, Vol 1 (DOE, 2003) & Vol 2 (DOE, 2004)

– implications of large-scale simulation for basic scientific research
¾Capability Computing Needs (DOE, 2004)

– profiles of leading edge DOE codes in 11 application domains

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
22

Diverse applications, common
algorithmic and architectural infrastructure

2002
2003

2003-2004 (vol 2)

2006
2006

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
23

z Chapter 1. Introduction

z Chapter 2. Scientific Discovery
through Advanced Computing: a
Successful Pilot Program

z Chapter 3. Anatomy of a Large-scale
Simulation

z Chapter 4. Opportunities at the
Scientific Horizon

z Chapter 5. Enabling Mathematics
and Computer Science Tools

z Chapter 6. Recommendations and
Discussion
Volume 2 (2004):

z 11 chapters on applications

z 8 chapters on mathematical methods

z 8 chapters on computer science and
infrastructure

www.pnl.gov/scales

315
contributors

A primary source: SCaLeS

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
24

“What would scientists do
with 100-1000x?”

(SCaLeS)

• Predict future climates
• Probe structure of particles
• Design accelerators
• Design and control tokamaks
• Control combustion
• Probe supernovae

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
25

What would scientists do with 100-1000x?
 Example: predict future climates

• Resolution
– refine horizontal in atmosphere from 160 to 40 km
– refine horizontal in ocean from 105 to 15km

• New “physics”
– atmospheric chemistry
– carbon cycle
– dynamic terrestrial vegetation (nitrogen and sulfur

cycles and land-use and land-cover changes)
• Improved representation of subgrid processes

– clouds
– atmospheric radiative transfer

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
26

Resolution of Kuroshio Current: Simulations at various resolutions have
demonstrated that, because equatorial meso-scale eddies have diameters ~10-200
km, the grid spacing must be < 10 km to adequately resolve the eddy spectrum.
This is illustrated in four images of the sea-surface temperature. Figure (a) shows a
snapshot from satellite observations, while the three other figures are snapshots
from simulations at resolutions of (b) 2°, (c) 0.28°, and (d) 0.1°.

What would scientists do with 100-1000x?
 Example: predict future climates

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
27

What would scientists do with 100-1000x?
 Example: probe structure of particles

• Resolution
– take current 4D models from 32×32×32×16 to

128×128×128×64
• New physics

– “unquench”

the lattice approximation: enable study of
the gluon structure of the nucleon, in addition to its
quark structure

– obtain chiral symmetry by solving on a 5D lattice in the
domain wall Fermion formulation

– allow precision calculation of the spectroscopy of
strongly interacting particles with unconventional
quantum numbers, guiding experimental searches for
states with novel quark and gluon structure

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
28

Constraints on the Standard Model parameters ρ and η. For the Standard Model to
be correct, these parameters from the Cabibbo-Kobayashi-Maskawa (CKM) matrix
must be restricted to the region of overlap of the solidly colored bands. The figure on
the left shows the constraints as they exist today. The figure on the right shows the
constraints as they would exist with no improvement in the experimental errors, but
with lattice gauge theory uncertainties reduced to 3%.

η η

What would scientists do with 100-1000x?

 Example: probe structure of particles

c/o R. Sugar, UCSB

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
29

What would scientists do with 100-1000x?
 Example: design accelerators

• Resolution
– complex geometry (long assemblies of damped detuned

structure (DDS) cells, each one slightly different than its
axial neighbor) requires unstructured meshes with
hundreds of millions of degrees of freedom

– Maxwell eigensystems for interior elements of the
spectrum must be solved in the complex cavity formed
by the union of the DDS cells

• Novel capability
– PDE-based mathematical optimization will replace

expensive and slow trial and error prototyping
approach

– each inner loop of optimization requires numerous
eigensystem analyses

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
30

CAD Meshing Partitioning
(parallel)

h-Refinement
p-refinement

Solvers
(parallel)

Refinement

Basic Analysis Loop for given Geometry

Omega3P

S3P

T3P

Tau3P

DDS CELL

Next generation accelerators have complex cavities. Shape optimization is required
to improve performance and reduce operating cost.

What would scientists do with 100-1000x?
 Example: design accelerators

c/o K. Ko, SLAC

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
31

What would scientists do with 100-1000x?
 Example: design and control tokamaks

• Resolution
– refine meshes and approach physical

Lundquist numbers
• Multiphysics

– combine MHD, PIC, and RF codes in
a single, consistent simulation

– resolve plasma edge
• Design and control

– optimize performance of
experimental reactor ITER

and
follow-on production devices

– detect onset of instabilities and
modify before catastrophic energy
releases from the magnetic field

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
32

Noise
Detection

Need More
Flights?

Blob
Detection

Compute
Puncture

Plots

Island
detection

Out-of-core
Isosurface
methods

Feature
Detection

Portal
(Elvis)

XGC-ET Mesh/Interpolation M3D-L
(Linear stability)

Stable?

XGC-ET Mesh/Interpolation M3D

Δt Stable?
B healed?

Mesh/Interpolation Yes

Yes

No

No

Start (L-H)

Distributed
Store Distributed

Store

Distributed
Store

TBs GBs

MBs

I D A V Ec/o S. Klasky, ORNL

What would scientists do with 100-1000x?
 Example: design and control tokamaks

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
33

What would scientists do with 100-1000x?
 Example: control combustion

• Resolution
– evolve 3D time-dependent large-eddy simulation (LES)

codes to direct Navier-Stokes (DNS)
– multi-billions of mesh zones required

• New “physics”
– explore coupling between chemistry and acoustics

(currently filtered out)
– explore sooting mechanisms to capture radiation

effects
– capture autoignition with realistic fuels

• Integrate with experiments
– pioneer simulation-controlled experiments to look for

predicted effects in the laboratory

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
34

Images c/o R. Cheng (left), J. Bell (right), LBNL, and NERSC
2003 SIAM/ACM Prize in CS&E (J. Bell & P. Colella)

Instantaneous flame front imaged by density of inert marker Instantaneous flame front imaged by fuel concentration

What would scientists do with 100-1000x?

 Example: control combustion

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
35

What would scientists do with 100-1000x?
 Example: probe supernovae

• Resolution
– current Boltzmann neutrino transport models are vastly

under-resolved
– need at least 5123 spatially, at least 8 polar and 8

azimuthal, and at least 24 energy groups energy groups
per each of six neutrino types

– to discriminate between competing mechanisms, must
conserve energy to within 0.1% over millions of time
steps

• Full dimensionality
– current models capable of multigroup neutrino radiation

are lower-dimensional; full 3D models are required

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
36

Stationary accretion shock instability defines shape of supernovae and direction of
emitted radiation. Lower dimensional models produce insight; full dimensional
models are ultimately capable of providing radiation signatures that can be
compared with observations.

c/o A. Mezzacappa, ORNL

What would scientists do with 100-1000x?

 Example: probe supernovae

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
38

Progress in scaling PDE applications
• Both structured and unstructured grids
• Both explicit and implicit methods
• Multiple decades of spatial “resolution”
• Many-thousand-fold concurrency
• Strong scaling within modest ranges
• Weak scaling (also called “scaled speedup”)

without obvious limits

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
39

Review: two definitions of scalability
• “Strong scaling”

– execution time decreases in
inverse proportion to the
number of processors

– fixed size problem overall
– often instead graphed as

reciprocal, “speedup”
• “Weak scaling”

– execution time remains
constant, as problem size
and processor number are
increased in proportion

– fixed size problem per
processor

– also known as “Gustafson
scaling”

T

p

good

poor

poor

N ∝

p

log T

log p
good

N constant

Slope
= -1

Slope
= 0

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
41

SPMD parallelism w/domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

(volume) work to (surface)
communication is preserved
under weak scaling

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
42

DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices

J=

node i

row i
• However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
• Want to solve in subdomains only, and
use to precondition full sparse problem

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
43

An algorithm for PDE simulation:
Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable

nonlinear residual
evaluations, inner
products, DAXPYs

sparse MATVECs,
inner products,

DAXPYs

local solves,
small global

solves

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
44

Krylov-Schwarz parallelization is simple!
• Decomposition into concurrent tasks

– by domain
• Assignment of tasks to processes

– typically one subdomain per process
• Orchestration of communication between processes

– to perform sparse matvec –

near neighbor communication
– to perform subdomain solve –

nothing
– to build Krylov basis –

global inner products
– to construct best fit solution –

global sparse solve
(redundantly)

• Mapping of processes to processors
– typically one process per processor

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
45

Inner Krylov-Schwarz kernel: a
Bulk Synchronous Process (BSP)

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…

What happens if, for instance, in this
(schematicized) iteration, arithmetic
speed is doubled, scalar all-gather is
quartered, and local scatter is cut by
one-third? Each phase is considered
separately. Answer is to the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
46

Estimating scalability of stencil computations
• Given complexity estimates of the leading terms of:

– the concurrent computation (per iteration phase)
– the concurrent communication
– the synchronization frequency

• And a bulk synchronous model of the architecture including:
– internode communication (network topology and protocol

reflecting horizontal memory structure)
– on-node computation (effective performance parameters

including vertical memory structure)
• One can estimate optimal concurrency and optimal execution

time
– on per-iteration basis, or overall (by taking into account any

granularity-dependent convergence rate)
– simply differentiate time estimate in terms of (N,P)

with respect
to P, equate to zero and solve for P

in terms of N

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
47

Estimating 3D stencil costs (per iteration)

• grid points in each direction

n, total work

N=O(n3)
• processors in each direction

p, total procs

P=O(p3)
• memory per node

requirements O(N/P)

• concurrent execution time per
iteration

A n3/p3

• grid points on side of each
processor subdomain

n/p
• Concurrent neighbor commun. time

per iteration

B n2/p2

• cost of global reductions in each
iteration C log

p or

C p(1/d)

– C includes synchronization
frequency

• same dimensionless units for
measuring

A, B, C
– e.g., cost of scalar floating point

multiply-add

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
48

3D stencil computation illustration
 Rich local network, tree-based global reductions

• total wall-clock time per iteration

• for optimal p, , or

or (with),

• without “speeddown,”

p can grow with n
• in the limit as

pC
p
nB

p
nApnT log),(2

2

3

3

++=

0=
∂
∂

p
T ,023 3

2

4

3

=+−−
p
C

p
nB

p
nA

CA
B

2

3

243
32

≡θ

[] [] n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθ

0→C
B

n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛=

3
1

3

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
49

Scalability results for DD stencil computations
• With tree-based (logarithmic) global reductions

and scalable nearest neighbor hardware:
– optimal number of processors scales

linearly

with problem size
• With 3D torus-based global reductions and

scalable nearest neighbor hardware:
– optimal number of processors scales as

three-fourths

power of problem size (almost
“scalable”)

• With common network bus (heavy contention):
– optimal number of processors scales as

one-fourth

power of problem size (not
“scalable”)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
50

What’s under the rug?

• This generic weak scaling type of argument has
been made for ten years

– in Petaflops Workshop series (1995 onward)
– in “all-hands”

group meetings of SciDAC

users (2001 onward)
• Why aren’t PDEs “humming”

on BG/L?

– Of six announced finalists for Bell in 2006,
only one is based on PDE simulation, and it
achieves only 0.5 Tflop/s on 4K nodes of
BG/L

– This compares with 200 Tflop/s on 64K
nodes for MD on BG/L –

a factor of 25 better

in flop/s per node on 16 times more nodes
for 400 ×

performance

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
51

Contraindications of scalability

• Fixed problem size
– Amdahl-type constraints

• “fully resolved”

discrete problems (protein
folding, network problems)

• “sufficiently resolved”

problems from the
continuum

• Scalable problem size
– Resolution-limited progress in “long time”

integration
• explicit schemes for time-dependent PDEs
• suboptimal iterative relaxations schemes for

equilibrium PDEs
– Nonuniformity of threads

• adaptive schemes
• multiphase computations (e.g, particle and field)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
52

Amdahl’s Law (1967)

• Fundamental limit to strong scaling due to small overheads
• Independent of number of processors available
• Analyze by binning code segments by degree of exploitable

concurrency and dividing by available processors, up to limit
• Illustration for just two bins:

– fraction f1

of work that is purely sequential
– fraction (1-f1

) of work that is arbitrarily concurrent
• Wall clock time for p

processors

• Speedup
– for f1

=0.01
• Applies to any performance enhancement, not just parallelism

pff /)1(11 −+∝

]/)1(/[1 11 pff −+=

p 1 10 100 1000 10000

S 1.0 9.2 50.3 91.0 99.0

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
53

Resolution-limited progress (weak scaling)

• Illustrate for CFL-limited
explicit time stepping

• Parallel wall clock time
dd PST //1 αα+∝

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h mesh cell size
τ

time step size
τ=O(hα) bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ

number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ

∝ hα ∝ 1/nα = 1/Nα/d = 1/(PS)α/d)

3 months10 days1 dayExe. time

105×

105×105104×

104×104103×

103×103Domain

• Example: explicit wave
problem in 3D (α=1, d=3)

27 years3 months1 dayExe. time

105×

105104×

104103×

103Domain

• Example: explicit
diffusion problem in 2D
(α=2, d=2)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
54

Thread nonuniformity
• Evolving state of the simulation can spoil load balance

– adaptive scheme
• local mesh refinement
• local time adaptivity

– state-dependent work complexity
• complex constitutive or reaction terms
• nonlinear inner loops with variable convergence rates

– multiphase simulation
• bulk synchronous alternation between different

phases with different work distributions

…
P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M PDE Particles

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
55

Algorithmic adaptation
• No computer system is well balanced for all

 computational tasks, or even for all phases of a
single

well-defined task, like solving nonlinear

systems arising from discretized differential
equations

• Given the need for high performance in the solution
of these and related systems, one should be aware
of which computational phases are limited by which
aspect of hardware or software.

• With this knowledge, one can design algorithms to
“play to”

the strengths of a machine of given

architecture, or one can intelligently select or
evolve architectures for preferred algorithms.

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
56

Four potential limiters on scalability
in large-scale parallel scientific codes

• Insufficient localized concurrency
• Load imbalance at synchronization points
• Interprocessor message latency
• Interprocessor message bandwidth

“horizontal aspects”

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
57

Four potential limiters
on arithmetic performance

• Memory latency
– Failure to predict which data items are needed

• Memory bandwidth
– Failure to deliver data at consumption rate of

processor

• Load/store instruction issue rate
– Failure of processor to issue enough loads/stores

per cycle

• Floating point instruction issue rate
– Low percentage of floating point operations among

all operations

“vertical aspects”

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
58

Application Domain:
Computational Aerodynamics

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
59

Euler Simulation
• 3D transonic flow over ONERA M6 wing, at

3.06º

angle of attack (exhibits λ-shock

at
M = 0.839)

• Solve

where

ρ = density, u = velocity, p

= pressure
E = energy density

0)ˆ(1
=Ω⋅+

∂
∂

∫
Ω

dnF
Vt

Q

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

E
w
v
u

Q
ρ
ρ
ρ
ρ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

=⋅

UpE
pnUw

pnUv
pnUu

U

nF

z

y

x

)(
ˆ

ˆ
ˆ

ˆ

ρ

ρ
ρ
ρ

wnvnunU zyx ˆˆˆ ++=

()
⎥
⎦

⎤
⎢
⎣

⎡ ++
−−=

2
)1(

222 wvuEp ργ

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
60

Background of FUN3D Application
• Tetrahedral vertex-centered unstructured grid code

developed by W. K. Anderson (NASA) for steady
compressible and incompressible Euler and Navier-

 Stokes
• Used in airplane, automobile, and submarine

applications for analysis and design
• Standard discretization is second-order Roe

scheme

for convection and Galerkin for diffusion
• Newton-Krylov solver with global point-block-ILU

preconditioning, with false timestepping for
nonlinear continuation towards steady state;
competitive with FAS multigrid in practice

• Legacy implementation/ordering is vector-oriented

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
61

Features of FUN3D Application
• Based on “legacy”

(but contemporary) CFD

application with significant F77 code reuse
• Portable, message-passing library-based

parallelization, run on NT boxes through Tflop/s ASCI
platforms

• Simple multithreaded extension between processors
sharing memory physically

• Sparse, unstructured data, implying memory
indirection with only modest reuse

• Wide applicability to other implicitly discretized
multiple-scale PDE workloads

• Extensive profiling has led to follow-on algorithmic
research

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
62

Merits of NKS Algorithm/Implementation
• Relative characteristics: the “exponents”

are naturally

good
– Convergence scalability

• weak (or no) degradation in problem size and parallel granularity
(with use of small global problems in Schwarz preconditioner)

– Implementation scalability
• no degradation in ratio of surface communication to volume

work (in problem-scaled limit)
• only modest degradation from global operations (for sufficiently

richly connected networks)

• Absolute characteristics: the “constants”

can be made good
– Operation count complexity

• residual reductions of 10-9

in 103 “work units”
– Per-processor performance

• up to 25% of theoretical peak
• Overall, machine-epsilon solutions require as little as 15 microseconds

per degree of freedom!

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
63

Additive Schwarz Preconditioning
for Au=f

in Ω

• Form preconditioner B

out of
(approximate) local solves on
(overlapping) subdomains

• Let Ri

and Ri
T

be Boolean
gather and scatter operations,
mapping between a global
vector and its ith

subdomain
support

∑=

=

=
−

i i

ii
T
ii

T
iii

BB
RARB

ARRA
1~

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
64

Iteration Count Estimates from the Schwarz Theory

• Krylov-Schwarz iterative methods typically converge in a number
of iterations that scales as the square-root of the condition
number of the Schwarz-preconditioned system

• In terms of N

and P, where for d-dimensional isotropic problems,
N=h-d

and P=H-d, for mesh parameter

h

and subdomain diameter H,
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/3)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi

Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

[ref: Smith, Bjorstad & Gropp, 1996, Camb. Univ. Pr.]

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
65

Time-Implicit
Newton-Krylov-Schwarz Method

For nonlinear robustness, NKS iteration is wrapped in time-stepping.

for (l = 0; l < n_time; l++) {
select time step
for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

}
perform preconditioned Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients
check linear convergence

}
perform DAXPY update
check nonlinear convergence

}
} Steps in red involve global communication.

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
66

Key Features of Implementation Strategy
• Subdomain partitioning by one of the MeTiS graph algorithms
• SPMD “owner computes”

PETSc implementation under the dual
objectives of minimizing the number of messages and
overlapping communication with computation

• Each processor “ghosts”

its stencil dependences in its
neighbors

• Ghost nodes ordered after contiguous owned nodes
• Domain mapped from (user) global ordering into local orderings
• Scatter/gather operations created between local sequential

 vectors and global distributed

vectors, based on runtime
connectivity patterns

• Newton-Krylov-Schwarz operations translated into local tasks
and communication tasks

• Profiling used to help eliminate performance bugs in
communication and memory hierarchy

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
67

Background of PETSc
• Developed by Gropp, Smith, McInnes & Balay (ANL) to support

research, prototyping, and production parallel solutions of
operator equations in message-passing environments

• Distributed data structures as fundamental objects -

index sets,
vectors/gridfunctions, and matrices/arrays

• Iterative linear and nonlinear solvers, combinable modularly and

 recursively, and extensibly
• Portable, and callable from C, C++, Fortran
• Uniform high-level API, with multi-layered entry
• Aggressively optimized: copies minimized, communication

aggregated and overlapped, caches and registers reused,
memory chunks preallocated, inspector-executor model for
repetitive tasks (e.g., gather/scatter)

• Now part of the Terascale Optimal PDE Simulations project
(DOE SciDAC)

See http://www.mcs.anl.gov/petsc

http://www.mcs.anl.gov/petsc

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
68

PETSc

PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Separation of Concerns between
User Code and PETSc Library

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
69

Outline for PDE Performance Study
• General characterization of PDE requirements
• Identification of common algorithmic building blocks
• Simple complexity characterizations (computational

work, interprocessor communication, intraprocessor
data motion)

• Identification and illustration of bottlenecks on some
of today's important platforms

• Experiments with a high-performance port of a NASA
aerodynamic design code and with a sparse
unstructured matrix-vector kernel

• Speculation on useful algorithmic research
directions

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
70

Variety and Complexity of PDEs
• Varieties of PDEs

– evolution (time hyperbolic, time parabolic)
– equilibrium (elliptic, spatially hyperbolic or parabolic)
– mixed, varying by region
– mixed, of multiple type (e.g., parabolic with elliptic

constraint)
• Complexity parameterized by:

– spatial grid points, Nx
– temporal grid points, Nt
– components per point, Nc
– auxiliary storage per point, Na
– grid points in stencil, Ns

• Memory: M ≈ Nx • (Nc + Na + Nc • Nc • Ns)
• Work: W ≈ Nx • Nt • (Nc + Na + Nc • Nc • Ns)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
71

Explicit Solvers

• Concurrency is pointwise, O(N)
• Comm.-to-Comp. ratio is surface-to-volume, O((N/P)-

1/3)
• Communication range is nearest-neighbor, except for

time-step computation
• Synchronization frequency is once per step, O((N/P)-1)
• Storage per point is low
• Load balance is straightforward for static quasi-

 uniform grids
• Grid adaptivity (together with temporal stability

limitation) makes load balance nontrivial

)u(uu 11 −
•

− Δ−= llll ft

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
72

Domain-decomposed Implicit Solvers

• Concurrency is pointwise, O(N),

or subdomainwise,
O(P)

• Comm.-to-Comp. ratio still mainly

surface-to-
 volume, O((N/P)-1/3)

• Communication still mainly

nearest-neighbor, but
nonlocal communication arises from conjugation,
norms, coarse grid problems

• Synchronization frequency often more

than once
per grid-sweep, up to Krylov dimension, O(K(N/P)-1)

• Storage per point is higher, by factor of O(K)
• Load balance issues the same as for explicit

∞→Δ
Δ

=+
Δ

− lt
t

f
t l

l
l

l

l ,

1u)u(u

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
73

Resource Scaling for PDEs
• For 3D problems, work is proportional to four-thirds power of

memory, because
– For equilibrium problems, work scales with problem size

times number of iteration steps --

proportional to resolution
in single spatial dimension

– For evolutionary problems, work scales with problems size
times number of time steps --

CFL arguments place latter on
order of spatial resolution, as well

• Proportionality constant can be adjusted over a very wide
range by both discretization (high-order implies more work per
point and per memory transfer) and by algorithmic tuning

• If frequent time frames are to be captured, other resources --

 disk capacity and I/O rates --

must both scale linearly with
work, more stringently than for memory.

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
74

Primary PDE Solution Kernels
 (assumes vertex-based; dual statements for cell-based)

• Vertex-based loops
– state vector and auxiliary vector updates

• Edge-based “stencil op”

loops
– residual evaluation
– approximate Jacobian evaluation
– Jacobian-vector product (often replaced with matrix-free form,

involving residual evaluation)
– intergrid transfer (coarse/fine)

• Sparse, narrow-band recurrences
– approximate factorization and back substitution
– smoothing

• Vector inner products and norms
– orthogonalization/conjugation
– convergence progress and stability checks

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
75

Illustration of Edge-based Loop
• Vertex-centered grid
• Traverse by edges

– load vertex values
– compute intensively

• e.g., for compressible
flows, solve 5x5 eigen-

problem for character-

istic directions and
speeds of each wave

– store flux contributions at
vertices

• Each vertex appears in
approximately 15 flux
computations

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
76

Complexities of PDE Kernels
• Vertex-based loops

– work and data closely proportional
– pointwise concurrency, no communication

• Edge-based “stencil op”

loops
– large ratio of work to data
– colored edge concurrency; local communication

• Sparse, narrow-band recurrences
– work and data closely proportional
– frontal concurrency; no, local, or global

communication
• Vector inner products and norms

– work and data closely proportional
– pointwise concurrency; global communication

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
77

Candidate stresspoints of PDE kernels
• Vertex-based loops

– memory bandwidth
• Edge-based “stencil op”

loops

– load/store (register-cache) bandwidth
– internode bandwidth

• Sparse, narrow-band recurrences
– memory bandwidth
– internode bandwidth, internode latency,

network diameter
• Inner products and norms

– memory bandwidth
– internode latency, network diameter

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
78

Observation #1:
Processor scalability no problem, in principle

• As popularized with the 1986 Karp Prize paper of Benner,
Gustafson & Montry, Amdahl's law can be defeated if
serial (or bounded concurrency) sections make up a
decreasing fraction of total work as problem size and
processor count scale ---

true for most iterative implicit
nonlinear PDE solvers

• Simple, back-of-envelope parallel complexity analyses
show that processors can be increased as fast, or almost
as fast, as problem size, assuming load is perfectly
balanced

• Caveat: the processor network must also be scalable
(applies to protocols as well as to hardware); machines
based on common bus networks will not scale

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
79

Surface Visualization of Test Domain
 for Euler Flow over an ONERA M6 Wing

• Wing surface outlined in green triangles, farfield blue, symmetry plane
red

• 2.8 M vertices in the actual computational domain (9K in image below)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
80

Parallel Performance of PETSc-FUN3D
3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache

BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
81

Fixed-size Parallel Scaling Results (Flop/s)
Results on older generation of machines

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
82

Parallel Performance of PETSc-FUN3D

P r o c e s s o r s

E
xe

cu
tu

in
Ti

m
e

(s
ec

on
ds

)

1 0 2 1 0 3

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0
7 0 0
8 0 0
9 0 0

1 0 0 0

B lu e G e n e
T e r a G r id
S y s t e m X

3D Mesh: 2,761,774 Vertices and 18,945,809 Edges

TeraGrid: Dual 1.5 GHz Intel Madison Processors with 4 MB L2 Cache

BlueGene: Dual 700 MHz IBM Processors with 4 MB L3 Cache

System X: Dual 2.3 GHz PowerPC 970FX processors with 0.5 MB L2 Cache

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
83

Fixed-size Parallel Scaling Results (seconds)
Results on older generation of machines

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
84

Inside Parallel Scaling Results on ASCI Red

ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million unknowns) on up
to 3072 ASCI Red nodes (each with dual Pentium Pro 333 MHz processors)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
86

Observation #2 (for Fixed-Size Problems):
 Synchronization eventually a bottleneck

• Percentage of time spent in communication phases on ASCI Red
for NKS unstructured Euler simulation

• Principal nonscaling feature is synchronization at global inner
products and norms, while cost of halo exchange grows slowly
even for fixed-size problem with deteriorating surface-to-volume

Number of
Processors

Global
reductions

Synchronizations Halo
Exchanges

128 5% 4% 3%
256 3% 6% 4%
512 3% 7% 5%
768 3% 8% 5%

1024 3% 10% 6%

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
87

Observation #3:
 Memory latency no problem, in principle

• Regularity of reference in static grid-based computations can
be exploited through memory-assist features to cover latency

• PDEs have simple, periodic workingset structure that permits
effective use of prefetch/dispatch directives, and lots of
slackness (process concurrency in excess of hardware
concurrency)

• Combined with coming processors-in-memory (PIM)
technology for gather/scatter into densely used block transfers
and multithreading for latency that cannot be amortized by
sufficiently large block transfers, the solution of PDEs can
approach zero stall conditions

• Caveat: high bandwidth is critical to covering latency

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
88

Workingset Characterization of Memory Traffic
• Smallest: data for single stencil
• Largest: data for entire subdomain
• Intermediate: data for a neighborhood

collection of stencils, reused as many
times as possible

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
89

Thought Experiment: Cache Traffic for PDEs
• As successive workingsets ``drop'' into a level of memory,

capacity (and with effort conflict) misses disappear, leaving only
compulsory, reducing demand on main memory bandwidth

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
90

BW-stretching Strategies Based on Workingsets
• No performance value in memory levels larger than

subdomain
• Little performance value in memory levels smaller than

subdomain but larger than required to permit full reuse of
most data within each subdomain subtraversal (middle
knee, prev. slide)

• After providing L1 large enough for smallest workingset
(and multiple independent copies up to desired level of
multithreading, if necessary all additional resources should
be invested in large L2

• Tables describing grid connectivity are built (after each grid
rebalancing) and stored in PIM ---

used to pack/unpack
dense-use cache lines during subdomain traversal

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
91

Three Types of Locality Enhancements
• Edge-reordering

for maximal vertex reuse

• Field interlacing

for maximal cache-line reuse
– use U1, V1, W1, U2, V2, W2, …, Un, Vn, Wn
– rather than U1, U2, …, Un, V1, V2, …, Vn, W1, W2, …, Wn

• Sparse Jacobian blocking

for minimal integer
metadata in manipulating a given amount of floating
point physical data

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
92

Improvements Resulting from Locality Reordering

8.01626274221.0200200Pent. Pro

333

400

400

400

360

300

600

450

332

120

120

200

250

Clock
MHz

6.32136406018.8333Pent. Pro

7.83149497819.5400Pent. II/NT

8.33347528320.8400Pent. II/LIN

2.5203647718.9800Ultra II/HPC

3.52547549413.0720Ultra II

3.01835427512.5600Ultra II

1.3163747917.61200Alpha 21164

1.6143239758.3900Alpha 21164

2.3153143669.9664604e

3.115405911724.3480P2SC (4 card)

2.713355110121.4480P2SC (2 card)

4.032688716320.3800P3

5.226597412725.4500R10000

Orig.
% of Peak

Orig.
Mflop/s

Interl.
only

Mflop/s

Reord.
Only

Mflop/s

Opt.
Mflop/s

Opt.
% of
Peak

Peak
Mflop/s

Processor

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
93

Observation #4:
 Memory bandwidth a major bottleneck

106s122s16s31s120

181s205s34s60s64

331s373s67s117s32

657s746s136s223s16

SingleDoubleSingleDouble

OverallLinear Solve

Computational Phase
Number of
Processors

Execution times for NKS Euler Simulation on Origin 2000:
(standard) double precision matrices versus single precision

Note that times are nearly halved, along with precision, for the BW-limited linear solve
phase, indicating that the BW can be at least doubled before hitting the next bottleneck!

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
94

ASCI Memory Bandwidth Bottleneck
• Per-processor memory bandwidth versus rate of work

– approximately 10-15 flops per word transferred from memory
– fairly constant across machines, and fairly poor without

extensive reuse

Peak
(M F/s)

BW /proc
(M W /s)

(M F/s)/
(M W /s)

W hite 1500 125.0 12.0

Blue M tn 500 48.8 10.2

Blue Pac 666 45.0 14.8

Red 333 33.3 10.0

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
95

Implications of Bandwidth Limitations
in Shared Memory Systems

1521571E07
1411451E06
1441401E05
2381375E04
12966661E04

2 Threads1 ThreadVector Size

Larger vectors in last three rows do not fit into cache and are bandwidth-limited

• The processors on a node compete for the available memory
bandwidth
• The computational phases that are memory bandwidth limited will
not scale and may even run slower due to arbitration
• Stream Benchmark on ASCI Red MB/s for the Triad Operation

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
96

BW-stretching Strategies
Based on Multivectors in Sparse Matvecs

• The sparse matrix-vector multiply (matvec) is one of the
most common kernels in scientific computing
– Same data access considerations as stencil-op kernel in

explicit methods for PDEs
– Same as Krylov kernel and similar to preconditioner

application kernel in implicit methods for PDEs
• When multiplying a single vector, each element of the sparse

matrix is used exactly once per matvec
• If the matrix is large, none of its elements will remain in the

cache from one matvec to the next
• If multiple vectors, say N, are multiplied at once, each

element of the matrix is reused N

times
• A simple complexity model for the sparse matrix-vector

product illustrates the issues

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
97

Matrix-vector Multiplication
for a Single Vector

do i=1, n
fetch ia(i+1)
sum = 0
! loop over the non-zeros of the row
do j = ia(i), ia(i + 1)-1 {

fetch ja(j), a(j), x (ja(j))
sum = sum + a(j) * x(ja(j))

enddo
Store sum into y(i)

enddo

This version performs A ×

x

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
98

Matrix-Vector Multiplication for
N

Independent Vectors

do i = 1, n
fetch ia(i+1)
! loop over the non-zeros of the row
do j = ia(i), ia(i + 1) - 1

fetch ja(j), a(j), x1 (ja(j)), ..…xN (ja(j))
do N fmadd (floating multiply add)

enddo
Store y1 (i) ..…yN (i)

enddo

This version performs A ×

{x1 , …, xN }

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
99

• Assume ideal memory system apart from bandwidth
– Perfect cache (only compulsory misses; no

overhead)
– No memory latency
– Unlimited number of loads and stores per cycle

• Specify number of rows and nonzeros, sizes for integers
and floats

• Assume matrix blocking factor and vector blocking
factor

• Compute data volume associated with sparse matvec
• Compute number of floating-point multiply adds (fmadd)
• Bytes per floating multiply-add combined with memory

bandwidth (bytes/second) give a bound on rate of
execution of multiply-adds

Estimating the Memory Bandwidth Limitation

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
100

Sparse Matvec Performance Summary

• On 250 MHz MIPS R10000
• Matrix size = 90,708; number of nonzero entries = 5,047,120, blocksize

= 4
• Stream performance is 358 MB/sec (for triad vector operation)

http://www.cs.virginia.edu/stream
• Number of Vectors is either 1 or a block of 4

Bandwidth MFlops Format Number of

Vectors
Bytes /
fmadd Required Achieved Ideal Achieved

AIJ 1 12.36 3090 276 58 45
AIJ 4 3.31 827 221 216 120

BAIJ 1 9.31 2327 84 55
BAIJ 4 2.54 635 229 305 175

 • Ratio of 2.7 for AIJ and 3.2 for BAIJ in going from 1 to 4

http://www.cs.virginia.edu/stream

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
101

Performance Summary on 2.4 GHz P4 Xeon

• Matrix size, n = 90,708; number of nonzero entries, Nnz

= 5,047,120 (from computational aerodynamics, b=4)

• Stream performance is 1973 MB/sec (for triad vector
operation, http://www.cs.virginia.edu/stream)

• Number of Vectors, N = 1, and 4

Bandwidth (GB/s) MFlops Format Number of

Vectors
Bytes /

flop Required Measured Ideal Achieved
AIJ 1 6.18 14.83 1.97 319 274
AIJ 4 1.66 3.98 1.97 1188 615

http://www.cs.virginia.edu/stream

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
102

Comparison of Domain-Level Parallelism
for MPI and OpenMP/MPI

Nodes On each node Sec./W-cycle

128 1 MPI process 14.01

128 2 MPI processes 7.98

128 2 OpenMP threads 7.56

256 1 MPI process 7.59

• Table shows execution times of residual flux evaluation phase for W-cycle FAS Euler
simulation on ASCI Red (2 processors per node)
• Thread management imposes an overhead of 5% up to more serious levels, depending
upon the system
• In computational phases that are not memory bandwidth-limited, shared-memory
multithreading can be more efficient than MPI-mediated domain-based multiprocessing

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
103

Observation #5:
 Load-store functionality may be a bottleneck

45s72s39s76s2560

40s62s33s66s3072

258s456s261s483s256

2 Proc1 Proc2 Thr1 Thr

MPIMPI/OpenMP
Nodes

• Table shows execution times of residual flux evaluation phase for NKS
Euler simulation on ASCI Red (2 processors per node)
• In each paradigm, the second processor per node contributes another
load/store unit while sharing fixed memory bandwidth
• Note that 1 thread is worse than 1 MPI process, but that 2-thread
performance eventually surpass 2-process performance as subdomains
become small

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
104

Quantifying the Load/Store Bottleneck
• Assume ideal memory system apart from load/store units

– All data items are ready in cache
– Each operation takes only one cycle to complete but

multiple operations can graduate in one cycle
• If only one load or store can be issued in one cycle (as is

the case on R10000 and many other processors), the best
we can hope for is

• Other restrictions (like primary cache latency, latency of
floating point units etc.) need to be taken into account while
creating the best schedule

MFlops/sPeak *
Stores and Loads ofNumber

nsinstructiopoint floating ofNumber

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
105

Observation #6:
 Fraction of Flops may be a Bottleneck

• Estimated number of floating point operations out of the total
instructions (for the unstructured Euler Jacobian)
– For N=1, If = 0.18
– For

N = 4, If = 0.34; this

is one-third of peak

do i=1, m
jrow = ia(i+1) // 1Of, AT, Ld
ncol = ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN // N Ld
do j=1,ncol // 1 Ld
fetch ja(jrow), a(jrow), x1 (ja(jrow)), ..…xN (ja(jrow))

// 1 Of, N+2 AT N+2 Ld
do N fmadd (floating multiply add) // 2N Flop

enddo // 1 Iop, 1 Br
Store sum1 …..sumN in y1 (i) ..…yN (i) // 1 Of, N AT, and St

enddo // 1 Iop, 1 Br

AT:address transln; Br: branch; Iop: integer op; Flop: floating point op; Of: offset
calculation; Ld: load; St: store

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
106

Significance of Multivectors
• Using multivectors can improve the performance of

sparse matrix-vector product significantly
• “Algorithmic headroom”

is available for modest

blocking
• Simple models predict the performance of sparse

matrix-vector operations on a variety of platforms,
including the effects of memory bandwidth, and
instruction issue

rates

– achievable performance is a small fraction of stated peak
for sparse matrix-vector kernels, independent of code
quality

– compiler improvements and intelligent prefetching can
help but the problem is fundamentally an architecture-

algorithm mismatch and needs an algorithmic solution

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
107

Realistic Measures of Performance
Sparse Matrix Vector Product

one vector, matrix size = 90,708, nonzero entries = 5,047,120

0

50

100

150

200

250

300

SP Origin T3E Pentium Ultra II

Oper. Issue Peak Mem BW Peak ObservedPeak Perform
ance

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
108

Summary of Observations for Simulation Codes
• Processor scalability is no problem, in principle
• Common bus-based network is a bottleneck
• For fixed-size problems, global synchronization is

eventually a bottleneck
• Memory latency is no problem, in principle
• Memory bandwidth is a major

bottleneck

• Load-Store functionality may

be a bottleneck
• Frequency of floating point instructions may be a

bottleneck

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
109

Lessons for High-end Simulation of PDEs
• Unstructured (static) grid codes can run well on distributed

hierarchical memory machines, with attention to partitioning,
vertex ordering, component ordering, blocking, and tuning

• Parallel solver libraries can give new life to the most
valuable, discipline-specific modules of legacy PDE codes

• Parallel scalability is easy, but attaining high per-processor
performance for sparse problems gets more challenging with
each machine generation

• The NKS family of algorithms can be and must be tuned to an
application-architecture combination; profiling is critical

• Some

gains from hybrid parallel programming models
(message passing and multithreading together) require little
work; squeezing the last drop is likely much more difficult

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
110

Weighing in at the Bottom Line
• Characterization of a 1 Teraflop/s computer of today

– about 1,000 processors of 1 Gflop/s (peak) each
– due to inefficiencies within the processors, more

practically characterized as about 4,000 processors of
250 Mflop/s each

• How do we want to get to 1 Petaflop/s?
– 1,000,000 processors of 1 Gflop/s each (only wider)?
– 10,000 processors of 100 Gflop/s each (mainly deeper)?

• From the point of view of PDE simulations on quasi-static
Eulerian grids
– Either!

• Caveat: dynamic grid simulations are not directly covered
in this discussion
– but see work 2003 SIAM/ACM Prize

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
111

Some noteworthy algorithmic adaptations
to distributed memory architecture

• Restricted Schwarz in elliptic problems (Cai & Sarkis)
– omit every other local communication (actually leads to better

convergence, now proved)
• Extrapolated Schwarz in parabolic problems (Garbey & Tromeur-Dervout)

– hide interprocessor latency by extrapolating messages received in
time integration, with rollback if actual messages have discrepancies
in lower Fourier modes (higher mode discrepancies decay anyway)

• Nonlinear Schwarz in elliptic problems (Cai & Keyes)
– reduce global Krylov-Schwarz synchronizations by applying NKS

within well-connected subdomains and performing few

global outer
Newton iterations

• Aggressive coarsening in linear AMG (Falgout, Yang, et al.)
– reduce size of coarse problems to trade-off cost per iteration with

number of iterations (and many other such preconditioner quality

ideas)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
112

Four Sources of Performance Improvement
• Expanded number of processors

– arbitrarily large factor, through extremely careful
attention to load balancing and synchronization

• More efficient use of processor cycles, and faster
processor/memory elements
– one to two orders of magnitude, through memory-

 assist language features, processors-in-memory, and
multithreading

• Algorithmic variants that are more architecture-friendly
– approximately an order of magnitude, through

improved locality and relaxed synchronization
• Algorithms that deliver more “science per flop”

– possibly large problem-dependent factor, through
adaptivity

– This last does not contribute to raw flop/s!

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
113

Source #1:
Expanded Number of Processors

• Recall Observation #1 and “back-of-envelope
estimates”: Scalability not a problem.

• Caveat: the processor network must also be
scalable (applies to protocols as well as to
hardware)

• Remaining four orders of magnitude could be
met by hardware expansion (but this does not

 mean that fixed-size applications of today would
run 104

times faster)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
114

Source #2:
More Efficient Use of Faster Processors

• Current low efficiencies of sparse codes can be
improved if regularity of reference is exploited with
memory-assist features

• Recall Observation #3: PDEs have exploitable periodic
workingset structures that can overcome memory
latency

• Caveat: high bandwidth is critical, since PDE algorithms
do only O(N)

work for O(N)

gridpoints worth of loads

and stores
• One to two orders of magnitude can be gained by

catching up to the clock, and by following the clock into
the few-GHz range

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
115

Source #3:
More “Architecture Friendly”

Algorithms

• Algorithmic practice needs to catch up to architectural
demands
– several “one-time”

gains remain to be contributed that
could improve data locality or reduce synchronization
frequency, while maintaining required concurrency and
slackness

– “One-time”

refers to improvements by small constant
factors, nothing that scales in N

or P

–

complexities are
already near information-theoretic lower bounds, and we
reject increases in flop rates that derive from less

efficient algorithms

– Caveat: remaining algorithmic performance
improvements may cost extra space or may bank on
stability shortcuts that occasionally backfire, making
performance modeling less predictable

• Perhaps an order of magnitude of performance remains
here

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
116

Raw Performance Improvement from Algorithms

• Spatial reorderings that improve locality
– interlacing of all related grid-based data structures
– ordering gridpoints and grid edges for L1/L2 reuse

• Discretizations that improve locality
– higher-order methods (lead to larger denser blocks at each

point than lower-order methods)
– vertex-centering (for same tetrahedral grid, leads to denser

blockrows than cell-centering)
• Temporal reorderings that improve locality

– block vector algorithms (reuse cached matrix blocks;
vectors in block are independent)

– multi-step vector algorithms (reuse cached vector blocks;
vectors have sequential dependence)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
117

Raw Performance Improvement from Algorithms, cont.
• Temporal reorderings that reduce synchronization

penalty
– less stable algorithmic choices that reduce

synchronization frequency (deferred
orthogonalization, speculative step selection)

– less global methods that reduce synchronization
range by replacing a tightly coupled global process
(e.g., Newton) with loosely coupled sets of tightly
coupled local processes (e.g., Schwarz)

• Precision reductions that make bandwidth seem larger
– lower precision representation of preconditioner

matrix coefficients or poorly known coefficients
(arithmetic is still performed on full precision
extensions)

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
118

Source #4:
Algorithms Packing More Science Per Flop

• Some algorithmic improvements do not improve
flop rate, but lead to the same scientific end in the
same time at lower hardware cost (less memory,
lower operation complexity)

• Caveat: such adaptive programs are more
complicated and less thread-uniform than those
they improve upon in quality/cost ratio

• Desirable that petaflop/s machines be general
purpose enough to run the “best”

algorithms

• Not daunting, conceptually, but puts an enormous
premium on dynamic load balancing

• An order of magnitude or more can be gained here
for many problems

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
119

Example of Adaptive Opportunities
• Spatial Discretization-based adaptivity

– change discretization type and order to attain required
approximation to the continuum everywhere without over-

resolving in smooth, easily approximated regions

• Fidelity-based adaptivity
– change continuous formulation to accommodate required

phenomena everywhere without enriching in regions
where nothing happens

• Stiffness-based adaptivity
– change solution algorithm to provide more powerful,

robust techniques in regions of space-time where discrete
problem is linearly or nonlinearly stiff without extra work in
nonstiff, locally well-conditioned regions

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
120

Status and Prospects
 for Advanced Adaptivity

• Metrics and procedures well developed in only a few areas
– method-of-lines ODEs for stiff IBVPs and DAEs, FEA for

elliptic BVPs
• Multi-model methods used in ad hoc

ways in production
– Boeing TRANAIR code

• Poly-algorithmic solvers demonstrated in principle but
rarely in the “hostile”

environment of high-performance
computing

• Requirements for progress
– management of hierarchical levels of synchronization
– user specification of hierarchical priorities of different

threads

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
121

Summary of Suggestions
 for High Performance

• Algorithms that deliver more “science per flop”
– possibly large problem-dependent factor, through

adaptivity (but we won't count this towards rate
improvement)

• Algorithmic variants that are more architecture-friendly
– expect half

an order of magnitude, through improved
locality and relaxed synchronization

• More efficient use of processor cycles, and faster
processor/memory
– expect one-and-a-half

orders of magnitude, through
memory-assist language features, PIM, and
multithreading

• Expanded number of processors
– expect two

orders of magnitude, through dynamic
balancing and extreme care in implementation

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
122

It’s not

about the solver

CS

Math

Applications

Enabling
technologies
respond

Applications
drive

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
123

It’s all

about the solver (at the terascale)
• Given, for example:

– a “physics”

phase that
scales as O(N)

– a “solver”

phase that
scales as O(N3/2)

– computation is almost
all solver after several
doublings

• Most applications groups
have not yet “felt”

this
curve in their gut

– BG/L will change this
– 64K-processor machine

delivered in 2005

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes
50% time
on 64 procs

Solver takes
97% time on
64K procs

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

problem size

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
124

The power of optimal algorithms
• Advances in algorithmic efficiency can rival advances

in hardware architecture
• Consider Poisson’s equation on a cube of size N=n3

• If n=64, this implies an overall reduction in flops of
~16 million

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann &
Goldstine

n5 n7

1950 Optimal SOR Young n3 n4

log

n

1971 CG Reid n3 n3.5

log

n

1984 Full MG Brandt n3 n3

∇2u=f 64

64 64

*Six-months is reduced to 1 s

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
125

year

relative
speedup

Algorithms and Moore’s Law
• This advance took place over a span of about 36 years, or 24 doubling

times for Moore’s Law
• 224≈16 million ⇒ the same as the factor from algorithms alone!

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
126

• Algebraic multigrid a key algorithmic technology
– Discrete operator defined for finest grid by the application, itself,

and

for many recursively derived levels with successively fewer
degrees of freedom, for solver purposes

– Unlike geometric multigrid, AMG not restricted to problems with
“natural”

coarsenings derived from grid alone
• Optimality (cost per cycle) intimately tied to the ability to coarsen

aggressively
• Convergence scalability (number of cycles) and parallel efficiency

also sensitive to rate of coarsening

c/o U. M. Yang, LLNL

Algebraic multigrid on BG/L

While much research and
development remains, multigrid will
clearly be practical at BG/L-scale
concurrency

Figure shows weak scaling result for AMG out
to 131,072 processors, with one 25×

25×25
block per processor (from 15.6K dofs up to
2.05B dofs)

procs

se
c

0

5

10

15

20

0 50000 100000

C-old

C-new

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
127

0

1

2

3

4

5

6

7

8

9

10

1980 1990 2000 2010

Calendar Year

Lo
g

Ef
fe

ct
iv

e
G

ig
aF

LO
PS

High Order

Autocode

ARK integrator
complex chem Higher

order
AMR

NERSC
RS/6000

NERSC
SP3

Cray 2

AMR

Low Mach

“Moore’s Law”

for combustion simulations

Figure from SCaLeS report, Volume 2

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
128

“Moore’s Law”

for MHD simulations

“Semi-implicit”:

All waves treated
implicitly, but still
stability-limited by
transport

“Partially implicit”:

Fastest waves
filtered, but still
stability-limited by
slower waves

Figure from SCaLeS report, Volume 2

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
129

Scaling fusion simulations up to ITER

w/ S. Jardin, PPPL

1012

needed

International
Thermonuclear

Experimental

Reactor

2017 –

first
experiments, in
Cadaraches,
France

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
130

• 1.5 orders: increased processor speed and efficiency
• 1.5 orders: increased concurrency
• 1 order: higher-order discretizations

– Same accuracy can be achieved with many fewer elements
• 1 order: flux-surface following gridding

– Less resolution required along than across field lines
• 4 orders: adaptive gridding

– Zones requiring refinement are <1% of ITER volume and
resolution requirements away are ~102

less severe
• 3 orders: implicit solvers

– Mode growth time 9 orders longer than Alfven-limited CFL

Where to find 12 orders of magnitude in 10 years?

H
ar

dw
ar

e:
 3

So
ftw

ar
e:

 9

Algorithmic
improvements bring

yottascale (1024)
calculation down to

petascale (1015)!

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
131

• PDEs continue to drive the highest-end computing, as they
have since ca. 1945

• There appears to be no fundamental limit to solving PDEs on
arbitrarily fine spatial meshes in fixed execution time with
arbitrarily high numbers of processors provided…
– one does not have to resolve timescales correspondingly

finely in a CFL sense
– one can do a very fine load balancing and amortize it over

many steps
– one has a near optimal linear implicit solver, like Krylov-

 MG
– for nonlinear problems, one can use Newton in a

resolution-independent asymptotic regime
• One should expect to have to work! to achieve such ends, and

should start with good solver components as building blocks

Summary

SC2006 Tutorial © DeBenedictis, Keyes, Kogge
132

Reminder about the Source
of Simulations

• Computational science and engineering is not about
individual large-scale analyses, done fast and “thrown over
the wall”

• Both “results”

and their sensitivities are desired; often
multiple operation points to be simulated are known a priori,
rather than sequentially

• Sensitivities may be fed back into optimization process
• Full CFD analyses may also be inner iterations in a

multidisciplinary computation
• In such contexts, “petaflop/s”

may mean 1,000 analyses
running somewhat asynchronously with respect to each
other, each at 1 Tflop/s –

clearly a less daunting challenge
and one that has better synchronization properties for
exploiting “The Grid”

–

than 1 analysis running at 1 Pflop/s

1

Tutorial M06

Erik P. DeBenedictis

2

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

3

Insight From A Dinner Conversation

• I have dinner with a
physicist at a joint ITRS
and electron device
meeting in DC 12/2005

• The fellow tells me in
hushed tones that he
knows the future to
Moore’s Law
– Is this trivial or

profound?
• I ask what it is?

• Answer: More Parallelism.
– I knew this: trivial

• I say there may not be
enough parallelism in
problems – and has he
talked to programmers

• Answer: “no”
– Oh boy, the future of

Moore’s Law depends
on YOU programming
smarter and you don’t
know this: profound

4

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

5

Applications and $100M Supercomputers

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System
Performance

2000 2010 2020 2030 Year Æ

↑ c Red Storm/Cluster

Technology

e Nanotech +
Reversible Logic μP

(green) best-case logic
(red)Æ

f Quantum Computing
Requires Rescaled

Graph (see later slide)

↑d Architecture: IBM
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

2000 20202010

No schedule provided by
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

Compute as fast
as the engineer

can think
[NASA 99]

↓

100× ↑1000×

[SCaLeS 03]

Full Global Climate
[Malone 03]

Plasma
Fusion

Simulation
[Jardin 03]

MEMS
Optimize

ISAT LCC: 6 August 24, 2001

Future potential of novel architecture is
large (1000 vs 30)

1e-4
1e-3
1e-2
1e-1
1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)
Linear (ps/Inst)

52%/year

74%/year

19%/year30:1

1,000:1

30,000:1

From here, reproduced with permission

7

8

9

Trends Align Pretty Well, But
Mismatches are Instructive

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System
Performance

2000 2010 2020 2030 Year Æ

↑ c Red Storm/Cluster

Technology

e Nanotech +
Reversible Logic μP

(green) best-case logic
(red)Æ

↑d Architecture: IBM
Cyclops, FPGA, PIM

Alignment
Point

10
1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Let’s Build On The “Capability Gap”

11
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

What Path Will You Follow?

• Capability Gap reference

12
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Single Core Chips

• Although this is not the
industry trend!

13
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

One Core of a Multicore CPU

• Industry trend is to put
benefit of Moore’s Law into
more cores in multicore
μPs.

• For code that uses one
core, performance would
be nearly flat

14
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Multicore CPU Programmed Efficiently

• If you could code to
efficiently use all the cores
on a multicore CPU AND

• Industry put all the benefit
of Moore’s Law into more
cores THEN

• You would realize
performance gains in line
with BIT throughput

15
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Thermal Limit

• However, there is a limit
for AND-OR-NOT logic
beyond which heat
production becomes a
bottleneck

• Heat production is starting
to be a problem now, but
there are several orders of
magnitude to go before
reaching the real limit

100kB T Limit

16
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Reversible Logic

• The thermal limit can be
circumvented in principle,
but you have to give up
AND-OR-NOT logic

100kB T Limit

17
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Super Roadmap

• c Nearly flat
– Single core, commodity

• d Single core chip
– C++, Fortran, etc.

• e Full benefit of speedup
– More parallel code

• f Fully exploit transistors
– Custom hardware

• g Full benefit of physics
– Ditch AND-OR-NOT

• h Go beyond bits

100kB T Limit

h Quantum Computing
Requires

Rescaled Slide

c

d

e

f

g

18

• Remind audience that the last slide shows the
impact of Moore’s Law (horizontal axis) and
architecture (multiple curves) on applications
performance (vertical axis)

19

*** THIS IS A PREVIEW ***

• High node visit rate
• Small size
• Fast propagation velocity
• Parallel
• Organize program graph

for short distances
• Programming language

must aid programmer in
creating short, parallel
graphs

• Programmer must use
language effectively

c

e
g

i

k h

j

f

d

l

c

d
g

h

j k

f

i

e

l

Bad

Better

c

d
g

h

j k

f

i

e

l

Bus Route Analogy

20

Quantum Computing (Starting Point)

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System
Performance

2000 2010 2020 2030 Year Æ

↑ c Red Storm/Cluster

Technology

e Nanotech +
Reversible Logic μP

(green) best-case logic
(red)Æ

f Quantum Computing
Requires Rescaled

Graph (see later slide)

↑d Architecture: IBM
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

2000 20202010

No schedule provided by
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

Compute as fast
as the engineer

can think
[NASA 99]

↓

100× ↑1000×

[SCaLeS 03]

Full Global Climate
[Malone 03]

Plasma
Fusion

Simulation
[Jardin 03]

MEMS
Optimize

21

Rescale Graph

1 Zettaflops
100 Exaflops

10 Exaflops
1 Exaflops

100 Petaflops
10 Petaflops
1 Petaflops

100 Teraflops

System
Performance

2000 2010 2020 2030 Year Æ

↑ c Red Storm/Cluster

Technology

e Nanotech +
Reversible Logic μP (green) best-

case logic (red)Æ

f Quantum Computing
Requires Rescaled

Graph (see later slide)

↑d Architecture: IBM Cyclops,
FPGA, PIM

2000 20202010

No schedule provided by source

Applications

2000 20202010

No schedule provided by source

Applications

Compute as fast as the
engineer can think

[NASA 99]

↓

100× ↑1000×

[SCaLeS 03]

Full Global Climate [Malone
03]

Plasma Fusion
Simulation [Jardin

03]

MEMS
Optimize

22

Relabel Key Trends

1 Zettaflops
100 Exaflops

10 Exaflops
1 Exaflops

100 Petaflops
10 Petaflops
1 Petaflops

100 Teraflops

System
Performance

Technology
f Quantum Computing

Requires Rescaled
Graph (see later slide)

2000 20202010

No schedule provided by source

Applications

2000 20202010

No schedule provided by source

Applications

Compute as fast as the
engineer can think

[NASA 99]

↓

100× ↑1000×

[SCaLeS 03]

Full Global Climate [Malone
03]

Plasma Fusion
Simulation [Jardin

03]

MEMS
Optimize

2000 2010 2020 2030 Year Æ

↑ c Red Storm/Cluster

Cluster Projection
“Advanced Architecture”

23

Emergence of Quantum Computing

• There appears to be an
engineering case for
quantum computers of
1-100 Q-FLOPS

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

• One would expect an
exponential growth rate
for quantum computers
similar to Moore’s Law,
but the rate constant is
impossible to predict,
so three possibilities
have been graphed

Opti
mist

ic:
 10

0 Q
FL

OPS +
3x

/ye
ar

Top500: 10 QFLOPS + 2x/y
ear

Moore’s Law: 1 QFLOPS + 1.3x/year

Cluster Projection
“Advanced Architecture”

Ref. “How to build a 300 bit, 1 Gop quantum computer,” Andrew M. Steane, Clarendon Laboratory, UK, quant-ph/0412165

NOTE: Years are gone because
I hesitate to predict!

24

Quantum Applications

• Consider the classical
computer equivalent to
a Quantum Computer

• First use believed to be
factoring in crypt-
analysis, with expo-
nential speedup over
classical computers (blue)

E
xp

on
en

tia
l

S
pe

ed
up

Fa
ct

or
in

g,
S

im
ul

at
io

n

• Second, a quantum
computer can also be
used for other
applications (pink) with
quadratic speedup (e. g.
searching)

Qua
dr

at
ic

Sp
ee

du
p

Se
ar

ch
ing

, S
or

tin
g

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

Cluster Projection
“Advanced Architecture”

NOTE: Years are gone because
I hesitate to predict!

25

Super Roadmap Summary

• The Upside Potential for Innovative Computing is
Growing

• The industry shift to multi-core just about freezes
the performance of non-parallel C++, Fortran, …

• However, there is not even a theoretical
contemplated end to computer speed boost that
could be termed Moore’s Law

• However, many people will be disappointed…

26

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

27

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling

28

ITRS Construction Method and Limitations

• ITRS Looks Perfectly
Smooth
– Yes indeed, this is due

to the concept of
“targets”

• √2 reduction in line
width every 3 years

• 17%/year increase in
clock rate

– Roadmap based on
Excel spreadsheet with
targets, inputs, and
dependent variables

• Limitations of ITRS
Approach
– System performance

involves dozens of
interrelated variables

– Smooth scaling is
targeted for the dozen
variables reported

– By tying a dozen
variables to a straight
line, other variables
become “dependent”

29

Technology Model

• Two or three year interval
between √2 reductions in
line width
– Reducing line width by
√2 doubles the number
of devices

• However, ability to predict
the future is imperfect Æ

ITRS 2001 edition Executive Summary

30

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling

31

Per Core SpecFP Data and Trends

• Plot of 785 SpecFP
submissions, considering
only one core

• 43% per year is an
important figure
– ITRS projection
– Excel’s trendline
– Erik’s plot of “top of

envelope”
• However, we are falling

short of 43% growth
0

500

1000

1500

2000

2500

3000

3500

4000

Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06

43%
growth/year

45%-25%-17%
growth/year

17% growth/year

Trendline

Data from Spec.org, per core numbers,
entered into Excel spreadsheet for graphing

32

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling

33

ITRS Spreadsheet

• Review spreadsheet
interactively in Excel

• Points to make
– Illustrate role and

implementation of
“targets”

• Line width
• Clock rate

– Illustrate user inputs
• Sub threshold adjustment

factors rows 34 & 36
– Illustrate rows derived by

calculation

– Illustrate iteration to
target

– Illustrate HP LOP LSTP
• Draw conclusions

– Industry defines targets
– Table preparer adds

value by scheduling
innovations to meet
targets

– Validity depends on
innovations occurring
on schedule

• Limited example next slide

34

ITRS Spreadsheet Structure

Target is exponential
in “Years in Future”

Fprocessor is result of
96 rows of targets,
inputs, and iterative

calculation

Result usually
matches to one
decimal place!

Line Width
Scaling

ITRS 2003
supplementary
material

35

User Inputs

• Some factors will scale exponentially by
definition, yet others will scale based on
projections of engineers

• Supply voltage, doping levels, layer thicknesses,
leakage, geometry, mobility, parasitic capacitance

These values are
typed-in, based on

schedule in next slide

ITRS 2003 supplementary material

36

Schedule of Innovations

• To make the calculations
fit the projection of a
smooth “Moore’s Law,”
certain variables must be
adjustable

• The independent variables
are a “schedule of
innovations,” or
technology advances that
must enter production on
certain years MOSFET Scaling Trends, Challenges, and Key Technology

Innovations through the End of the Roadmap, Peter M.
Zeitzoff

37

ITRS Transistor Geometries

ITRS 2003 Emerging Devices Section Pages 4 and 5

38

ITRS Technology Progression

ITRS 2003 Emerging Devices Section Page 12

39

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling

40

Power Dissipation

• By targeting a smooth
exponential increase in
performance over time,
power dissipation
becomes a dependent
variable

• Power dissipation per μP
chip is not a reported
parameter

• Chart shows result
MOSFET Scaling Trends, Challenges, and Key Technology
Innovations through the End of the Roadmap, Peter M.
Zeitzoff

41

Processor Clock Rate

• Processor operating
frequency 10 gate delays
with 30% latch overhead

• Gate delay assumes FO3,
2×

parasitic capacitance

• Gate delay assumes CV2

charging, hence supply
voltage dependence

• However, these are gate
level, not system level

ITRS 2003 supplementary material

42

ITRS Scaling Conclusions

• Optimism
– Density doubles every

three years
• 26% per year

– Clock rate rises 17% per
year

– Sum is 43%/year!
• Reasonably close to

the 41%/year of ideal
scaling!

• Limits of Applicability
– Power dissipation

partially covered
• However, power

dissipation per chip
rises

• Leakage power not
covered

– Timing based on gates,
not architecture

• Wiring delay
calculated, but not part
of timing model

43

End of the Roadmap

• ITRS: Exponentials, Innovations, and Equations
– SPEC processor numbers and implications
– The Big Spreadsheet
– Total power and clock rate model

• Review of Burger and Keckler Study
– Study of throughput under technology scaling

• Implications
– Throughput scaling
– Cache scaling
– Bandwidth Scaling

44

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

45

Scaling of Microprocessor Performance

• For a given design,
performance proportional
to clock rate

• However, designs change
with technology
– More transistors lead to

architectures with more
“instructions per clock”

– Signal propagation
(wire) delays lead to
more pipelining

– More pipelining leads to
larger cache miss
penalty

– Cache miss penalty and
desire to run larger
programs (a. k. a. “code
bloat”) leads to larger
caches

• Question: What is the
roadmap for
microprocessor
performance?

46

How to Project Uniprocessor Performance

• Let’s assume industry
makes the innovations
called for by the ITRS on
schedule

• However, companies will
not be constrained to do
everything like the ITRS
– Engineers can choose

any power supply
voltage they like

– Doping levels can be
changed

• Evaluate

and report performance
and architecture as a
function of years into the
future

max(SpecFP)
engineering
Å choices,

architecture

47

UT Austin Study (2000)

• The Study
– Clock Rate versus IPC:

The End of the Road for
Conventional
Microarchitectures,
Vikas Agarwal, M.S.
Hrishikesh, Stephen W.
Keckler, Doug Burger.
27th Annual
International
Symposium on
Computer Architecture

• Conclusions (to be
Explained)
– Modified ITRS roadmap

predictions to be more
friendly to architectures

– Concluded there would
be a 12%/year growth…

– However, recent growth
has been ~30%, with
industry’s maneuver to
cheat the analysis
instructive

48

Wire Delay Coverage in ITRS

• Wire delay added to ITRS
2002 edition

49

Modeling Wire Delay

• For some year in the future
– ITRS and other models

project a clock rate
– ITRS and other models

project a signal
propagation velocity

– Divide the two figures
to get d=distance
traveled in one clock
cycle

– Chip area/d2 is plotted
at right Æ

• Figure 4 from “Clock Rate versus IPC: The
End of the Road for Conventional
Microarchitectures,” Vikas Agarwal, M.S.
Hrishikesh, Stephen W. Keckler, and Doug
Burger

50

Cache Performance

• Authors used ECacti
cache modeling tool

• ECacti lays out caches in
terms of banks,
associatively, etc.

• As technology progresses,
size of cache accessible in
3 cycles decreases

• Remedy is obvious, but
has consequences:
increase depth of
pipelining

• Figure 5 from “Clock Rate versus IPC: The
End of the Road for Conventional
Microarchitectures Vikas Agarwal, M.S.
Hrishikesh, Stephen W. Keckler, and Doug
Burger

This graph for a
3 cycle cache access

Å
tim

e

reduction in cache size
re

du
ct

io
n

in
 a

cc
es

s
tim

e

51

Modeling Pipelined μP

• Authors used
SimpleScalar, cycle
accurate simulator of a
DEC Alpha 21264

• However, actually models
hypothetical future μPs
with parameterized
– Cache parameters
– Pipeline depth
– Branch prediction
– Technology (clock

speed)

• Authors used
SimpleScalar to model the
18 SPEC95 benchmarks
for 500 million instructions
each
– Adjustments to avoid

initialization
• Question to answer: What

is the best architecture,
and how well does it work?

52

Simulation Results

• Results shown at right Æ
are noted by author to be
“remarkably consistent”

• If fact, the results are
almost the same as the
clock rate increase

• Conclusion: To first order,
SPEC ratings will increase
with speed of clock
– Noting that this analysis

is per μP core, and
SPEC is for one core

• Figure 7 from “Clock Rate versus IPC:
The End of the Road for Conventional
Microarchitectures Vikas Agarwal,
M.S. Hrishikesh, Stephen W. Keckler,
and Doug Burger

Pipeline = caches same size
but more pipelining to keep
access rate same
Capacity = cut cache size so
access is possible without
cutting clock rate

53

Study Conclusions and Discussion

• UT Austin study concluded
that μP performance should
increase at about 12%/year

• However, it actually increased
at 30%/year

• What is the discrepancy?
– It is difficult to predict

future
– Vendors broke study

assumptions by
increasing power

– Study was before its time
(vendors went multicore
this year)

• Figure 8 from “Clock Rate versus IPC:
The End of the Road for Conventional
Microarchitectures Vikas Agarwal,
M.S. Hrishikesh, Stephen W. Keckler,
and Doug Burger

54

Memory

Cache

CPU
bdf
hj

c

e
g

i

k

Model of CPU Performance (Will Be Reused)

• Diagram’s physical size
corresponds to
processor’s physical size

• Program executes by
visiting nodes
bcdefghijk,
moving at a propagation
velocity αc

• Evens at center due to Von
Neumann architecture

• Performance is rate at
which nodes are visited

55

Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization

overhead
• Example

– Instructor led example of projecting performance of
a mesh algorithm

56

Technology Scaling and Algorithms

• Assumptions
– You have a fixed budget to

buy and run computers
– Technology scales

according to ITRS
• Question

– How will the performance
of algorithms change as a
function of time?

• Solution Approach
– Find the scalability of an

algorithm as a function of
the “scaling” of the
computer’s technology

• Issues Generating Rules
– Thread speed &

parallelism
– Inner loop memory
– FLOPS/watt
– Devices per chip (or

whatever)
– Surface-to-area ratio
– Load balance

• App. Determined
• Stability

57

Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization

overhead
• Example

– Instructor led example of projecting performance of
a mesh algorithm

58

Thread Speed and Parallelism

• Runtime ≥

sequential
ops÷thread speed

• Single thread FLOPS rate
determined by
– Gate speed

• ITRS tell you this
– Architecture

• ~9 gate delays in a μP
• Inflexible

– Communications speed
• Memory latency

• The best algorithms have
variable parallelism
– Each thread controls an

array of cells
– Size of the array can be

cut, but not below 1 cell
• Some algorithms have

fixed parallelism
– Tough luck

• Conclusion
– Optimization

59

Projected Clock Rate Increases

• 2004 Update shows clock
rates rising to 53 GHz by
2018
– Not based on

architecture

• The ITRS table projects
clock rates based on
inverter and latch delay,
not accounting for system
issues

• Recent historical
information suggests
much slower clock rate
increases
– Cancellation of certain

microprocessors and
shift to multi-core

60

Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization

overhead
• Example

– Instructor led example of projecting performance of
a mesh algorithm

61

Inner Loop Working Set

• The application’s inner
loop will have a “cache
working set” of storage
– This working set will

take up d×d chip area
• Minimum access time will

be 2d÷v
– v is signal propagation

velocity
– modulo constants

• Is this some hypothetical
architectural thing?
– Not necessarily, applies

to existing μPs where
working set is in
existing cache

• Implication to algorithm
– Cutting working set size

can cut running time
– Physics supercedes

complexity theory

62

Implications of Inner Loop Working Set

• Runs against Area-Volume
Rule
– Fewer cells per CPU

increases
communications cost /

– At some point cutting
cells per CPU lets all
cells fit in cache, or
other local memory ☺

• Impacts tables
• Option A: compute f(x)

when needed
• Option B: precompute

f(x), store in a x
Megabyte table

– Option B may cut clock
rate for everything else

• No universal answer
here

• Allocate data structures to
memories at different
distances?

63

Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization

overhead
• Example

– Instructor led example of projecting performance of
a mesh algorithm

64

FLOPS/Watt

• Thermodynamic limit at
kB T log 2
– Currently operating at

100,000 kB T
– ITRS goes to about 100

kB T
– Unexplored gulf

between 100 kB T and .7
kB T

• Thermodynamic limit can
be beat with reversible
logic and Quantum

• Implications
– Corollary: everything

proportional to power
• Mfg cost
• Operating cost

– Cost of running an
algorithm depends on
total FLOPS

• Cut FLOPS
• Running time is a

different story

65

Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization

overhead
• Example

– Instructor led example of projecting performance of
a mesh algorithm

66

Device Density Scaling

• Device density is projected to scale at 2×

per
three years

• There is a lot of innovation
– Lithographic line width continues to shrink
– DNA self assembly
– Others

• We don’t seem close to theoretical limits

67

Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization

overhead
• Example

– Instructor led example of projecting performance of
a mesh algorithm

68

Bandwidth Scaling

• Overview: Bandwidth will
continue to scale

• Theoretically, the limit on
bandwidth is way out

• According to the ITRS
Roadmap
– Number of bonding

pads on a chip
becomes constant

– Bandwidth per bonding
pad equals internal
clock rate (?)

• However, there are
innovative solutions in the
works
– Optical interconnect
– Capacitive interconnect

• For long haul
communications
– Optics has practically

infinite bandwidth

69

Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization

overhead
• Example

– Instructor led example of projecting performance of
a mesh algorithm

70

Load Balance

Barrier Barrier

Workload

Jo
bs

Average
completion

time

Actual
completion

time

If we don’t
know

anything
about running
time, assume

standard
distribution

71

Maximum IQ of a Class in Your Kids School

• Each child has average IQ
100 and std of 15
– Mean and std of task

runtime
• Each class has total IQ of

n×100 and std of n½×15
– Statistics of per node

time between barriers
• Max average is inverse of

cumulative normal
distribution evaluated at n

Classroom 1

Student
IQs

Classroom n

Student
IQs

∑ IQs will have
bell curve
as well

n-1
n

1
n

72

Efficiency Loss Due To Load Balance

• Load imbalance becomes
an issue when there are
less than 10s to 100s of
tasks per node
– Presuming mean≈std

• Implications
– This creates a ceiling to

the amount of
parallelism, unless

– tasks can be shared

• Plot Mean=Std

1 5

20

10
0

20
00

10
00

0

50
00

0

20
00

00

10
00

00
0

1

50

2000

100000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

Nodes

Cells

Efficiency
Increasing Parallelism

[Defining equations in PowerPoint notes]

73

Projecting Applications Performance

• Review of Issues
– Thread speed & parallelism
– Inner loop memory requirements
– FLOPS/watt
– Devices per chip (multi-core scaling)
– Surface-to-area ratio
– Load imbalance revealed by synchronization

overhead
• Example

– Instructor led example of projecting performance of
a mesh algorithm

74

Example Problem: Future Mesh Problem

• We are given year 20XX
• 1. Outer Loop of Process:

Pick Number of Cores
– Processors are likely to

be available with
different numbers of
cores – and there is no
obligation to use all the
cores on a chip

– Repeat the following
with 1, 2, 4… up to the
max cores that will fit
on a 20XX die

• 2. Look up 20XX in ITRS
– Note device density
– Note clock rate

• 3. Figure out how much
cache you should have
– Chip area goes to cores

and cache
– After taking out the area

occupied by cores, the
rest is cache

– Track heat production
(for use later)

Page 70 & 71 chip page 79 clock rate

75

Example, Part 2

• 4. Using algorithmic
information and cache
size, figure out at what tier
the code will run, per
discussion earlier. The
level may strongly
influence performance

• Levels are
– Stencil in cache
– Vertices in cache
– Subdomain in cache

• 5. From level and “grind
time,” figure out B:F ratio
between CPU chip and
main memory

• 6. Figure out likely memory
bandwidth, either by using
pins per ITRS specs or
standard memory busses

Page 76 bandwidth

76

Example, Part 3

• 7. Calculate interchip
communications rates
– This generally involves

sending and receiving
the “halo” from each
node

– Depending on
architecture, could be
from memory or CPU

– Also in B:F ratios

• 8. Overall throughput will
be minimum of
– FLOPS
– Memory bandwidth

divided by B:F ratio for
memory

– MPI bandwidth divided
by B:F ratio for MPI

– There has been some
discussion of throttling
chips due to excessive
power

77

Example, Part 4

• Note: All rates should be
adjusted for “percentage
of peak.” If nothing else is
known, use percentage of
peak numbers for similar
architectures

• 9. Iterate to best solution,
by going to step 1
– varying the number of

cores in a chip,
devoting all area not
occupied by cores with
cache

– turning off cores,
sharing their cache

– spreading problem over
more or fewer nodes

78

Example, Part 5

• 10. Final step: The process just described is a
mixture of analysis and design. The result will be
meaningless if a vendor doesn’t produce the
required chip. For example, if your ideal design
requires 2½ cores, you’re probably out of luck.

79

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

80

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

81

• Cooling method: 9
• Back of envelope: 21 THz
• Conclusion: Faster than

CMOS slower than
Quantum Computer

• No research in this area

Fastest Possible C++ or Fortran Program

• How fast could a C++ or
Fortran program ever run?

• Limited by memory
access time to ~100
MBytes of data

• Ref. K. Eric Drexler,
Nanosystems: Molecular
Machinery, Manufacturing,
and Computation

• Parameters for 100
Å megabytes memory

Å 4μmÆ

CPU + 100 MB
memory

10W cooling to
moving metal

82

Memory

Cache

CPU
bdf
hj

c

e
g

i

k

Single CPU Performance

• Program executes by
visiting nodes
bcdefghijk

• To go fast
– Raise speed of motion
– Shrink physical size
– Organize to put nodes

closer to center
– Predict order of access

• C++ and Fortran programs
have little predictability
and stochastic distribution

Å 4μm Æ

83
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Super Roadmap

• c Nearly flat
– Single core, commodity

• d Single core chip
– C++, Fortran, etc.

100kB T Limit

h Quantum Computing
Requires

Rescaled Slide

c

d

e

f

g

84

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

85

Systolic Architectures

• Overview
– “Special purpose hardware”
– Efficient on all fronts
– General, albeit not “programmed”
– Leads to other things

• Nodes comprise registers holding a few numbers
• Arcs convey numbers in lock-step

communications

86

* +

C00

… A02 Æ A01 Æ A00 Æ

* +

C01

* +

C10

* +

C11

Systolic Array Matrix Multiply

• Initialize Acc to 0
• A x B appears in Acc

… A12 Æ A11 Æ A10 Æ

… B
20 Æ B

10 Æ B
00 Æ

… B
21 Æ B

11 Æ B
01 Æ

87

Systolic Array Generality

• Numerical
– Filtering, convolution
– FFT
– Matrix-vector, matrix-

matrix multiplication
– Matrix triangularization
– QR decomposition
– Linear systems solution
– Matrix inversion

• Non-numeric
– Searching, sorting
– Transitive closure,

minimum spanning
trees

– Regular expressions
– Dynamic programming
– Database operations

88

Systolic Array Efficiency & Discussion

• The efficiency of a systolic
array is just about obvious
by inspection
– The resource

consuming components
(space and energy) are
drawn on the paper
surface

– Speed is one operation
per clock

– Not all cells are used
every cycle

• Discussion
– You get what you pay

for
– Programmer specifies

data placement, data
movement, and
operations

– Reward is full efficiency
– This VLSI tool for non-

complex operations, but
the principles
generalize (next)

89

Systolic Array Performance Model

• Program executes by
visiting nodes
bcdbcdbcd…

• Paths are regular, short,
and predictable

Cell
bcd

Cell
bcd

Cell
bcd

Cell
bcd

90
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Super Roadmap

• f Fully exploit transistors
– Custom hardware

100kB T Limit

h Quantum Computing
Requires

Rescaled Slide

c

d

e

f

g

91

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

92

Components of Cyclops Chip

• 80 Float point processors
– 40 KBytes scratch

• 160 Integer Processors
– or 20 KBytes scratch

• Or on chip memory can
fuse to to 3.2 MBytes

• External 1 GByte DRAM
– 2 GBytes in a few years

• 3D Mesh Interconnect
– 4 GBytes/sec IPC

• Disk per node I/O

93

Processor Architecture

• Chip Architecture on Left
• System is 24×24×24 3D

mesh

P P IC P P P P P P IC P P
P P IC P P P P P P IC P P
P P IC P P P P P P IC P P
P P IC P P P P P P IC P P

Pipelined Crossbar Switch

P P IC P P P P P P IC P P
P P IC P P P P P P IC P P
P P IC P P P P P P IC P P
P P IC P P P P P P IC P P

A-Switch
(Message Passing)

Four DDR2 Memory
Controllers I/O Port

I/O

I/O
I/O

I/O

I/O PortsTo/From
Adjacent PC cards

External Memory
(Four Banks)

Utility
(Disk, Ethernet)

P = Processor,
IC = I-Cache (32 KB SRAM)

32 KB SRAM0 32 KB SRAM1

Thread Unit 0 Thread Unit 1

Floating-Point/MAC

Shared Port to Crossbar

0 1 2 3 4 5

16 1664

94

Network

• Network is 3D mesh very much like Red Storm or
Blue Gene

Main Memory

Crossbar Switch

From
Adjacent
Nodes

To
Adjacent
Nodes

A-Switch

0
1
2
3
4
5

0
1
2
3
4
5

95

Memory Map

• Memory Hierarchy
– Fastest: Your local

memory (20K)
– Another local node’s

local memory (80x20K)
– On-chip aggregated

memory (3.2 MB)
– External memory (1 GB)

• User and supervisor mode
• Moveable barrier for

aggregation

External DRAM

0

2G

4G

Node 0 32K (20K)

Node 79 32K (20K)

Node 0..79
aggregated

I/O

…

96

Cyclops Programming

• Legacy Mode (my term)
– Run a legacy code,

using internal
processors and external
memory, forget about
on-chip memories

– Bottleneck at external
memory bus

– Will run anything, but
without advantage

• Tuned Mode (my term)
– Rewrite “inner loop” to

use local and
aggregated on-chip
memories by managing
pointers

– Use message passing,
shared memory, or both

– Run outer loop from
external memory

– Could work really well

97

Cyclops Performance

• Cycle-accurate simulation
of Cyclops shows
promising speedup on
scientific benchmarks

Juan del Cuvillo Weirong Zhu Ziang Hu Guang R. Gao, TiNy Threads: a Thread Virtual Machine for the Cyclops64 Cellular Architecture,
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop 14 - Volume 15

98

Cyclops Suitability Guide
Suitability Rules:
1. Inner loop data should fit
in 80×64K≈5.25 MBytes/chip
PIM high speed memory so
inner loop runs at full speed
2. All other data goes in in
per node DRAM of 1 or 2
GBytes and runs somewhat
slower than a cluster –
which is OK because if it is
the outer loop, I/O, OS, etc.

The following trick is not
available on Cyclops: you can’t run a big
problem on a small machine by adding
DRAM and running longer!

Cyclops Maximum DSMC Problem Size:
Inner loop data is molecular simulators at
50 bytes/molecular simulator
z 100K simulators/chip
z 1.4G simulators/1 Petaflops system
z 20M simulators/rack

(goal is 100M simulators)

x, y, z, vx,
vy, vz,
species Æ
25 bytes

Inner loop
data

Other data
(outer loop
I/O, OS,
etc.)

Å X Spatial Æ

Å
Y Spa

tia
l Æ

Å
M

em
or

yÆ

Chip
Memory Usage

DRAM

Å

99

Multi-Core Performance Model

• Compared to a single core
chip, there are four threads
visiting nodes rather than
one

• Compared to a single core
chip, the nodes are closer
and the visit rate higher

• This doesn’t tell you how
to program your
application, but tells you
that if you can the machine
will run fast

External memory
Memory

CPU
bdf
hj

c

e g

k

i

Memory

CPU
bdf
hj

c

e g

k

i

Memory

CPU
bdf
hj

c

e g

k

i
Memory

CPU
bdf
hj

c

e g

k

i

100
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Super Roadmap

• e Full benefit of speedup
– More parallel code

100kB T Limit

h Quantum Computing
Requires

Rescaled Slide

c

d

e

f

g

101

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

102

Custom
hardware for
“inner loop”

Application-Specific Attached Processor

• Idea
– Develop custom

hardware for main
calculation in the “inner
loop”

– C++ or Fortran outer
loop

– Examples Æ
• In ideal case, runs with

speed of full custom
hardware with flexibility of
C++ and Fortran

CPU with C++
or Fortran for
“outer loop”

Inner Loop Hardware Examples:
CPU Floating Point
GPU Polygon Render
MD Molecular Force
xxx FPGA

Node

Your favorite
interconnect

103

Memory

Cache

CPU
bdf
hj

c

e g

i

k

Attached Hardware Performance Model

• Program executes by
visiting nodes
bcdefghijk…

• The special hardware is
organized to execute a lot
of nodes with short paths

• While a CPU exists, its
contribution is diluted by
the special hardware

Special Hardware
bcdefghijk
kjihgfedcb
bcdefghijk
kjihgfedcb
bcdefghijk
kjihgfedcb
bcdefghijk

104
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Super Roadmap

• f Fully exploit transistors
– Custom hardware

100kB T Limit

h Quantum Computing
Requires

Rescaled Slide

c

d

e

f

g

105

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

Going Beyond Moore’s Law with
Analog and Bio-inspired

Processing
Rahul Sarpeshkar

Associate Professor
Electrical Engineering and Computer

Science
MIT

July 9th 2006
ITRS Talk

From R. Sarpeshkar, "Analog Versus Digital: Extrapolating from Electronics
to Neurobiology," Neural Computation, Vol. 10, pp. 1601-1638, 1998

Fr
om

 R
. S

ar
pe

sh
ka

r,
"A

na
lo

g
V

er
su

s
D

ig
ita

l:
E

xt
ra

po
la

tin
g

fro
m

E

le
ct

ro
ni

cs
 to

 N
eu

ro
bi

ol
og

y,
" N

eu
ra

l C
om

pu
ta

tio
n,

 V
ol

. 1
0,

 p
p.

16

01
-1

63
8,

 1
99

8

S T A T E

D I G I T A L

COMBINATIONAL LOGIC

A N A L O G S T A T E

ANALOG PROCESSING

AOAI

Spike-triggered FSM

Analog Dynamical System

DI DO

Spikes
Binary�
Control�
Vector

FINITE STATE MACHINE HYBRID STATE MACHINE (HSM)
HYBRID ANALOGHYBRID ANALOG--DIGITAL ARCHITECTURESDIGITAL ARCHITECTURES

1. “Spike” = Pulse or Digital Event.
2. Each discrete state in the HSM is like a ‘behavior’ in which a rapidly reconfigurable analog dynamical system changes its parameters or topolog
3. Resulted in an extremely energy efficient time-based A/D converter with linear scaling in bit precision vs. exponential compared with other time-based

converters.

From R. Sarpeshkar and M. O'Halloran, "Scalable Hybrid Computation with
Spikes," Neural Computation, Vol. 14, No. 9, pp. 2003-2024, September 2002

110
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Sys
tem

 Throughput

52
%/ye

ar

System Throughput

19%/year

BIT
Th

ro
ug

hp
ut

 74
%/ye

ar

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Æ

(p
ow

er
s

of
 1

0)

Super Roadmap

• This data point actually
breaks the “super
roadmap” as drawn.

• Analog computation is
subject to a limit related to
kB T but the coefficient is
different from digital
electronics

h Quantum Computing
Requires

Rescaled Slide

c

d

e

f

g

111

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

112

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

113

Applications and $100M Supercomputers

1 Zettaflops

100 Exaflops

10 Exaflops

1 Exaflops

100 Petaflops

10 Petaflops

1 Petaflops

100 Teraflops

System
Performance

2000 2010 2020 2030 Year Æ

↑ c Red Storm/Cluster

Technology

e Nanotech +
Reversible Logic μP

(green) best-case logic
(red)Æ

f Quantum Computing
Requires Rescaled

Graph (see later slide)

↑d Architecture: IBM
Cyclops, FPGA, PIM

2000 20202010

No schedule provided by
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

2000 20202010

No schedule provided by
source

Applications

[Jardin 03] S.C. Jardin, “Plasma Science Contribution to the SCaLeS Report,” Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, “High-End Computing in Climate Modeling,” contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, “Compute as Fast as the Engineers Can Think!”
NASA/TM-1999-209715, available on Internet.
[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.
[DeBenedictis 04], Erik P. DeBenedictis, “Matching Supercomputing to Progress in Science,” July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as
Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library.

Compute as fast
as the engineer

can think
[NASA 99]

↓

100× ↑1000×

[SCaLeS 03]

Full Global Climate
[Malone 03]

Plasma
Fusion

Simulation
[Jardin 03]

MEMS
Optimize

114

Simulation of Global Climate

Stott et al, Science 2000“Simulations of the response to natural forcings alone … do not
explain the warming in the second half of the century”

“..model estimates that take into account both greenhouse
gases and sulphate aerosols are consistent with observations
over this*period” - IPCC 2001

115

FLOPS Increases for Global Climate

1 Zettaflops

1 Exaflops

10 Petaflops

100 Teraflops

10 Gigaflops

Ensembles, scenarios
10×

Embarrassingly
Parallel

New parameterizations
100×

More Complex
Physics

Model Completeness
100×

More Complex
Physics

Spatial Resolution
104×

(103×-105×)
Resolution

Issue Scaling

Clusters Now In Use
(100 nodes, 5% efficient)

100 Exaflops Run length
100×

Longer Running
Time

Ref. “High-End Computing in Climate Modeling,” Robert C. Malone, LANL, John B.
Drake, ORNL, Philip W. Jones, LANL, and Douglas A. Rotman, LLNL (2004)

116

Exemplary Exa- and Zetta-Scale Simulations

• Sandia MESA facility using
MEMS for weapons

• Heat flow in MEMS not
diffusion; use DSMC for
phonons

• Shutter needs 10 Æ
Exaflops on an overnight
run for steady state

• Geometry optimization Æ
100 Exaflops overnight run
– Adjust spoke width for

high b/w no melting

500 μm

117

FLOPS Increases for MEMS

10 Exaflops

30 Petaflops

600 Gigaflops

5 Gigaflops

Run length
300×

Longer Running
Time

Scale to 500μm2×12μm
disk 50,000×

Size

2D Æ 3D
120×

Size

Issue Scaling

2μm×.5μm×3μs 2D film
10 ×

1.2 GHz PIII

100 Exaflops Optimize
10×

Sequential

118

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

119

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

120

Beyond Transistors

• Narrowing the Space
– We’ll assume this

audience is interested
only in programmable
digital computers

– We’ll assume this
audience wants
imperative
programming, not AI

– (I. e. ignore neural nets,
analog computers ,
biochemical reactions,
evolution of DNA, …)

• Options Within the Space
– Thread Speed &

Parallelism: it looks like
all paths to the future
will require the
programmer to expose
more parallelism, but
not equally

– Power and Heat: Cost of
electricity and danger of
overheating become
dominate issues

121

Thermal Limit

• The probability of a “logic
glitch” due to thermal
noise is approximately e-N,
where N=Esig /kB T

• To keep a multi Petaflops
supercomputer running for
several years without a
glitch requires 60 <

N <

100
• Current logic design styles

thermalize all the signal
energy at the output of
every AND, OR, NOT gate

• Thus, it would be a
reasonable “rule of thumb”
that current design styles will
have a hard barrier at 60-100
kB T energy per gate
operation.

• ITRS predicts 30 kB T. While
Erik thinks such devices
might be manufacturable,
redundancy in logic design
should outweigh benefit
– Also, MPF observation

about information
representation

122

Metaphor: FM Radio on Trip to Orlando

• You drive to Orlando
listening to FM radio

• Music clear for a while, but
noise creeps in and then
overtakes music

• Analogy: You live out the
next dozen years buying
PCs every couple years

• PCs keep getting faster
– clock rate increases
– fan gets bigger
– won’t go on forever

• Why…see next slide

Details: Erik DeBenedictis, “Taking ASCI Supercomputing to the End Game,”
SAND2004-0959

123

FM Radio and End of Moore’s Law

Driving away from FM transmitterÆless signal
Noise from electrons Æ no change

Increasing numbers of gatesÆless signal power
Noise from electrons Æ no change

Shrink

Distance

124

Personal Observational Evidence

• Have radios become better able to receive distant
terrestrial stations over the last few decades with
a rate of improvement similar to Moore’s Law?
– XM is a different story

• You judge from your experience, but the answer
should be that they have not.

• Therefore, electrical noise does not scale with
Moore’s Law.

125

Landauer’s Arguments

• Landauer makes three
arguments in his 1961
paper
– Kintetics of a bistable

well (next slide)
– Entropy generation Æ

• Entropy of a system in
statistical mechanics:

S = kB loge (W)
W is number of states

• Entropy of a mechanical
system containing a flip
flop in an unknown state:

S = kB loge (2W)
• After clearing the flip flop:

S = kB loge (W)
• Difference kB loge (2)

Sorry, I don’t have a cute
story (like the FM radio) for

Landauer’s argument

126

Landauer’s Limit

• The Landauer limit says
you can reduce power
dissipation for irreversible
functions below 100 kB T,
but not below kB T loge 2

• In the diagram on the right,
when the energy barrier
drops to below about kB T,
the state will
spontaneously switch and
dissipate remaining energy
as heat

0 1

En
er

gy

State
(Position)

0 1

kB T

0 1

127

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

128

Cutting Temperature
100 Watts

Thermo
Micro

100kB T,
T=300°K

100 Watts

Thermo
Micro

100kB T,
T=3°K

Motor

99 Watts 1 Watt

cold

129

Cutting Temperature

Carnot Efficiency ηc = Tc
Th -Tc

Specific Power 1/ηc = Th -Tc
Tc

Specific power is watts input power
required to remove one watt at the
cooling temperature

Idea:
To cut computer power, let’s cool
the active devices to 3° K. This will
cut minimum power per reliable
operation from 100kB ×300 to 100kB ×3,
cutting device power by 100 fold!

Specific Power 1/ηc = Th -Tc
Tc

= 300 - 3
3

= 99

Thus, we cut device power to 1%
of original power at the price of a
refrigerator consuming 99% of the
original power, for resulting total
power consumption of 100% of
original power.

However, refrigerators are typically
<20% efficient, so we’re actually
in the hole by 5×

…
but it is cheaper to dissipate power
in a big motor than an expensive
chip.

130

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

131

8 Petaflops

80 Teraflops

Projected ITRS
improvement to 22 nm

(100×)

Lower supply voltage
(2×)

ITRS committee of experts

ITRS committee of experts

Expert
Opinion

Scientific Supercomputer Limits

Reliability limit
750KW/(80kB T)2×1024 logic ops/s

Esteemed physicists
(T=60°C junction temperature)

Best-Case
Logic

Microprocessor
Architecture

Physical
Factor

Source of
Authority

Assumption: Supercomputer
is size & cost of Red Storm:
US$100M budget; consumes
2 MW wall power; 750 KW to
active components

100 Exaflops

Derate 20,000 convert
logic ops to floating point

Floating point engineering
(64 bit precision)

40 Teraflops Red Storm contract

1 Exaflops

800 Petaflops

Å 125:1 Æ

Uncertainty (6×) Gap in chartEstimate

Improved devices (4×) Estimate
4 Exaflops 32 Petaflops

Derate for manufacturing
margin (4×)

Estimate

25 Exaflops 200 Petaflops

132

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

133

Transistors vs. Other Irreversible Devices

• Erik’s View
– My contacts on the ITRS staff tell me they believe

transistors will get to the ~30 kB T level. If this is so,
transistors will be difficult to beat in this domain.

– At 30 kB T, logic would have a spontaneous error
rate > e-30 (one error in a billion operations).

– I have no doubt that computing with a 10-9 error
rate is possible, but the overhead in error
correction would consume more than a factor of 3.
Remember Triple Modular Redundancy (TMR)
consumes 3×

hardware!

134

Really Advanced Technology

• International Technology
Roadmap for
Semiconductors (ITRS)
Emerging Research
Devices (ERD) architecture
panel. All new devices are
inadequate except CNFET

• ITRS ERD [see below]
– Influential over

industrial and
government funding

135

ITRS Device Review 2016 + QDCA
Technology Speed

(min-max)
Dimension
(min-max)

Energy per
gate-op

Comparison

CMOS 30 ps-1 μs 8 nm-5 μm 4 aJ

RSFQ 1 ps-50 ps 300 nm- 1μm 2 aJ Larger

Molecular 10 ns-1 ms 1 nm- 5 nm 10 zJ Slower

Plastic 100 μs-1 ms 100 μm-1 mm 4 aJ Larger+Slower

Optical 100 as-1 ps 200 nm-2 μm 1 pJ Larger+Hotter

NEMS 100 ns-1 ms 10-100 nm 1 zJ Slower+Larger

Biological 100 fs-100 μs 6-50 μm .3 yJ Slower+Larger

Quantum 100 as-1 fs 10-100 nm 1 zJ Larger

QDCA 100 fs-10ps 1-10 nm 1 yJ Smaller, faster,
cooler

Data from ITRS ERD Section, data from Notre Dame

136

Nantero NRAM™ Device

137

Nanoarray Architecture

• Low Road
– Planar, conventional

architecture

• High Road
– Fabricate nanotech

array on top of chip

Column

R
ow

Row
Drivers

Column
Drivers

138

n×n

n2×n2

Thought Experiment – Skewed Nanoarray

• Problem is that molecular
scale mask alignment is
very hard

• However, regular arrays of
lines are more easily
drawn Æ

• Diagram to right (from
Likharev) uses 2n2 drivers
to drive n4 crosspoints

139

Thought Experiment – Skewed Nanoarray

• Actual design
superimposes row and
column drivers with the
crosspoint array

140Architectures at the End of Silicon: Performance Projections and Promising Paths – Doug Burger

141

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

142

Reversible Logic – Toffoli Gate

• The Toffoli gate is logically
complete

• Reversible logic notation
shown to right Æ
– Bits shown as

horizontal lines
– Time nominally flows to

right, but reverses
naturally

• Function
– If A and B true, invert C

• Note: self-inverse

A

B

C

143

Reversible Logic Can Beat Landauer’s Limit

• Any function can be made reversible by saving its
inputs

• Diagram below outlines an asymptotically zero-
energy way to perform the AND function, in
composition with other logical operations

G(x) G-1(x)
A B C

Answer

Dissipation-less
Information ErasureF F-1

144

Reversible Logic Example

• One photon headed to a
glass plate goes through

• Two photons also go
through, but phase shift
each other a little bit

• By appropriate
recombinations, a
“controlled not” can be
created

• A glass plate needs no
power supply

• Measuring a Photonic
Qubit without Destroying
It. GJ Pryde, JL O’Brien,
AG White,
SD Bartlett, and TC Ralph.
Centre for Quantum
Computer Technology, ...

145

Today’s Universal Logic & Reliability Limit

• Today’s logic operates on
a simple principle
– Create a “1” by taking

charge from the
positive supply

– Create a “0” by sending
charge to the negative
supply

• Energy Consumption
– Each gate switch

generates Esw = ½ CV2 >
~100kB T heat

Vdd

Gnd

In Out

Signal energy must be
greater than ~100 kB T to

avoid spontaneous glitches.
To change a bit, convert

energy to heat.

146

“Recycling” Power

• The 100kB T limit appears
unbeatable, but the energy
can be “recycled”

• Diagram shows a “SCRL”
circuit with regular
transistors

• Power comes through a
largely loss less resonant
device (tuning fork)

• No apology offered for the
mechanical device; this is
the price of progress

φ1

φ2

In

Signal energy must be
greater than ~100 kB T to

avoid spontaneous glitches.
However, signal energy is

recycled by tuning fork

Out

147

Resonant Clocks

• A Resonant Clock is not
perpetual motion, but
instead reduces energy
similarly to:
– (a) lifting you child from

the ground to the
countertop 20 times

– (b) giving your child a
good push on a
swingset and letting
him/her go 20 cycles

Ref.: M. Frank

• Tuning Fork
– Nice idea but slow

• MEMs Resonator
– Moderate speed and

compatible with silicon
fabrication

148

Resonator Activity

1.51-GHz nanocrystalline diamond micromechanical disk
resonator with material-mismatched isolating support, J
Wang, JE Butler, T Feygelson, CTC Nguyen - Tech. Dig.,
17 th Int. IEEE Micro Electro Mech. Syst. Conf.

• Nano resonators of
appropriate frequency and
1 nW energy levels are
available for cell phone
filters.

• Frequency-Q products
over 1013

• However, power levels are
too low

• For logic, engineer would
like to design a non
sinusoidal waveform

149

A New Computing Device: Quantum Dots

• Pairs of molecules create a
memory cell or a logic gate

Ref. “Clocked Molecular Quantum-Dot Cellular Automata,” Craig S. Lent and Beth Isaksen
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 9, SEPTEMBER 2003

150

Upside Potential of Quantum Dots
Next Slide

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent,
JOURNAL OF APPLIED PHYSICS 15 JULY 2003

151

Upside Potential of Quantum Dots

>104 ×

Improvement
@ 100 GHz

& 60°

K

100 GHz1 THz10 THz100 THz
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

En
er

gy
/E

k

“Reliability Limit”

1000 ×

2004 Device Level

150 ×

“Landauer Limit”

Dissipation for
reversible
operations

Ref. “Maxwell’s demon and quantum-dot cellular automata,” John Timler and Craig S. Lent,
JOURNAL OF APPLIED PHYSICS 15 JULY 2003

152

Reversible Multiplier Status

• 8×8 Multiplier Designed,
Fabricated, and Tested by
IBM & University of
Michigan

• Power savings was up to
4:1

153

Reversible Microprocessor Status

• Status
– Subject of Ph. D. thesis
– Chip laid out (no

floating point)
– RISC instruction set
– C-like language
– Compiler
– Demonstrated on a PDE
– However: really weird

and not general to
program with +=, -=, etc.
rather than =

154

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

155

Outline

• Overview
– Insight From a Dinner

Conversation in DC
– Super-Roadmap

• Limitations to Moore’s Law
– Transistor Scaling

Limits per ITRS
– Consequence to

System Performance
per Burger and Keckler
Study

• What It Means and What
To Do About It
– Legacy C++/Fortran
– Systolic Array Lessons
– New Very Parallel Code
– Special Purpose Assist
– Analog/Neural Net

• Over the Horizon
– Reversible Logic
– Quantum Computing

156

Why Quantum Computing is Interesting

• A Superset of Digital
– Spin “up” is a 1
– Spin “down” is a 0
– Other spins

• Sidewise
• Entangled
• Phase

– Like wildcards
• 1011??????
• Up to 2N states Æ

in “quantum parallel”

157

Ion Trap Quantum Gates

• Hyperfine (internal qubit)
frequencies are ω0 and ω1

• Vibrational center of mass
frequency is ωc

• Laser at frequency ω0 ± ωc
or ω1 ± ωc couples qubit
from hyperfine state to
vibrational state and back

• Appropriate frequencies
selectively move qubits
based on data

• Works on superpositions

• Two ions in an ion trap

• Laser beam frequency ω

ϕ1

θ1

ϕ0

θ0

Vibrational
“spring”

f= ωc

158

Reliable Quantum Operations

• Microprocessors use ECC
for memory and crash
when logic errors occur

• QEC includes technology
for error detection and
correction on both
memory and operations

• Example on right performs
Toffoli operation on
protected blocks,
producing a protected
block

• Toffoli Gate

“Fault-Tolerant Logical Gate Networks for CSS
Codes,” Steane, A, Ibinson, B, quant-ph/0311014

159

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

160

Quantum “Algorithms”

• Category 1: No Speedup
– A quantum computer will

be able to execute
conventional computer
logic – with no advantage

• Category 2: Grover’s
Algorithm with Quadratic
Speedup
– Given an “Oracle”

function, a QC can search,
average, min, max,
integrate, in n1/2 steps to
same accuracy as a
classical computer gets in
n steps

• Category 3: Shor’s
Algorithm with Exponential
Speedup
– There are a series of

problems related to the
“hidden subgroup
problem” that can be
solved with exponential
speedup over a
classical computer.

– Includes code cracking
and physics simulation

161

Emergence of Quantum Computing

• There appears to be an
engineering case for
quantum computers of
1-100 Q-FLOPS

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

• One would expect an
exponential growth rate
for quantum computers
similar to Moore’s Law,
but the rate constant is
impossible to predict,
so three possibilities
have been graphed

Opti
mist

ic:
 10

0 Q
FL

OPS +
3x

/ye
ar

Top500: 10 QFLOPS + 2x/y
ear

Moore’s Law: 1 QFLOPS + 1.3x/year

Cluster Projection
“Advanced Architecture”

Ref. “How to build a 300 bit, 1 Gop quantum computer,” Andrew M. Steane, Clarendon Laboratory, UK, quant-ph/0412165

NOTE: Years are gone because
I hesitate to predict!

162

Quantum Applications

• Consider the classical
computer equivalent to
a Quantum Computer

• First use believed to be
factoring in crypt-
analysis, with expo-
nential speedup over
classical computers (blue)

E
xp

on
en

tia
l

S
pe

ed
up

C
ry

pt
an

al
ys

is
E

. g
. F

ac
to

rin
g

• Second, a quantum
computer can also be
used for other
applications (pink) with
quadratic speedup (e. g.
Actinide chemistry)

Qua
dr

at
ic

Sp
ee

du

AS
C-

Re
lev

an
t

E.
 g

. P
at

h
In

te
gr

at
ion

GFLOPS

TFLOPS

PFLOPS

EFLOPS

ZFLOPS

MFLOPS

KFLOPS

FLOPS

Cluster Projection
“Advanced Architecture”

NOTE: Years are gone because
I hesitate to predict!

163

Beyond Transistors

• Applications Requirements
• Thermodynamic limits to total power

– Superconducting logic and Carnot cycle
• Upside potential of advanced architectures/PIM
• Some nanotech technologies on the horizon
• Reversible logic may defeat thermodynamic limitations
• Upside potential of quantum computing

– Quantum speedup: none, quadratic, exponential
– Algorithms numerical/cryptanalysis, simulation

164

One Slide Taxonomy of Quantum Algorithms

• Exponential speedup for
– Period finding (see Æ)
– Hidden subgroup

problem
• Factoring
• Discrete logarithms
• Algorithms for

problems I never heard
about except for QC

• Quadratic speedup for
– Searching
– Average, min, max

• Feynman asserted that a
QC could combat low
efficiency of classical
computer for simulating
quantum problems
– This assertion has been

repeatedly proven, but
there are few concrete
algorithms

– This could be a “killer
app” domain for
supercomputing

165

c

e
g

i

k h

j

f

d

l

c

d
g

h

j k

f

i

e

l

Bad

Better

c

d
g

h

j k

f

i

e

l

Overall Prescription for Fast Computing

• High node visit rate
• Small size
• Fast propagation velocity
• Parallel
• Organize program graph

for short distances
• Programming language

must aid programmer in
creating short, parallel
graphs

• Programmer must use
language effectively

D
ev

ic
es

A
rc

hi
te

ct
ur

e
Pr

og
ra

m
m

er

Remember
the dinner

conversation

166

Overall Summary

• Find more parallelism. While device technology
will continue to improve exponentially for some
time, exploiting these advances will require more
parallelism in code.

• There is parallelism to exploit for many
supercomputing applications areas.

• Single-node C++, Fortran, etc. codes will not
improve in speed very much at all.

• Innovative programming methods will be
rewarded by higher performance for a very long
time into the future.

Please fill out the survey

SC06 Tutorial © DeBenedictis, Keyes, Kogge
1

The International Technology Roadmap
for Semiconductors

 and Its Effect on
Scalable High End Computing

Peter M. Kogge
McCourtney Prof. of CS & Engr, Concurrent Prof. of EE

Assoc. Dean for Research, University of Notre Dame
IBM Fellow (ret)

SC06 Tutorial © DeBenedictis, Keyes, Kogge
2

Why Is Supercomputing Hard
In Silicon: Little’s Tyranny

Concurrency = Throughput
Latency

ILP: Getting tougher & tougher to increase
• Must extract from program
• Must support in very complex H/W

Getting worse fast!!!!
(The Memory Wall)

Much less than peak
and degradingdegrading rapidly

SC06 Tutorial © DeBenedictis, Keyes, Kogge
3

Technology Limits to Applications
 (from NRC’s

“Getting Up to Speed”)

St
oc

kp
ile

In
te

lli
ge

nc
e

D
ef

en
ce

C
lim

at
e

Pl
as

m
a

Tr
an

sp
or

ta
tio

n

B
io

-in
fo

H
ea

lth
&

Sa
fe

ty

Ea
rt

hq
ua

ke
s

G
eo

ph
ys

ic
s

A
st

ro
ph

ys
ic

s

M
at

er
ia

ls

O
rg

an
. S

ys
te

m
s

Performance
Flops 1 X X X

Memory
Capacity X 3 2 X

Memory
Bandwidth X X X X 4

Memory
Latency X X X X 4

Interconnect
Bandwidth X X X X 4

Interconnect
Latency X X X X 4

1 Radar Cross section
2 Genomics
3 Automobile Noise
4 Biological Systems Modeling

It’s
NOT
Just
Flops

SC06 Tutorial © DeBenedictis, Keyes, Kogge
4

Why Look at Technology Scaling

• What are the basic units of memory & logic
– In terms of functionality per sq. cm

• How will these change over time
• How with their individual performance characteristics

change
• When do real-world limits come into play

– Power and inter-chip bandwidth
• What’s the likely best “chip” architectures

SC06 Tutorial © DeBenedictis, Keyes, Kogge
5

What Seems to Be The Consensus

• Silicon will remain with us, but
– Power becoming dominating concern
– Individual CPU core complexity flattening
– Clock rate increases flattening
– Commodity memory bandwidths stagnant
– Chip-to-chip growing in importance

• Impact on building-block chip architecture
– Moore’s Law converts to parallelism –

within the chip
– Line between “Logic”

and “Memory”

chips blurs
• We will increase “threads per die” not

“IPS/core”

SC06 Tutorial © DeBenedictis, Keyes, Kogge
6

Outline

• Silicon Fundamentals
• Scaling
• ITRS Roadmap
• Limits on Classical Chips
• Multi-threading & Multi-core
• Processing in Memory

SC06 Tutorial © DeBenedictis, Keyes, Kogge
7

Silicon Fundamentals

• MOSFET Transistor
• Simple Logic Circuits
• Variations of Memory
• Multiple Levels of Metal
• Off-Chip Interconnect

SC06 Tutorial © DeBenedictis, Keyes, Kogge
8

A MOSFET Transistor

Silicon Substrate

Metal

Polysilicon
Source Gate Drain

Diffusion
Silicon Dioxide

Insulator

An Electric field Here

Causes tunneling here

SC06 Tutorial © DeBenedictis, Keyes, Kogge
9

Key Device Parameters

tox

W

L

SC06 Tutorial © DeBenedictis, Keyes, Kogge
10

A Logic Inverter

Ground

Input

Output

Vdd (Positive)

Input

OutputGnd Vdd

N-Type Diffusion/Transistor
• electron rich
• Turns on with + gate

P-Type Diffusion/Transistor
• electron poor
• Turns on with - gate

N-Type
Transistor

P-Type
Transistor

SC06 Tutorial © DeBenedictis, Keyes, Kogge
11

Logic Examples

In1 In2 In3 In4

Vdd

GND

Out

4 Input NAND Gate Full Adder

SC06 Tutorial © DeBenedictis, Keyes, Kogge
12

Memory Arrays

1 out of 16
Decoder

Column Precharge Logic

Sense Amplifiers

Data0 Data1 Data2 Data3

Address (6 bits)

4

2

Sample 4 bit x
64 word array

Gnd
DRAM

Gnd

Vdd

Left
Column

Right
Column

Row Address

Column
Address

Row Select

SRAM

SC06 Tutorial © DeBenedictis, Keyes, Kogge
13

Key Types of Memory Cells

• Commodity DRAM
• Embedded DRAM
• SRAM
• Flash

– NAND Type
– NOR Type

Peak Bandwidth

L
at

en
cy DRAM

EDRAM

SRAM

Better

Power

D
en

si
ty

DRAM

EDRAM

SRAM

Better

No single optimal choice!

SC06 Tutorial © DeBenedictis, Keyes, Kogge
14

Compact DRAM Cells for Memory Arrays

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

E. Adler, et al, “

The evolution of IBM CMOS DRAM technology,”

IBM J. R&D, Vol. 39, No. ½, p.167, 1995.

Row Select Line

Bit Column Line

SC06 Tutorial © DeBenedictis, Keyes, Kogge
15

Compact DRAM Cells for Memory Arrays

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench CellStacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Stacked-capacitor Cell

Cell plate
Word line

Insulating Layer

IsolationTransfer gate
Storage electrode

Capacitor dielectric layer

E. Adler, et al, “

The evolution of IBM CMOS DRAM technology,”

IBM J. R&D, Vol. 39, No. ½, p.167, 1995.

SC06 Tutorial © DeBenedictis, Keyes, Kogge
16

Multiple Levels of Metal

Bonding
Pad

SC06 Tutorial © DeBenedictis, Keyes, Kogge
17

Off-Chip Interconnect

Wire Bond

Wire “welded” to pad

C4 Solder Ball

SC06 Tutorial © DeBenedictis, Keyes, Kogge
18

3D Chip Stacks

Flip chip

Thru-Die Vias

Metal wires on side of Cube

SC06 Tutorial © DeBenedictis, Keyes, Kogge
19

Scaling & ITRS Roadmap

SC06 Tutorial © DeBenedictis, Keyes, Kogge
20

Device Scaling

Key parameters: Gate length L, width W
• “On”

resistance ~ to L/W
• “Delay”

~ LW/tox
• Decreasing L thus a “good thing”
• Other “shrinkable” dimensions:

– tox

, metal width, spacing between wires, …

“Scaling:” shrink some feature by factor “S” and:
• Reduce chip area to perform some function
• Increase frequency of operation
• Reduce operating voltage
• Reduce circuit power

Key Metric: Power density = power per unit area

tox

W

L
tox

W

L

SC06 Tutorial © DeBenedictis, Keyes, Kogge
21

Variations in Real World Scaling:
 Primarily Coupling with Vdd

• Full scaling: Ideal if possible
– Keep gate capacitor E-field constant
– Requires scaling L, W, tox,

, Vdd
– Area shrinks, power drops, higher

clock
• Fixed Vdd Scaling: Common until late

1990s
– Scale only L, W
– Keep Vdd

constant
– Same area shrink, very high clock,

terrible power
• General Scaling: Typical today

– Different scale factors for different
parameters

– Vdd

does not drop as fast
(approaching another limit)

– Lower peak clock, but better power &
power density

0

1

2

3

4

5

6

1970 1980 1990 2000 2010 2020

Vd
d

0

1

2

3

4

5

6

01002003004005006007008009001000

Feature Size (nm)

Vd
d

SC06 Tutorial © DeBenedictis, Keyes, Kogge
22

Approximate Scaling Relationships

Parameter Full Fixed V General Full Fixed V General
W, L 1/S 1/S 1/S 1/S 1/S 1/S
tox 1/S 1/S 1/S 1/S 1/S 1/S
Vdd 1/S 1 1/U 1/S 1 1/U

Circuit Area 1/S^2 1/S^2 1/S^2 1/S^2 1/S^2 1/S^2
Clock S S^2 S^2/U S S S

Circuit Power 1/S^2 S S/U^3 1/S^2 1 1/U^2
Power Density 1 S^3 S^3/U^3 1 S^2 S^2/U^2

"Long Channel" Devices "Short Channel" Devices

The Original Moore’s Law:
• 4X “functionality” every 3 years
• “Interpreted” as ~ S=2 every 3 years

SC06 Tutorial © DeBenedictis, Keyes, Kogge
23

International Technology
Roadmap for Semiconductors

• Goal: predict scaling for next 15 years
– Convert “Moore’s Law”

into detailed projections

– Identify technical roadblocks
• Result of a worldwide consensus

– U.S.A, Europe, Japan, Korea, and Taiwan
• Dating back to 1994

– Initially every three years
– But now significant yearly “updates”

• This data from 2005 update (released Dec. 2005)
– http://www.itrs.net/Links/2005ITRS/Home2005.htm

SC06 Tutorial © DeBenedictis, Keyes, Kogge
24

Trends And Challenges Addressed

Trends Charted:
• Integration Level:

Components/chip
• Cost: $ per function
• Speed: Microprocessor clock

rate, GHz
• Power: Laptop or cell phone

battery life
• Compactness: Small and

light-weight products
• Functionality: Nonvolatile

memory, imager

Challenges Identified:
• System Drivers & Design
• Test & Test Equipment
• Process Integration, Devices,

& Structures
• Front End Processes
• Lithography
• Interconnect
• Factory Integration
• Assembly & Packaging
• Environmental Safety &

Health
• Yield Enhancement
• Metrology
• Modeling & Simulation

SC06 Tutorial © DeBenedictis, Keyes, Kogge
25

Types of Chip Technologies
Discussed

• Logic: high speed transistor, lots of metal layers
– High Performance Microprocessors
– Cost Performance Microprocessors
– Low Power Microprocessors
– ASICS (Application Specific ICs)
– Also includes memory options: SRAM, Embedded DRAM

• DRAM: high threshold transistors, few metal, cheap fab processes
– High Volume Commodity Dense memory part
– Also includes Flash

• Analog and Mixed Circuits
• Emerging Alternative Technologies

SC06 Tutorial © DeBenedictis, Keyes, Kogge
26

Common Device Features to Track:
 (With values termed “Feature Sizes”)

• Gate length of a transistor gate “as printed”
• Gate length of a microprocessor transistor

gate “as physically fabricated”

• ½

of minimum pitch between two logic poly
lines

• ½ of minimum pitch between two DRAM
metal lines

L

LPHYSICAL

LPRINT

Pitch

Pitch

SC06 Tutorial © DeBenedictis, Keyes, Kogge
27

Key Terms
• Technology Generation for Year X:

–Minimum feature size in any product in that
year

• Technology Node:
–Year in which ~4X growth over prior Node
–Typically tied to DRAM (usually smallest)
–Based on Year of Production

SC06 Tutorial © DeBenedictis, Keyes, Kogge
28

Feature Size Projections

1

10

100

2000 2005 2010 2015 2020

Fe
at

ur
e

Si
ze

 (n
m

)

DRAM 1/2 pitch MPU/ASIC M1 1/2 pitch
Flash 1/2 Pitch MPU Printed Gate Length
MPU Physical Gate Length

Reduction Factor: 0.88 per year or 0.7 per 3 years

SC06 Tutorial © DeBenedictis, Keyes, Kogge
29

Projected Density Growth (S^2)

Basic area scaling doubles every 3 years

1

10

100

2000 2005 2010 2015 2020

D
en

si
ty

 R
el

at
iv

e
to

 2
00

4

Raw DRAM Density vs 2004 Raw MPU Density vs 2004
Raw Flash Density vs 2004 2X every 3 Years

SC06 Tutorial © DeBenedictis, Keyes, Kogge
30

Comparison to Moore’s Law
• Moore’s Law: ~4X functionality per 3 years
• But feature scaling provides only 2X
• Providing difference for microprocessors

– Clock frequency increase
– More parallelism in CPU microarchitecture

• Providing difference for DRAMs
– Denser cell design
– Bigger die area

• Both are reaching limits

SC06 Tutorial © DeBenedictis, Keyes, Kogge
31

Commodity DRAM Capacity

• Cell Area: area of one bit
– Function of technology scaling & circuit features

• Array area %: % of chip that is cell
– Constant at 63% in production

• Chip Capacity:
– (Chip size * Array area %) / Cell area

• Chip Size:
– Initially increased to achieve Moore’s Law
– Now chosen to maximize yield

SC06 Tutorial © DeBenedictis, Keyes, Kogge
32

Memory Density: Cells Only

0

1

10

100

1,000

10,000

2000 2005 2010 2015 2020

M
b/

sq
. c

m
 (C

el
ls

 O
nl

y)

DRAM SLC Flash MLC Flash SRAM

24-30X
FLASH

DRAM

SRAM

SC06 Tutorial © DeBenedictis, Keyes, Kogge
33

Chip Capacity

Chip Capacity is No Longer Following Original Moore’s Law

0.000001
0.00001

0.0001
0.001

0.01
0.1

1
10

100
1000

1970 1980 1990 2000 2010 2020

G
bi

ts
 p

er
 c

hi
p

Historical ITRS @ Production ITRS @ Introduction

Classical M
oore’s Law

SC06 Tutorial © DeBenedictis, Keyes, Kogge
34

Logic Chip Density Scaling

Logic functions per unit area: ~2X every 3 years

100

1,000

10,000

2000 2005 2010 2015 2020

Tr
an

si
st

or
s

pe
r

Sq
. c

m
.

(M
Ili

io
ns

)

High Volume MPUs High Performance MPUs ASICs

SC06 Tutorial © DeBenedictis, Keyes, Kogge
35

Peak Logic Clock Rates

10

100

1,000

10,000

100,000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

C
lo

ck
 (M

H
z)

Historical ITRS Max Clock Rate (12 invertors)

10

100

1000

10000

100000

10100100010000

Feature Size

C
lo

ck
 (M

H
z)

Historical ITRS Max

3 GHz

Clas
sic

al
Moo

re
’s

La
w

Clas
sic

al
Moo

re
’s

La
w

2005 projection was for 5.2 GHz –

and we didn’t make it in production.
Further, we’re still stuck at 3+GHz in production.

3 GHz

SC06 Tutorial © DeBenedictis, Keyes, Kogge
36

Why the Clock Flattening? POWERPOWER

1

10

100

1000

1976 1986 1996 2006

W
at

ts
 p

er
 D

ie

0.1

1

10

100

1000

1976 1986 1996 2006
W

at
ts

 p
er

 S
qu

ar
e

cm

Hot, Hot, Hot!

Light Bulb

Iron

Rocket Nozzle

SC06 Tutorial © DeBenedictis, Keyes, Kogge
37

The Power Equation

• Dissipated Power = Dynamic + Static
• Dynamic Power ~ CV2FA

– V = Vdd

– F = Clock Rate
– A = Activity Rate = % of transistors that switch at each clock
– C = Effective capacitance switched at each clock

• ~ # of transistors switched x transistor gate capacitance

• Static Power: leakage from each device
– GROWING with # of devices

~ (1/S)2 = “Growing” ~ S2 = “Decreasing”

Approx.
Constant

SC06 Tutorial © DeBenedictis, Keyes, Kogge
38

0

1

10

100

2000 2005 2010 2015 2020

C
lo

ck
*V

dd
2 R

el
at

iv
e

to
 2

00
4

ITRS Clock Rate ITRS Vdd Squared Clock*Vdd^2 Clock*Vdd*(Vdd-Vth)

ITRS-Based Power Density Increase

~10X in Power Density

Transistors are getting faster

faster than Vdd

is declining

Clock rate assuming short pipes

Square of Vdd for Hi Perf chips

SC06 Tutorial © DeBenedictis, Keyes, Kogge
39

Constraining Clock Rate
for Flat Power Density

And we haven’t accounted for increase in static leakage power!!!

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2000 2005 2010 2015 2020

M
ax

 C
lo

ck
 In

cr
ea

se
 fo

r
Fl

at
 P

ow
er

 D
en

si
ty

SC06 Tutorial © DeBenedictis, Keyes, Kogge
40

What Are Our Options?

• Live with lower clock rates than technology allows?
• Use higher threshold transistors to lower static

leakage power
– Still fits in lower clock regime
– Possibly requires higher Vdd

• Decrease amount of “speculative execution”
– Eg. shorter pipes, less out-of-order

• Lower the average number of transistors per unit
area that switch per cycle
– Increase % of die that’s memory

SC06 Tutorial © DeBenedictis, Keyes, Kogge
41

Off Chip Bandwidth

• Today’s Architectures: need to go off-chip for memory
access
– And we don’t have enough bandwidth today

• Upper limit = product of:
– # of off-chip pins/contacts
– % not used as power/ground
– Max signaling rate per pin

• Density & signal rate improve with time
– With 50% power/ground
– But they don’t match growth in performance potential

SC06 Tutorial © DeBenedictis, Keyes, Kogge
42

Off-Chip Parameters

0

500

1,000

1,500

2,000

2,500

3,000

3,500

2000 2005 2010 2015 2020

M
ax

 O
ff

-C
hi

p
Si

gn
al

 I/
O

s

0
10
20
30
40
50
60
70
80
90
100

M
ax

 O
ff

 C
hi

p
Si

gn
al

in
g

R
at

e
pe

r P
ad

 (G
H

z)

Off-Chip Signal Pads Max Bit Rate per Signal Pad

Max off chip signaling rate is still exponential; but # of pads nearly flat!

SC06 Tutorial © DeBenedictis, Keyes, Kogge
43

Does Logic Performance Match
Off-chip Bandwidth Potential?

1

10

100

1,000

2000 2005 2010 2015 2020

Im
pr

ov
em

en
t o

ve
r

20
04

Transistors*Clock Pads * Signaling Rate Ratio

Measure of P
eak on-Chip Computatio

n Potential

Measure of Peak Off-Chip Signaling Potential

Ratio of On to Off-Chip Potential

NOT
Good!

Note: Today’s Memory Chips cannot match today’s Peak I/O Rates

SC06 Tutorial © DeBenedictis, Keyes, Kogge
44

What Are Our Options for Bandwidth

• Place much faster interface logic on memory
chips
– And raise power and fabrication cost

• Add additional memory ports to MPU chips
– And raise power and packaging

• Switch to narrow but very high speed memory
channels
– And require external memory controller chips

SC06 Tutorial © DeBenedictis, Keyes, Kogge
45

On-Chip Wire Speed
 (Very Simplistic Approximation)

• C ~ LxW
• R ~ L/(WxH)
• Thus RC ~ L/H
• Scenario #1: L scales with technology

– Such as inside a core that shrinks in size
– And so does W, H
– Then RC ~ same (no scaling with clock)

• Scenario #2: L is constant
– As in crossing a die of a fixed size
– Then RC goes up as H shrinks

• Conclusion: on-die interconnect getting slower!!!
• AND THIS IS ONLY A SIMPLE APPROXIMATION!

W

WL

H

See for example: Banerjee, et al, “Interconnect Modeling and Analysis in the Nanometer Era: Cu and Beyond,”

22nd Advanced Metallization Conference

SC06 Tutorial © DeBenedictis, Keyes, Kogge
46

The Way We Were:
 A Brief Romp Thru
 Single Core Microprocessor Land

• Data from last 30 years of real chips

SC06 Tutorial © DeBenedictis, Keyes, Kogge
47

Historical Changes in Single-Core MPU
Parameters

10

100

1,000

1970 1980 1990 2000 2010 2020

C
hi

p
Si

ze
 (s

q.
 m

m
)

Historical Predicted

But Chip Size is FlatMoore’s Law Advances in Feature Size

10

100

1,000

10,000

1970 1980 1990 2000 2010 2020

Fe
at

ur
e

Si
ze

Historical Predicted

SC06 Tutorial © DeBenedictis, Keyes, Kogge
48

Functionality

• ~ 4X per die every 3 years
• But: Most in cache
• And partially due to larger die
• And off-chip clock rates lagging

• Historically ~ 2.3X every 3 years
• But: increasing clock increases memory
wall
• And clock rates stagnating

10

100

1,000

10,000

100,000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
C

lo
ck

 (M
H

z)
Historical ITRS Max Clock Rate (12 invertors) Power Constrained Clock

0

0

1

10

100

1,000

10,000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

Tr
an

si
st

or
 C

ou
nt

 (M
ill

io
ns

)

Historical ITRS Projections

SC06 Tutorial © DeBenedictis, Keyes, Kogge
49

How Are We Using These Transistors

0

50

100

150

200

250

300

350

400

450

1970 1975 1980 1985 1990 1995 2000 2005

Ar
ea

 (s
q.

 m
m

)

CPU Die Area Eqvt. DP FPU

66 to 1:
Is This
State?

Crossover

*

36MB SRAM L3 chip

IBM P5 Dual Core Intel Single Core Family

See http://www.theinquirer.net/default.aspx?article=12217

SC06 Tutorial © DeBenedictis, Keyes, Kogge
50

Let’s Look at Transistor Usage

0.01

0.1

1

10

100

1000

10000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

N
on

_S
R

A
M

 T
ra

ns
is

to
r C

ou
nt

 (M
ill

io
ns

)

Historical ITRS Projections

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

%
 T

ra
ns

is
to

rs
 in

 S
R

A
M

Historical ITRS Projections

Most of Microprocessor’s Transistors are for cache
–

and forward estimates are below historical

SC06 Tutorial © DeBenedictis, Keyes, Kogge
51

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1970 1980 1990 2000

Es
tim

at
ed

 S
ta

te
 (k

 b
its

)

Total State Machine Supervisor
User Transient Latency Enhancing
Access Enhancing

Core CPU State vs

Time

1.5X Compound Growth Rate per Year

SC06 Tutorial © DeBenedictis, Keyes, Kogge
52

The Way We Were:
 A Brief Romp Thru
 Memory Land

• Data from last 30 years of real chips

SC06 Tutorial © DeBenedictis, Keyes, Kogge
53

• Memory mats: ~ 1 Mbit

each
• Row Decoders
• Primary Sense Amps
• Secondary sense amps & “page”

multiplexing
• Timing, BIST, Interface
• Kerf

Classical DRAM

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

G
bi

ts
 p

er
 c

hi
p

Historical ITRS @ Production ITRS @ Introduction

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1970 1980 1990 2000 2010 2020

%
 C

hi
p

O
ve

rh
ea

d

Historical SIA Production SIA Introduction

Density/Chip has dropped below 4X/3yrs And 45% of Die is Non-Memory

SC06 Tutorial © DeBenedictis, Keyes, Kogge
54

Basic Memory Operations

Read:
• Send Row Address to chip
• Start row access in memory array

– This results in up to 2048 bits read into “sense
amps,”

“row buffers,”

…

• Send Column Address to chip
– This selects small (4, 8, 16) # of bits from

previously read row for off-chip
Page Mode:
• Continue with multiple Column Addresses
Refresh:
• Write current row back into memory array

Memory
Latency

SC06 Tutorial © DeBenedictis, Keyes, Kogge
55

Conventional DRAM Part PinOut

Row Address (14)

Column Address (13)

66 Pin Package

Bank Address (2)

Shared Data Bus (4, 8, 16)

Command Strobes

SC06 Tutorial © DeBenedictis, Keyes, Kogge
56

Chip-Level Memory Bandwidth
• Memory Bandwidth: Bits per second that move across chip
• Early parts: Unbuffered: One transfer per memory latency

– Separate address/command/data pins
• Improvements:

– Pipeline different accesses
• Fast Page Mode, Synchronous

– Include multiple independent banks within chip
• DDR: up to 4; RDRAM: up to 32

– Run interface at higher clock rate channel
– Point to point synchronous data channels

• XDR
– Multiple data transfers per clock

• Double Data Rate (DDR); XDRAM: 8 transfers per clock
– Change from parallel to serial packet protocols

• RDRAM
• State of Art:

– DDR2-800: 2 transfers/clock x 400MHz x {4, 8, 16b} ≤

1.6GB/s
– XDR: 2 channels x 3.2GHz x 8b/channel ≤

6.4GB/s
– RDRAM: 2 x 8b x 1.6GHz ≤

3.2GB/s

SC06 Tutorial © DeBenedictis, Keyes, Kogge
57

Alternative Chip Interfaces

8b Data Channel

8b Data Channel

Adr/Cmd

(12)

Clock (400MHz)

@ 8xClock

@ 8xClock
XD

R
A

M

9b Packet Bus

9b Packet Bus

Strobes

Clocks

R
D

R
A

M

Commands & Addresses
Serialized into Split Packets

SC06 Tutorial © DeBenedictis, Keyes, Kogge
58

Packaging Multiple Memory Chips

http://upload.wikimedia.org/wikipedia/commons/d/d3/RAM_n.jpg

SC06 Tutorial © DeBenedictis, Keyes, Kogge
59

Typical Electrical Configuration
M

ic
ro

pr
oc

es
so

r

N
or

th
 B

rid
ge

M

em
or

y
C

on
tr

ol
le

r
Memory
Interface

State of the Art Peak Aggregate Bandwidth: ~ 6.4 GB/s

SC06 Tutorial © DeBenedictis, Keyes, Kogge
60

Controller
• Functions:

– Aggregate bandwidth from many separate chips
– Convert parallel memory ops from CPU to specific memory

chip timing
– And reassembling data from memory for relay to CPU
– Handle refresh cycling of memory
– Parity generation and/or checking
– Southbridge connection to I/O interfaces

• Until recently, a separate chip:
– Adds latency
– But allows same MPU to use different memory types

• Additional functionality:
– Interleave different requests to better utilize memory
– More pipelining to increase pipelining
– Multiple memory interfaces for concurrent memory bands

SC06 Tutorial © DeBenedictis, Keyes, Kogge
61

A New Alternative: RL DRAM
 (Reduced Latency DRAM)

. . .

• Enter requests 1/cycle
• Request traverse to correct card
• Correct card starts operation, and forwards nop
• At end of line, “empty slot”

returned other way
• When empty slot reaches card, replaced by data

AMB:
Advanced
Memory
Buffer Chip

SC06 Tutorial © DeBenedictis, Keyes, Kogge
62

Our Brave New World:
 Adding More Threads to a Single Die

• Multi-Threading
• Multi-Core

SC06 Tutorial © DeBenedictis, Keyes, Kogge
63

Technology Trends Forcing
Parallelism

• ITRS predictions

– Growing chip density

– Power becoming paramount

– Single core complexity becoming overwhelming

• Result: Classical Single thread preformance

flattening

• Answer: Relentless Parallelism:

– Break program into independent threads

– Chip-level Multi-processing (CMP): multiple cores on same die

– Multi-thread parallelism: executing multiple threads on same
core (“virtual multi-core”)

• Both

are possible –

on same die

SC06 Tutorial © DeBenedictis, Keyes, Kogge
64

Performance Gains from
Explicit Parallelism

• Application speedup: run all threads for one application
execution at same time
– Ideal speedup from N concurrent threads = N
– Limited by Amdahl’s Law

• Throughput increase: pipeline execution of different
data sets through N steps/cores
– Ideal throughput increase = N
– Limited by pipelining effects

• Different multi-core architectures emphasize different
performance metrics

SC06 Tutorial © DeBenedictis, Keyes, Kogge
65

Multi-Threading

• Thread: execution of a series of inter-dependent
instructions in support of a single program

• Today’s single threaded CPUs
– Dependencies reduce ability to keep function units busy
– Limited support for memory operations “in flight”

• Multi-threading: allowing multiple threads to take turns
using same CPU logic
– Typical requirement: multiple register sets

• Variations:
– Coarse-grained MT: Change thread only at some major event
– Fine grained MT: Change thread every few instructions
– Simultaneous MT: interleave instructions from multiple threads

SC06 Tutorial © DeBenedictis, Keyes, Kogge
66

MT Advantages

• Hide long-latency memory operations
• Larger pool of unrelated instructions to feed
function units

• Simplify scheduling of multiple activities
• In SMT designs: guaranteed independent
instructions in pipelines eliminates need for
expensive forwarding and reordering

SC06 Tutorial © DeBenedictis, Keyes, Kogge
67

A Brief History
 of Multi-threaded Processors

0

1

2

3

4

5

6

7

1960 1970 1980 1990 2000 2010

Re
le

va
nt

 F
ea

tu
re

s

6600 Space Shuttle
IOP

HEP

J-Machine

Horizon MTA

HTMT

PIM Lite

Hyper Threading
P5, U4

Niagara
Eldorado

SC06 Tutorial © DeBenedictis, Keyes, Kogge
68

Multi-Core

• More complex CPU cores no longer cost effective
– High complexity & design costs
– “Slow wires”

make high clocks tough
– Decreasing efficiency due to relatively slower memory
– Need bigger caches for latency
– Power, Power, Power, …

• Solution: “reuse”

simpler design in better technology & place
multiple cores on same die
– Combine with shared memory hierarchy

SC06 Tutorial © DeBenedictis, Keyes, Kogge
69

The Tide of Announcements

0

5

10

15

20

25

30

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

of

 N
ew

 M
ul

ti-
co

re
 A

nn
ou

nc
em

en
ts

Many new 2006
Chips TBA
In Feb 2007

SC06 Tutorial © DeBenedictis, Keyes, Kogge
70

The Number of Cores per
Announcement
Multi-core Announcements

1

10

100

1000

10000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

of

 C
or

es

SC06 Tutorial © DeBenedictis, Keyes, Kogge
71

Scaling Today’s Single Core uP

Chips

ITRS Projected 280 mm2 uP die

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Si
ng

le
 C

or
e

Pr
oj

ec
te

d
D

ie
 S

iz
e

(m
m

2)

Cannot afford to
Design 10X

more complex CPUs

Each line represents the scaling of a unique real microprocessor

chip from its inception

SC06 Tutorial © DeBenedictis, Keyes, Kogge
72

What’s The Multi-core Potential

Assume we scale entire current single core chip & replicate to fill 280 sq mm die

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

N
um

be
r

of
 u

P
pe

r
Sq

ua
re

 C
en

tim
et

er

Each line represents the scaling of a unique real microprocessor

chip from its inception

SC06 Tutorial © DeBenedictis, Keyes, Kogge
73

Examples of Multi-Core Designs

• Microprocessors
– 1993: EXECUBE
– IBM POWER4 dual-core
– Intel XEON dual-core
– Sun dual core UltraSPARC
– IBM CELL 9 way
– IBM Bluegene/L dual core with embedded DRAM
– Sun Niagara 8 way core
– Clearspeed

Array Processors
• Specialized chips

– Network processors (up to 100s of cores)
– Graphics & game processors

• Many multi-core designs also using multi-threaded cores

SC06 Tutorial © DeBenedictis, Keyes, Kogge
74

Why are MC Cores Going Simple? Today’s Single
Threaded Core Performance = IPC x Clock

• More stages => higher branch &
forwarding penalties

• Higher clock => larger relative memory
latency

– Requires bigger caches
• Result: performance now dominated by

of permitted outstanding loads

Issue Width Drives
Microarchitectural Performance

- At an Area Cost

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10
Issue Width

G
ro

w
th

 F
ac

to
r

Area or Power

IPC

Resulting Loss of Effective Use of
Silicon

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4
IPC

IP
C

 p
er

 U
ni

t A
re

a

Increasing Clock Rate Requires
Increasing Pipeline Stages

5

10

15

20

25

30

35

40

1 2 3 4 5 6
Relative Clock Rate

of

 P
ip

el
in

e
St

ag
es

Function of latch
design and skew

SC06 Tutorial © DeBenedictis, Keyes, Kogge
75

Notional Core Design Space

1.00 1.50 2.00 2.50 3.00 3.50 4.00
1

4

8
0

2

4

6

8

10

12

14

R
el

at
iv

e
IP

S

Relative Clock Issue Width

Complex designs
Give most performance

1.00 1.50 2.00 2.50 3.00 3.50 4.00
1

4

8
0

2

4

6

8

10

12

14

16

18

R
el

at
iv

e
A

re
a

Relative Clock Issue Width

But also largest
area

1.001.50
2.00

2.50
3.00

3.50
4.00

1
2

4
6

8
10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
S

pe
r U

ni
t A

re
a

Relative Clock
Issue Width

But simpler gives
better performance/area

SC06 Tutorial © DeBenedictis, Keyes, Kogge
76

What is Today’s Multi-Core Design Space

Cache/Memory

Cache

Core Core

. . .

. . .
Cache

Core Core

. . .

(a) Hierarchical Designs

C
O
R
E

C
O
R
E

C
O
R
E

M
E
M . . .

Cache/Memory

(b) Pipelined Designs

Cache/
Memory

Core

Cache/
Memory

Core
. . .

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Interconnect & Control

(c) Array Designs

• Intel Core Duo
• IBM Power5
• Sun Niagara
• …

• IBM Cell
• Most Router chips
• Many Video chips

• Terasys
• Execube
• Yukon

SC06 Tutorial © DeBenedictis, Keyes, Kogge
77

Multi-Core Projection Models

• “Fill the die”: Add cores to fill die
– Contacts for external memory bandwidth will dominate die

area
• “Processing in Memory”: merge with memory

– Lots of local bandwidth, single part type design

0

20

40

60

80

100

120

2003 2005 2007 2009 2011 2013 2015 2017

N
um

be
r o

f C
or

es

Extra Cores based on area only Extra cores based on available pins
Total implementable number of cores

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

2003 2005 2007 2009 2011 2013 2015 2017

%
 U

til
iz

at
io

n

% Area that is core - 1:1 case % Area that is memory - 1:1 case
% available pins that are used - 1:1 case % Area that is core - 1:20 case
% Area that is memory - 1:20case % available pins that are used - 1:20 case

Fill the Die

Max # on Die

Sufficient BW

Merge into Memory

See P. Kogge, “An Exploration of the Technology Space for Multi-Core Memory/Logic Chips for Highly Scalable Parallel Systems,” IEEE Int.
Workshop on Innovative Architectures, Turtle Bay, Hawaii, Jan. 2005.

SC06 Tutorial © DeBenedictis, Keyes, Kogge
78

Another Reason for Multi-Core:
Yield Enhancement

• Add extra cores for redundancy
– Requires associated interconnect

• Sell die with less than full performance
• Recent case study (Kogge, IWIA, Jan. 2006)

– Goal: “cheapest”

chip with constant storage/MIPS/I/O
– Core IPC assumed sqrt(area)
– Parameters: ITRS roadmap, die size, core complexity
– Approach: sweep parameter space for highest perf/wafer

• Key results
– Yield considerations favor smaller die
– Optimal core microarchitecture: simplest
– Adding purely redundant cores of little value
– Selling partially good die reasonable good idea

SC06 Tutorial © DeBenedictis, Keyes, Kogge
79

Silicon Alone is not the Complete Story

• Only 20% of MCM is silicon
• And we haven’t accounted for the heat sink!

SC06 Tutorial © DeBenedictis, Keyes, Kogge
80

Observations

• Silicon growing irregularly in
– Memory density per square cm
– Performance possible per square cm
– Off-chip I/O bandwidth per square cm

• 99% of today’s logic chips
– Do no computation
– And are mostly memory

• And we pay a huge overhead when
– Densest memory technology not used
– Memory & logic on separate chips

• It’s the interconnect to memory, stupid!

SC06 Tutorial © DeBenedictis, Keyes, Kogge
81

A Contrarian’s View
 Processing in Memory:

 The Grand Synthesis
of Logic and Memory

SC06 Tutorial © DeBenedictis, Keyes, Kogge
82

How can we use a sq. cm?
 (with no overhead)

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.010 0.100 1.000 10.000
GB per sq. cm (No overhead)

G
F

pe
r s

q.
 c

m
 (F

PU
s

on
ly

)

2003 2018

Time

“Knee”: 50% Logic & 50% Memory

Each line represents possible mix
Of memory and logic for some year

SC06 Tutorial © DeBenedictis, Keyes, Kogge
83

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.010 0.100 1.000 10.000
GB per sq. cm (No overhead)

G
F

pe
r s

q.
 c

m
 (F

PU
s

on
ly

)

Adding In
“Lines of Constant Performance”

1 GB/GF

0.5 GB/GF

0.001 GB/GF

0.1 GB/GF

Each line represents possible mix
Of memory and logic for some year

SC06 Tutorial © DeBenedictis, Keyes, Kogge
84

Knee Curves with Basic Overheads

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.010 0.100 1.000 10.000

GB per sq. cm (Basic Overhead)

G
F

pe
r

sq
. c

m
 (C

or
es

)

Each line represents possible mix
Of memory and logic for some year

SC06 Tutorial © DeBenedictis, Keyes, Kogge
85

Knee Curves with Today’s Overheads

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.010 0.100 1.000 10.000
GB per sq. cm

G
F

pe
r s

q.
 c

m

Partitioning chips as we do today is hugely inefficient

SC06 Tutorial © DeBenedictis, Keyes, Kogge
86

Minimal Size for a “Peta”

System

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

A
re

a
(S

q.
 m

)

DRAM Alone FPUs Alone Football Field
Desk Peak POWER5 Sustained POWER5

• In terms of silicon area: “It’s the memory!”
• We extract little benefit from most of our high cost logic

SC06 Tutorial © DeBenedictis, Keyes, Kogge
87

“Processing-In-Memory”
• High density memory on same chip with

reasonable dense logic
– Not just caches

• Very fast access from logic to memory
• Very high bandwidth
• ISA/microarchitecture designed to utilize

high bandwidth
• Tile with “memory+logic”

nodes

Interconnect
incoming
parcels

outgoing
parcels

Parcel = Object Address + Method_name + Parameters

Performance Monitor

Wide Register File

Wide ALUs

Permutation Network

Thread State Package

Global Address Translation

Parcel Decode and Assembly

Broadcast Bus

R
ow

 D
ec

od
e

Lo
gi

c

Sense Amplifiers/Latches

Column Multiplexing

Memory
Array

1 “Full Word”/Row

1 Column/Full Word Bit

“Wide Word” InterfaceAddress

A
S
A
P

A Memory/Logic Node

Tiling a Chip

Stand Alone
Memory Units

Processing
Logic

SC06 Tutorial © DeBenedictis, Keyes, Kogge
88

The PIM
“Bandwidth Bump”

1

10

100

1000

1.00E+00 1.00E+03 1.00E+06 1.00E+09

Reachable Memory (Bytes)

B
an

dw
id

th
 (G

B
/s

)

UltraIII CPU Chip Single PIM Node 32node PIM Chip

Complex RegFile

L1

L2

Off-Chip Memory

Local Chip
Memory

Simple 3Port
RegFile

32 Nodes

Between 1B & 1 GB,
Area under curve:
1 PIM Node = 4.3xUIII
1 PIM Chip = 137xUIII

Region of classical
Temporal Intensive
Performance
Advantage

Region of PIM
Spatially Intensive
Performance
Advantage (1 Node)

SC06 Tutorial © DeBenedictis, Keyes, Kogge
89

PIM Chip
MicroArchitectural Spectrum

M
E
M

L
O
G
I
C

M
E
M

M
E
M

L
O
G
I
C

M
E
M

.. 8 Times ..

Word Drivers & Row Decoder

M
E
M

L
O
G
I
C

M
E
M

M
E
M

L
O
G
I
C

M
E
M

.. 8 Times ..

DRAM

DRAM

C
a
c
h
e

Mpy
CPU
Mem
I/F

C
a
c
h
e

DRAM

DRAM

16 Mbit
DRAM
Macro

512B Line
512B Line

512B Line

16 Mbit
DRAM
Macro

512B Line
512B Line

512B Line

..X16..
Simple
Micro

Sparc

II

512B
Victim Cache

Memory
Coherence
Controller

Serial
Inter

Connect

Instructions

Data
32B

SIMD: Linden DAAM
Single Chip Computer:
Mitsubishi M32R/D

Tiled & Scalable:
BLUE GENE,
EXECUBE

Complete SMP Node:
Proposed SUN part

L2/Memory

L1

CPU

L1

CPU

Chip Level SMP:
POWER4, BG/L

SC06 Tutorial © DeBenedictis, Keyes, Kogge
90

PIM System Design Space:
Historical Evolution

• Variant One: Accelerator

(historical)
• Variant Two: Smart Memory

– Attach to existing SMP (using an existing memory bus interface)
– PIM-enhanced memories, accessible as memory if you wish
– Value: Enhancing performance of status quo

• Variant Three: Heterogeneous Collaborative
– PIMs become “independent,”

& communicate as peers
– Non PIM nodes “see”

PIMs as equals
– Value: Enhanced concurrency and generality over variant two

• Variant Four: Uniform Fabric (“All PIM”)
– PIM “fabric”

with fully distributed control and emergent behavior
– Extra system I/O connectivity required
– Value: Simplicity and economy over variant three

• Option for any of above: Extended Storage
– Any of above where each PIM supports separate dumb memory chips

SC06 Tutorial © DeBenedictis, Keyes, Kogge
91

TERASYS SIMD PIM
(circa 1993)

• Memory part for CRAY-3
• “Looked like” SRAM memory

• With extra command port
•128K SRAM bits (2k x 64)
• 64 1 bit ALUs
• SIMD ISA
• Fabbed by National
• Also built into workstation with 64K
processors

• 5-48X Y-MP on 9 NSA benchmarks

Gokhale, M., Holmes, B., Iobst, K.: Processing in Memory: the Terasys

Massively
Parallel PIM Array. Computer , 28(3):23--31, April 1995.

SC06 Tutorial © DeBenedictis, Keyes, Kogge
92

EXECUBE: An Early MIMD PIM
& 1st

True MC (1st Silicon 1993)

• First DRAM-based Multi-Core with Memory
• Designed from onset for “glueless” one-part-type scalability
• On-chip bandwidth:

6.2 GB/s; Utilization modes > 4GB/s

8
Compute Nodes

on ONE Chip

MEMORY MEMORY MEMORY MEMORY

MEMORY MEMORY MEMORY MEMORY

CPU

CACHE CACHE

Include
“High Bandwidth”
Features in ISA

EXECUBE:
3D Binary Hypercube
SIMD/MIMD on a chip

Kogge, “EXECUBE,”

ICPP, 1994.

SC06 Tutorial © DeBenedictis, Keyes, Kogge
93

RTAIS: The First ASAP
 (circa 1993)

R
A

M
-0

8Bit
ALU

R
A

M
-1

8Bit
ALU

R
A

M
-...

8Bit
ALU

R
A

M
-30

8Bit
ALU

R
A

M
-31

8Bit
ALU C

on
tro

lle
r

Inter-ALU Exchange Sh
ar

ed
 M

em
or

y

M
E

M
O

R
Y

 B
U

S
• Application: “Linda in Memory”
• Designed from onset to perform wide ops “at the sense amps”
• More than SIMD: flexible mix of VLIW
• “Object oriented” multi-threaded memory interface
• Result: 1 card 60X faster than state-of-art R3000 card

SC06 Tutorial © DeBenedictis, Keyes, Kogge
94

Mitsubishi M32R/D

DRAM

DRAM

C
a
c
h
e

Mpy
CPU
Mem
I/F

C
a
c
h
e

DRAM

DRAM

24 bit address bus16 bit data bus

Also two 1-bit I/Os

• 32-bit fixed point CPU + 2 MB DRAM
• “Memory-like” Interface
• Utilize wide word I/F from DRAM macro for cache line

Yasuhiro Nunomura et al, “M32R/D-Integrating DRAM and Microprocessor,”

IEEE Micro, Nov/Dec 1997

SC06 Tutorial © DeBenedictis, Keyes, Kogge
95

DIVA: Smart DIMMs

for
Irregular Data Structures

In
te

rc
on

ne
ct

Memory
Stack

A
S
A
P

Memory
Stack

A
S
A
P

Memory
Stack

A
S
A
P

ADR
MAP

ADR
MAP

uP
Host

TLB

Cache

…. ….
Host issues Parcels
• Generalized
“Loads & Stores”

• Treat memory as
Active Object-
oriented store

Local
Prog.
CPU

DIVA Functions:
• Prefix operators
• Dereferencing & pointer
chasing
• Compiled methods
• Multi-threaded
• May generate parcels

CPU
C

A
C

H
E

Conventional
Motherboard

• 1 CPU + 2MB
• MIPS + “Wide Word”

Draper, et al. The Architecture of the DIVA Processing-In-Memory Chip. ICS'05

SC06 Tutorial © DeBenedictis, Keyes, Kogge
96

Micron Yukon

• 0.15μm eDRAM/ 0.18μm logic process
• 128Mbits DRAM

– 2048 data bits per access
• 256 8-bit integer processors

– Configurable in multiple topologies
• On-chip programmable controller
• Operates like an SDRAM

SDRAM-like interface

FIF

O
Task Dispatch Unit

FIFO FIFO

M16 PE
sequenc

er

DRAM
Control

Unit

256
Processing
Elements

Register Files

16MBytes
Embedded

DRAM

HMI

Synchronisation

Host
(remote)

G. Kirsch, “Active Memory: Micron’s Yukon,”

IPDPS 2003.

SC06 Tutorial © DeBenedictis, Keyes, Kogge
97

Berkeley VIRAM

• System Architecture: single chip
media processing

• ISA: MIPS Core + Vectors + DSP ops
• 13 MB DRAM in 8 banks
• Includes flt

pt
• 2 Watts @ 200 MHz, 1.6GFlops

4 “Vector Lanes”

MIPS

http://iram.cs.berkeley.edu/papers/2000.HotChips.VIRAM.pdf#search=%22VIRAM%22

SC06 Tutorial © DeBenedictis, Keyes, Kogge
98

The HTMT Architecture &
 PIM Functions

• Compress/Decompress
• Spectral Transforms

• Compress/Decompress
• ECC/Redundancy

• Compress/Decompress
• Routing

3D
Mem

DRAM
PIM

OPTICAL SWITCH

SRAM
PIM

RSFQ
Nodes

I/O FARM

• RSFQ Thread Management
• Context Percolation
• Scatter/Gather Indexing
• Pointer chasing
• Push/Pull Closures
• Synchronization Activities

• Data Structure
Initializations
•“In the Memory”

Operations

New Technologies:
• Rapid Single Flux Quantum (RSFQ) devices for 100 GHz CPU nodes
• WDM all optical network for petabit/sec bi-section bandwidth
• Holographic 3D crystals for Petabytes of on-line RAM
• PIM for active memories to manage latency

PIMs in Charge

SC06 Tutorial © DeBenedictis, Keyes, Kogge
99

Bluegene/L

• Two simple cores with dense embedded DRAM technology
• Included 4MB of on-chip embedded DRAM
• Designed to scale simply to bigger systems
• Basis for several of world’s TOP500 machines

4 MB EDRAM
L2 Cache

Interface Logic

L1I L1D

PPC 440

DP FPU

L1I L1D

PPC 440

DP FPU

Memory I/FNode-Node I/F

S. S. Iyer, et al, “Embedded DRAM: Technology platform for the Blue Gene/L chip,”
IBM J. R&D, Volume 49, Number 2/3, Page 333 (2005)

SC06 Tutorial © DeBenedictis, Keyes, Kogge
100

PIM Lite

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

• “Looks like memory”

at Interfaces
• ISA: 16-bit multithreaded/SIMD

– “Thread”

= IP/FP pair
– “Registers”

= wide words in frames
• Designed for multiple nodes per chip
• 1 node logic area ~ 10.3 KB SRAM

(comparable to MIPS R3000)
• TSMC 0.18u 1-node 1st

pass success
• 3.2 million transistors (4-node)

Thread
Queue

Frame
Memory

Instr
Memory ALU Data

Memory

Write-
Back
Logic

Parcel in (via chip data bus) Parcel out (via chip data bus)

Instruction Memory
(4 Kbytes)

Frame Memory (1 K)

ALU & Permute Net

Data Memory
(2 Kbytes)

Thread Pool

Write-Back Logic

2.9 mm

4.
5

m
m

Instruction Memory
(4 Kbytes)

Frame Memory (1 K)

ALU & Permute Net

Data Memory
(2 Kbytes)

Thread Pool

Write-Back Logic

2.9 mm

4.
5

m
m

SC06 Tutorial © DeBenedictis, Keyes, Kogge
101

CELL
(A Pipelined, Array, Hierarchical MC Chip)

http://www.research.ibm.com/cell/cell_chip.html

SPE SPE SPE SPE

SPE SPE SPE SPE

I/O

PPC

Mem
XDR

XDR

Each SPE has
256KB local

memory

Roadrunner system: 16K MC Opterons
+ 16K Cell chips

SC06 Tutorial © DeBenedictis, Keyes, Kogge
102

Projecting Ahead:
Optimizing the Multi-Core PIM Chip

What is optimal # cores/die?
• Assuming fixed memory per unit of processing
• Considering yield effects (smaller die=>more good die)
• Assuming cross-bar inter-core interconnect
• Considering adding redundant cores

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

10
020

030
040

0

0
10
20
30

40

50

60

70

80

90

C

or
es

Die Size

Core Count in an Packed Die with Crossbar and I/O

20
04

20
07

20
10

20
13

20
16

Pa
rti

al
 G

oo
d

R
15

0

R
30

0

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50

R
el

at
iv

e
C

os
t

Cost of Configurations Relative to Commodity DRAM

20
04

20
07

20
10

20
13

20
16

D
R

AM R
10

0

R
20

0

R
30

0

R
40

0

0

1

10

100

Cost/GB

See Kogge & Brockman, “Redundancy in Multi-core Memory-rich Application-Specific PIM Chips, “

IWIA 2006

SC06 Tutorial © DeBenedictis, Keyes, Kogge
103

One Step Further:
Allowing the Threads to Travel

• “Overprovision”

memory with huge numbers of
anonymous processors
– Each multi-threaded

• Reduce state of a thread to ~ a cache line
• Make creating a new thread “near”

some memory

a cheap operation
• Allow thread to “move”

to new site when locality

demands
Latency reduced by huge factors

SC06 Tutorial © DeBenedictis, Keyes, Kogge
104

Next: An “All-PIM”

Supercomputer

PIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIM

Interconnection
Network

PIM Cluster
PIM Cluster

“Host”
PIM Cluster

I/O

A “PIM Cluster”

A “PIM DIMM”

SC06 Tutorial © DeBenedictis, Keyes, Kogge
105

Summary

SC06 Tutorial © DeBenedictis, Keyes, Kogge
106

Summary

• When it comes to silicon: It’s the Memory, Stupid!
• Technology scaling progressing at uneven rates

– Transistor density continuing improvement
– Power limiting clock rate growth
– Voltage improvement slowing
– Off-chip I/O becoming a killer

• Today’s solution: multi-core, multi-threaded uP

dies
– Increases # of threads per core
– But doesn’t solve bandwidth to memory problem

• State bloat consumes huge amounts of silicon
– That does no useful work!
– And all due to focus on “named”

processing logic

SC06 Tutorial © DeBenedictis, Keyes, Kogge
107

How Might We Make It Better?

• Reduce thread state
– Cost of moving/copying state => line reference

• Relentless multi-threading execution models
• Simplify cores and “overprovision”

– “Pitch-match”

to memory macro
• Focus on “cheap”

logic in dense memory fab process

– Don’t fret the clock rate
• Change execution model from “named”

core to

anonymous core “nearest”

memory object
– A “Traveling Thread”

need never “wait”

for

processing resources
– Convert two way latencies to one way

	Review & Approval System - Search Detail.pdf
	Keyes_Roadmap_SC06
	Tutorial M06
	Slide Number 2
	 Presentation Features
	Technical aspects of presentation
	Gordon Bell Prize “peak performance”
	Gordon Bell Prize outpaces Moore’s Law
	IBM’s BlueGene/L:�65536 dual procs, 360 Tflop/s
	 Tally of Peak Prize formulations and apps
	Tally of Gordon Bell Peak Prize hardware
	 The “other” Bell prizes
	Gordon Bell Prize: “price performance”
	Whimsical remarks on Bell, 1988-2005
	Gedanken experiment:�How to use a jar of peanut butter�with a rapidly dropping price?
	Performance vs. time-to-solution
	Gordon Bell Prize: “special”
	1999 Gordon Bell “special” prize
	2003 Gordon Bell “special” prize
	2004 Gordon Bell “special” prize
	Terascale simulation is pitched as an alternative to (some) experimentation
	Context: many recent reports promote high-end simulation
	Diverse applications, common �algorithmic and architectural infrastructure
	Slide Number 23
	“What would scientists do with 100-1000x?” (SCaLeS) �
	What would scientists do with 100-1000x? �Example: predict future climates
	Slide Number 26
	What would scientists do with 100-1000x? �Example: probe structure of particles
	What would scientists do with 100-1000x? �Example: probe structure of particles
	What would scientists do with 100-1000x? �Example: design accelerators
	Slide Number 30
	What would scientists do with 100-1000x? �Example: design and control tokamaks
	Slide Number 32
	What would scientists do with 100-1000x? �Example: control combustion
	What would scientists do with 100-1000x? �Example: control combustion
	What would scientists do with 100-1000x? �Example: probe supernovae
	What would scientists do with 100-1000x? �Example: probe supernovae
	 Progress in scaling PDE applications
	Review: two definitions of scalability
	SPMD parallelism w/domain decomposition
	DD relevant to any local stencil formulation
	An algorithm for PDE simulation: Newton-Krylov-Schwarz
	Krylov-Schwarz parallelization is simple!
	Inner Krylov-Schwarz kernel: a Bulk Synchronous Process (BSP)
	Estimating scalability of stencil computations
	 Estimating 3D stencil costs (per iteration)
	3D stencil computation illustration�Rich local network, tree-based global reductions
	Scalability results for DD stencil computations
	What’s under the rug?
	Contraindications of scalability
	Amdahl’s Law (1967)
	Resolution-limited progress (weak scaling)
	Thread nonuniformity
	Algorithmic adaptation
	Four potential limiters on scalability �in large-scale parallel scientific codes
	Four potential limiters �on arithmetic performance
	Application Domain: �Computational Aerodynamics
	Euler Simulation
	Background of FUN3D Application
	Features of FUN3D Application
	Merits of NKS Algorithm/Implementation
	Additive Schwarz Preconditioning for Au=f in Ω
	Iteration Count Estimates from the Schwarz Theory�
	Time-Implicit �Newton-Krylov-Schwarz Method
	Key Features of Implementation Strategy
	Background of PETSc
	Separation of Concerns between �User Code and PETSc Library
	Outline for PDE Performance Study
	Variety and Complexity of PDEs
	Explicit Solvers
	Domain-decomposed Implicit Solvers
	Resource Scaling for PDEs
	Primary PDE Solution Kernels�(assumes vertex-based; dual statements for cell-based)
	Illustration of Edge-based Loop
	Complexities of PDE Kernels
	Candidate stresspoints of PDE kernels
	Observation #1: �Processor scalability no problem, in principle
	Surface Visualization of Test Domain� for Euler Flow over an ONERA M6 Wing
	Parallel Performance of PETSc-FUN3D �
	Fixed-size Parallel Scaling Results (Flop/s)
	Parallel Performance of PETSc-FUN3D �
	Fixed-size Parallel Scaling Results (seconds)
	Inside Parallel Scaling Results on ASCI Red�ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices (about 11 million unknowns) on up to 3072 ASCI Red nodes (each with dual Pentium Pro 333 MHz processors)
	Observation #2 (for Fixed-Size Problems):�Synchronization eventually a bottleneck
	Observation #3:�Memory latency no problem, in principle
	�Workingset Characterization of Memory Traffic
	Thought Experiment: Cache Traffic for PDEs
	BW-stretching Strategies Based on Workingsets
	Three Types of Locality Enhancements
	Improvements Resulting from Locality Reordering
	Observation #4:�Memory bandwidth a major bottleneck
	ASCI Memory Bandwidth Bottleneck
	Implications of Bandwidth Limitations �in Shared Memory Systems
	BW-stretching Strategies �Based on Multivectors in Sparse Matvecs
	Matrix-vector Multiplication �for a Single Vector
	Matrix-Vector Multiplication for �N Independent Vectors
	Estimating the Memory Bandwidth Limitation
	Sparse Matvec Performance Summary
	Performance Summary on 2.4 GHz P4 Xeon
	Comparison of Domain-Level Parallelism �for MPI and OpenMP/MPI
	Observation #5:�Load-store functionality may be a bottleneck
	Quantifying the Load/Store Bottleneck
	Observation #6:�Fraction of Flops may be a Bottleneck
	Significance of Multivectors
	Realistic Measures of Performance �Sparse Matrix Vector Product�one vector, matrix size = 90,708, nonzero entries = 5,047,120�
	Summary of Observations for Simulation Codes
	Lessons for High-end Simulation of PDEs
	Weighing in at the Bottom Line
	Some noteworthy algorithmic adaptations to distributed memory architecture
	Four Sources of Performance Improvement
	Source #1: �Expanded Number of Processors
	Source #2: �More Efficient Use of Faster Processors
	Source #3: �More “Architecture Friendly” Algorithms
	Raw Performance Improvement from Algorithms
	Raw Performance Improvement from Algorithms, cont.
	Source #4: �Algorithms Packing More Science Per Flop
	Example of Adaptive Opportunities
	Status and Prospects�for Advanced Adaptivity
	Summary of Suggestions�for High Performance
	It’s not about the solver
	It’s all about the solver (at the terascale)
	The power of optimal algorithms
	Slide Number 125
	
	“Moore’s Law” for combustion simulations
	“Moore’s Law” for MHD simulations
	Scaling fusion simulations up to ITER
	Where to find 12 orders of magnitude in 10 years?
	Summary
	Reminder about the Source �of Simulations

	roadmap_sc_tutorial_2006_erik_full
	Tutorial M06
	Outline
	Insight From A Dinner Conversation
	Outline
	Applications and $100M Supercomputers
	Future potential of novel architecture is large (1000 vs 30)
	Slide Number 7
	Slide Number 8
	Trends Align Pretty Well, But�Mismatches are Instructive�
	Let’s Build On The “Capability Gap”
	What Path Will You Follow?
	Single Core Chips
	One Core of a Multicore CPU
	Multicore CPU Programmed Efficiently
	Thermal Limit
	Reversible Logic
	Super Roadmap
	Slide Number 18
	*** THIS IS A PREVIEW ***
	Quantum Computing (Starting Point)
	Rescale Graph
	Relabel Key Trends
	Emergence of Quantum Computing
	Quantum Applications
	Super Roadmap Summary
	Outline
	End of the Roadmap
	ITRS Construction Method and Limitations
	Technology Model
	End of the Roadmap
	Per Core SpecFP Data and Trends
	End of the Roadmap
	ITRS Spreadsheet
	ITRS Spreadsheet Structure
	User Inputs
	Schedule of Innovations
	ITRS Transistor Geometries
	ITRS Technology Progression
	End of the Roadmap
	Power Dissipation
	Processor Clock Rate
	ITRS Scaling Conclusions
	End of the Roadmap
	Outline
	Scaling of Microprocessor Performance
	How to Project Uniprocessor Performance
	UT Austin Study (2000)
	Wire Delay Coverage in ITRS
	Modeling Wire Delay
	Cache Performance
	Modeling Pipelined mP
	Simulation Results
	Study Conclusions and Discussion
	Model of CPU Performance (Will Be Reused)
	Projecting Applications Performance
	Technology Scaling and Algorithms
	Projecting Applications Performance
	Thread Speed and Parallelism
	Projected Clock Rate Increases
	Projecting Applications Performance
	Inner Loop Working Set
	Implications of Inner Loop Working Set
	Projecting Applications Performance
	FLOPS/Watt
	Projecting Applications Performance
	Device Density Scaling
	Projecting Applications Performance
	Bandwidth Scaling
	Projecting Applications Performance
	Load Balance
	Maximum IQ of a Class in Your Kids School
	Efficiency Loss Due To Load Balance
	Projecting Applications Performance
	Example Problem: Future Mesh Problem
	Example, Part 2
	Example, Part 3
	Example, Part 4
	Example, Part 5
	Outline
	Outline
	Fastest Possible C++ or Fortran Program
	Single CPU Performance
	Super Roadmap
	Outline
	Systolic Architectures
	Systolic Array Matrix Multiply
	Systolic Array Generality
	Systolic Array Efficiency & Discussion
	Systolic Array Performance Model
	Super Roadmap
	Outline
	Components of Cyclops Chip
	Processor Architecture
	Network
	Memory Map
	Cyclops Programming
	Cyclops Performance
	Cyclops Suitability Guide
	Multi-Core Performance Model
	Super Roadmap
	Outline
	Application-Specific Attached Processor
	Attached Hardware Performance Model
	Super Roadmap
	Outline
	Going Beyond Moore’s Law with Analog and Bio-inspired Processing�
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Super Roadmap
	Outline
	Beyond Transistors
	Applications and $100M Supercomputers
	Simulation of Global Climate
	FLOPS Increases for Global Climate
	Exemplary Exa- and Zetta-Scale Simulations
	FLOPS Increases for MEMS
	Outline
	Beyond Transistors
	Beyond Transistors
	Thermal Limit
	Metaphor: FM Radio on Trip to Orlando
	FM Radio and End of Moore’s Law
	Personal Observational Evidence
	Landauer’s Arguments
	Landauer’s Limit
	Beyond Transistors
	Cutting Temperature
	Cutting Temperature
	Beyond Transistors
	Scientific Supercomputer Limits
	Beyond Transistors
	Transistors vs. Other Irreversible Devices
	Really Advanced Technology
	ITRS Device Review 2016 + QDCA
	Nantero NRAM™ Device
	Nanoarray Architecture
	Thought Experiment – Skewed Nanoarray
	Thought Experiment – Skewed Nanoarray
	Slide Number 140
	Beyond Transistors
	Reversible Logic – Toffoli Gate
	Reversible Logic Can Beat Landauer’s Limit
	Reversible Logic Example
	Today’s Universal Logic & Reliability Limit
	“Recycling” Power
	Resonant Clocks
	Resonator Activity
	A New Computing Device: Quantum Dots
	Upside Potential of Quantum Dots
	Upside Potential of Quantum Dots
	Reversible Multiplier Status
	Reversible Microprocessor Status
	Beyond Transistors
	Outline
	Why Quantum Computing is Interesting
	Ion Trap Quantum Gates
	Reliable Quantum Operations
	Beyond Transistors
	Quantum “Algorithms”
	Emergence of Quantum Computing
	Quantum Applications
	Beyond Transistors
	One Slide Taxonomy of Quantum Algorithms
	Overall Prescription for Fast Computing
	Overall Summary

	roadmap_sc_tutorial_2006_kogge_full
	The International Technology Roadmap for Semiconductors�and Its Effect on �Scalable High End Computing
	Why Is Supercomputing Hard �In Silicon: Little’s Tyranny
	Technology Limits to Applications�(from NRC’s “Getting Up to Speed”)
	Why Look at Technology Scaling
	What Seems to Be The Consensus
	Outline
	Silicon Fundamentals
	A MOSFET Transistor
	Key Device Parameters
	A Logic Inverter
	Logic Examples
	Memory Arrays
	Key Types of Memory Cells
	Compact DRAM Cells for Memory Arrays
	Compact DRAM Cells for Memory Arrays
	Multiple Levels of Metal
	Off-Chip Interconnect
	3D Chip Stacks
	Scaling & ITRS Roadmap
	Device Scaling
	Variations in Real World Scaling:�Primarily Coupling with Vdd
	Approximate Scaling Relationships
	International Technology Roadmap for Semiconductors
	Trends And Challenges Addressed
	Types of Chip Technologies Discussed
	Common Device Features to Track:�(With values termed “Feature Sizes”)
	Key Terms
	Feature Size Projections
	Projected Density Growth (S^2)
	Comparison to Moore’s Law
	Commodity DRAM Capacity
	Memory Density: Cells Only
	Chip Capacity
	Logic Chip Density Scaling
	Peak Logic Clock Rates
	Why the Clock Flattening? POWER
	The Power Equation
	ITRS-Based Power Density Increase
	Constraining Clock Rate �for Flat Power Density
	What Are Our Options?
	Off Chip Bandwidth
	Off-Chip Parameters
	Does Logic Performance Match �Off-chip Bandwidth Potential?
	What Are Our Options for Bandwidth
	On-Chip Wire Speed�(Very Simplistic Approximation)
	The Way We Were:�A Brief Romp Thru�Single Core Microprocessor Land
	Historical Changes in Single-Core MPU Parameters
	Functionality
	How Are We Using These Transistors
	Let’s Look at Transistor Usage
	Core CPU State vs Time
	The Way We Were:�A Brief Romp Thru�Memory Land
	Classical DRAM
	Basic Memory Operations
	Conventional DRAM Part PinOut
	Chip-Level Memory Bandwidth
	Alternative Chip Interfaces
	Packaging Multiple Memory Chips
	Typical Electrical Configuration
	Controller
	A New Alternative: RL DRAM�(Reduced Latency DRAM)
	Our Brave New World:�Adding More Threads to a Single Die
	Technology Trends Forcing Parallelism
	Performance Gains from �Explicit Parallelism
	Multi-Threading
	MT Advantages
	A Brief History�of Multi-threaded Processors
	Multi-Core
	The Tide of Announcements
	The Number of Cores per Announcement
	Scaling Today’s Single Core uP Chips
	What’s The Multi-core Potential
	Examples of Multi-Core Designs
	Why are MC Cores Going Simple? Today’s Single Threaded Core Performance = IPC x Clock
	Notional Core Design Space
	What is Today’s Multi-Core Design Space
	Multi-Core Projection Models
	Another Reason for Multi-Core: �Yield Enhancement
	Silicon Alone is not the Complete Story
	Observations
	A Contrarian’s View�Processing in Memory:�The Grand Synthesis �of Logic and Memory
	How can we use a sq. cm?�(with no overhead)
	Adding In �“Lines of Constant Performance”
	Knee Curves with Basic Overheads
	Knee Curves with Today’s Overheads
	Minimal Size for a “Peta” System
	“Processing-In-Memory”
	The PIM �“Bandwidth Bump”
	PIM Chip �MicroArchitectural Spectrum
	PIM System Design Space: �Historical Evolution
	TERASYS SIMD PIM �(circa 1993)
	EXECUBE: An Early MIMD PIM �& 1st True MC (1st Silicon 1993)
	RTAIS: The First ASAP� (circa 1993)
	Mitsubishi M32R/D
	DIVA: Smart DIMMs for �Irregular Data Structures
	Micron Yukon
	Berkeley VIRAM
	The HTMT Architecture &�PIM Functions
	Bluegene/L
	PIM Lite
	CELL �(A Pipelined, Array, Hierarchical MC Chip)
	Projecting Ahead: �Optimizing the Multi-Core PIM Chip
	One Step Further: �Allowing the Threads to Travel
	Next: An “All-PIM” Supercomputer
	Summary
	Summary
	How Might We Make It Better?

