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Abstract—“Rebooting Computing” (RC) is an effort in the
IEEE to rethink future computers. RC started in 2012 by the
co-chairs, Elie Track (IEEE Council on Superconductivity) and
Tom Conte (Computer Society). RC takes a holistic approach,
considering revolutionary as well as evolutionary solutions needed
to advance computer technologies. Three summits have been
held in 2013 and 2014, discussing different technologies, from
emerging devices to user interface, from security to energy
efficiency, from neuromorphic to reversible computing. The first
part of this paper introduces RC to the design automation
community and solicits revolutionary ideas from the community
for the directions of future computer research.

Energy efficiency is identified as one of the most important
challenges in future computer technologies. The importance of
energy efficiency spans from miniature embedded sensors to
wearable computers, from individual desktops to data centers.
To gauge the state of the art, the RC Committee organized the
first Low Power Image Recognition Challenge (LPIRC). Each
image contains one or multiple objects, among 200 categories. A
contestant has to provide a working system that can recognize
the objects and report the bounding boxes of the objects. The
second part of this paper explains LPIRC and the solutions from
the top two winners.

I. IEEE REBOOTING COMPUTING

A. Introduction
The microelectronic revolution has provided one of the ma-

jor transformations of the 20th century, enabling the computer
and telecommunications industries, with profound technolog-
ical and societal implications. This was driven by transistor
scaling known as “Moore’s Law”, whereby performance and
cost improved as the devices were scaled down. Such exponen-
tial improvements cannot go on forever, and it is now widely
accepted that after 50 years, Moore’s Law is coming to an end.
We propose that the end of the traditional Moore’s Law scaling
provides an opportunity to review and reinvent the entire basis
for computing, in order to continue the computer revolution
well into the 21st century.

Early computers required an initialization process to load
the operating system into memory, which became known
as “booting up,” based on the old saying about “pulling
yourself up by your own bootstraps.” Even now, if a com-
puter freezes or overloads, a power cycle or “reboot” may
be necessary to reinitialize the system. Can we apply this
concept metaphorically to the entire computer industry? IEEE
Rebooting Computing (RC) is an inter-society initiative of the
IEEE Future Directions Committee, started in 2012, to identify

future trends in the technology of computing, a goal which is
intentionally distinct from refinement of present-day trends.

This is an ambitious endeavor that requires reconsideration
of hardware and software at all levels, from nanoscale devices
to supercomputers to international networks. For this reason,
the RC initiative is a joint project of members of 9 IEEE Soci-
eties and Councils, including the Council on Electronic Design
Automation (CEDA) for its important role of Computer-Aided
Design in the initiative. The RC participating organizations
are:

• IEEE Societies:
– Computer Society (CS)
– Circuits and Systems Society (CAS)
– Electron Devices Society (EDS)
– Magnetics Society (MAG)
– Reliability Society (RS)
– Solid-State Circuits Society (SSCS)

• IEEE Councils:
– Electronic Design Automation (CEDA)
– Nanotechnology Council (NANO)
– Council on Superconductivity (CSC)

• Partner: International Roadmap for Semiconductors
(ITRS)

RC is co-chaired by Tom Conte and Elie Track. It consists
of a team of volunteers from the various IEEE Societies and
Councils, as well as staff from IEEE Future Directions. RC
has an active Web Portal [1], as well as a presence on various
social media sites.

B. RC Summits
In 2013 and 2014, the primary activity was to organize three

Summits (known as RCS1-RCS3), bringing together a range
of leaders of industry, academia, and government to discuss
the future of computing. Reports and presentations from these
Summits are available on the RC Web Portal [2].

The primary conclusion from RCS1 is that any future
computing technology must be built on three “pillars”: Energy
efficiency, Security, and Human-Computer Interactions (see
Figure 1). This paper focuses on Energy Efficiency, which is
relevant for devices and circuits, for chips and processors, for
mobile systems and sensors, all the way to data centers and
supercomputers. For mobile systems the primary concern is
battery lifetime; for data centers it is the large electricity bill;
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on the chip level excessive heating leads to the dominance of
“dark silicon”.

Fig. 1: The three pillars of Rebooting Computing, as developed
in the first RC Summit in 2013. In the present paper, we focus
on the central role of Energy Efficiency.

RCS2 and RCS3 also addressed the energy efficiency issue,
by considering several alternative computing approaches. For
example, conventional silicon devices and circuits consume
orders of magnitude more power than the limit of energy per
switching operation. Alternative circuit designs based on adi-
abatic and reversible computing may permit drastic reductions
in energy, although thus far only in novel device technologies
such as quantum dots and superconducting Josephson junction
circuits.

Neuromorphic computing is a radically different computer
architecture based on a massively parallel network of intercon-
nected electronic neurons, inspired by biological brains. We
still don’t understand how brains work (or how they can be
programmed), but they are undeniably energy efficient. The
human brain consumes only about 20 W, and is composed
of slow, unreliable elements, yet many of its capabilities are
beyond those of a supercomputer.

Approximate computing is an approach that recognizes that
there is often a tradeoff between precision and power con-
sumption, and that many modern computer problems (such as
image recognition) do not always require calculation of precise
results. This approach also includes dealing with random errors
associated with low-power operation of nanoscale devices.

Finally, supercomputing technology is moving toward exas-
cale performance (1018 floating point operations per second),
but the total projected power of such a system, of order 200
MW (comparable to a power generator) would be prohibitive.
The solution will require either a completely different tech-
nology (such as cryogenic superconducting computers), or
a different architecture that operates much more efficiently
by distributing memory and logic in a way that minimizes
shuttling of data between components.

Many of these alternative computing approaches are not
yet fully mature, but it is clear that automated design tools
are needed and can incorporate power budgets and power-
performance tradeoffs at all levels, from circuit design to
software implementations. A user can optimize for power
efficiency only if power metrics are built into the design tools.

C. 2015 and Future
In 2015, the RC efforts have expanded to include cooper-

ative efforts with several other organizations. For example,
recognizing the central importance of energy efficiency in
computing, RC created a Low-Power Image Recognition Chal-
lenge (LPIRC) [3] as a one-day workshop at the 2015 Design
Automation Conference in San Francisco in June 2015. The
LPIRC is described further below.

RC also recently entered into a strategic partnership with
the International Roadmap for Semiconductors (ITRS) [4].
ITRS has traditionally focused on generating an industry-wide
roadmap for Moore’s Law scaling, but has recently recognized
that the landscape has changed, necessitating a new type of
Roadmap, known as ITRS 2.0. As part of this partnership,
RC is now working with ITRS, including joint meetings held
in February and July [5]. In addition, the 4th RC Summit is
being planned in December, 2015, at the International Electron
Devices Meeting in Washington, DC [6].

RC is also working to promote the concepts of Rebooting
Computing to a broader audience. In cooperation with the
IEEE Computer Society, the December issue of Computer
magazine is dedicated to Rebooting Computing [7]. The issue
is being edited by the RC Co-Chairs, and will present a variety
of potential approaches for future computing.

Plans for 2016 and beyond are still in development, but
may include conferences, roadmaps, and standards for future
computing. Standards may include incorporating metrics for
energy efficiency throughout the design stack.

II. LOW-POWER IMAGE RECOGNITION CHALLENGE

A. Origin
As wearable cameras become commercially available, real-

time visual recognition using battery-powered systems is at-
tracting attention from researchers and engineers. Even though
many papers have been published on relevant topics (IEEE
Xplore finds more than 1,200 papers when searching “low
power” and “image processing”), there is no common bench-
mark for comparing solutions. A challenge can bring together
researchers and take a snapshot of the current technology as a
reference for further improvement, and hopefully to highlight
future progress in this area. The idea of a competition explor-
ing low-power systems and visual recognition was proposed by
Yung-Hsiang Lu and David Kirk during the first RC Summit
in December 2013.

Identifying objects in images seems a straightforward prob-
lem: many people can easily find everyday objects, such
as fruit, car, and microwave. Writing a computer program
to identify objects, however, is surprisingly difficult. Instead
of creating a new set of images, LPIRC uses the data
from ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [8]. Figure 2 shows a sample image with four
objects and their bounding boxes. Alexander C. Berg is one
of ILSVRC organizers; he and Lu served as the co-chairs of
the first LPIRC. Two sets of images were used for training
and testing. The former was released in November 2014 and
the latter was used for the challenge on June 7, 2015.
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Fig. 2: A sample image with four object types and correspond-
ing bounding boxes.

B. Rules

The first LPIRC aimed to impose as few restrictions as
possible so that contestants could present their best solutions.
The first LPIRC took place during a one-day workshop as
part of the 2015 Design Automation Conference. Contestants
brought their systems to the San Francisco Convention Center.
It was an opportunity for the contestants, as well as spectators,
to exchange ideas. The same test images and power meter was
used for all teams to ensure fairness. An intranet (both Wifi and
RJ45) was established for the contestants’ systems to retrieve
image files from the referee system and to send the answers
to the referee system. Hypertext Transfer Protocol (HTTP)
was used because it was widely supported, including many
embedded systems. The source code of the referee system was
released in March, 2015 through a public repository [9].

LPIRC evaluates both accuracy of detection and the amount
of energy used. Most evaluations of detection accuracy are
based on precision vs recall plots of the detector evaluated
on previously unseen test data. A detector produces a list of
detections ordered by confidence, and at each point in the list
contains a cumulative value for precision (the fraction of detec-
tions seen so far that are correct) and for recall (the fraction
of possible detections that have been seen so far). A target
can only be detected once. Subsequent putative detections of
the same target are discarded as false detections. They do not
change the recall, and do decrease the precision. LPIRC fol-
lows standard practice (e.g. [10]), first computing a precision
recall curve for each object category, then determining the av-
erage precision for each category, and finally aggregating these
by computing the mean average precision across categories,
the mAP score. Before the challenge, the training data was
released for detection from the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC). The 5000 test images were
mixed from newly collected and annotated images and some
existing test images from ILSVRC 2014. These were retrieved
from the referee system during the challenge and blocks of
images were permuted in order between contestants. For many
more details about the ILSVRC detection data used for this
challenge and on evaluating detection, please see [11]. The
detection accuracy (mAP) was divided by energy used (watt-
hour) to produce a single score for ranking the results. Each
team has 10 minutes to process the images. To encourage

exploring accuracy-energy trade-offs, each team may present
multiple solutions (if the team has multiple registrations).
C. Challenge Day

Totally, 34 people registered (10 teams from USA, China,
Canada, and Taiwan) for the challenge. Two teams were unable
to present their solutions on June 7. The remaining 8 teams
presented 20 solutions. Among the eight teams, seven teams
chose Track one (no offloading) and one team chose Track two
(offloading). The order of teams were determined by drawing.
The team in Track two had a software mistake and was
unable to report any detected objects. The first prize in Track
one was given to the Tsinghua-Huawei team and the second
prize in Track one was given to the Chinese Academy of
Science Institute of Automation (CASIA)-Huawei team. The
two teams in Track One report their approaches later in this
paper. The other winners are: Third prize: Tsinghua-Huawei
team; Highest accuracy with low energy: Tsinghua-Huawei
team; Least energy with high accuracy: CASIA-Huawei team;
“Ready-to-Go” Prize: Carnegie Mellon University; “Standing
Alone” Prize: Rice University. More details of the first LPIRC
can be seen in this report [12].
D. Future LPIRC

Preparation for the second LPIRC has already started. For
more information, please visit the web site [3], or contact the
LPIRC Co-Chairs, Yung-Hsiang Lu and Alexander C. Berg.

III. PIPELINED FAST RCNN ON EMBEDDED GPU
A. System Overview
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Fig. 3: System Overview of the Tsinghua-Huawei Team.

Figure 3 illustrates an overview of the Tsinghua-Huawei
team. The system is based on the Fast R-CNN framework
[13] and NVIDIA Jeston TK1 embedded GPU platform.

For the detection algorithm, Fast R-CNN was selected
after comparing serval recent detection frameworks including
Region-based Convolutional Neural Network (R-CNN) [14],
Spatial Pyramid Pooling Network (SPPnet) [15], and Fast
R-CNN [13]. In the framework, multiple bottom-up region
proposals (∼200 proposals) were extracted on the input images
by EdgeBoxes (EB) [16] and Binarized Normed Gradients
(BING) [17]. Then the input image was resized to a large scale
and put into the convolutional (Conv) layers of a Convolutional
Neural Network (CNN) to extract convolutional feature map
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only once. The feature map was reused to provide convolu-
tional features. Regions in the feature map that were corre-
sponding to the locality of region proposals, were spatially
pooled into fixed-size features. Those features were input into
the fully-connected (FC) layers of the CNN, and the FC layers
output two vectors for each region proposal: softmax probabil-
ities for classification, and per-class bounding-box regression
(BB) offsets. Finally, a list of bounding box coordinates, each
with an object class label and a confidence score, was output
as a detection result.

For the hardware implementation, the system used NVIDIA
Jeston TK1 development kit with an embedded GPU and a
quad-core ARM CPU. The detection algorithm was decoupled
into (1) the region proposal part and (2) the CNN part, which
was executed by ARM cores and embedded GPU, respectively.
Moreover, LPIRC required Internet interface to download data
and upload results. A two-stage pipeline was used to take full
advantage of the computing resources. Specifically, the first
stage of the pipeline downloaded images from the referee,
opened the image file, and extracted region proposals with
ARM cores. The second stage performed CNN with GPU and
uploaded the results back to the referee by the ARM cores.

This following sections explain the implementation in detail.
The two solutions with BING and EdgeBoxes (EB) won the
1st and 3rd prize of LPIRC 2015, respectively.

B. Region Proposals
A variety of papers have offered methods for generating

category-independent region proposals. The team prepared 4
methods [18], i.e., SelectiveSearch (SS), EdgeBoxes (EB),
Binarized Normed Gradients (BING), and Geodesic (GOP)
before the competition. The team finally developed two so-
lutions with EB [16] and BING [17], respectively. BING is
aimed to realize a faster implementation, and EB is used to
balance between speed and detection accuracy (mAP). More-
over, recent work has demonstrated that mAP will increase
slowly with the number of region proposals [18, 13]. However,
more region proposals also demand more processing energy,
which increases faster than the mAP. This implementation set
the maximum number of region proposals to 200 in order to
tradeoff between mAP and energy.

C. Feature Extraction and Object Classification
Convolutional Neural Network (CNN) plays a key role in

modern object detection framework to achieve high detection
accuracy. The team chose CaffeNet (essentially AlexNet [19])
to fit for the limited memory size (2 GB) of TK1. Following
Fast R-CNN framework [13], when extracting the convolu-
tional feature map for the solution with EdgeBoxes (EB), the
shortest side of the input image were resized to 600 pixels
and the longest image side was capped to 1000 pixels in case
of out-of-memory. It was discovered that 600 pixels might
be an optimal choice for mAP after it was increased to 750
pixels or decreased it to 450 pixels. In order to increase the
detection accuracy of EB, the top-30 region proposals with
a score of > 10−3 after the bounding box regression (BB)
survived and was used to perform non-maximum suppression

(NMS) independently for each class. In contrast, the team
shrank the input scale from 600-1000 to 450-750, remove
BB, and increased the threshold of the region proposal score
before NMS to 0.1 in the BING solution to increase the
processing speed. Those techniques accelerated the speed of
BING solution by ∼ 1.5× compared with the one with EB.

D. Training
The training procedure was performed based on the Fast

R-CNN framework with some modifications for the ImageNet
dataset. The CaffeNet was trained on ILSVRC2014 [8] val1
dataset and validated on val2 dataset [14]. The images without
any object of ground-truth were ignored when training. Instead
of fine-tuning the CaffeNet for classification directly on the
detection dataset, the team started with the CaffeNet that
had been fine-tuned by R-CNN [14]. In order to prepare
more training data, both SelectiveSearch (SS) and EdgeBoxes
(EB) methods were used to generate region proposals (∼4k
proposals per image in total) when fine-tuning the network in
the EB solution. It was observed that the training with both
proposal methods provided better results than the training with
any single method alone. After the network for EB was trained,
the team fine-tuned the EB network (just with different scale
and proposal methods) for BING solution with a very small
learning rate (1e-4 to 1e-6).

E. Pipeline with Shared Memory
The heterogeneous ARM Core and GPU share the main

memory on the TK1. The shared memory was extensively
used to facilitate the information sharing, message passing
and memory reservation. Specifically, the shared memory was
split into six zones: one sharing the downloaded image data,
one as the queue for region proposals and to cascade the two
pipeline stages, and one for the final results. The other zones
were reserved to avoid frequent memory swapping.

The size of each memory zone and depth of the queue
were carefully configured in order to balance the speed of
the two pipeline stages. For example, EdgeBoxes (EB) run
much slower on the ARM than BING, and sometime may
even fall behind the CNN kernel. Therefore, the queue depth
was increased to cope with the imbalance. Other zones were
also reduced accordingly for the best performance.

F. Results
The team first tested the mAP of two solutions on the val2

dataset of R-CNN [14]. With 200 proposals, the EdgeBoxes
(EB) solution achieved 26% mAP and the mAP of BING is
15.3%. The speeds of the two solutions were 1.2 s/image and
0.8 s/image, respectively. The power consumption of TK1
was ∼9.6W with USB and VGA ports unplugged. The two
solutions achieved similar results in terms of mAP/Energy.
Surprisingly, the BING solution outperformed the EB by
∼60% in the final competition. The BING solution achieved
the mAP of 2.971e-2 and the energy of 1.634 watt-hour. The
EB solution achieves the mAP of 1.816e-2 and the energy of
1.574 watt-hour. The final score of mAP/energy for BING and
EB are 1.818e-2 and 1.154e-2, respectively. The results imply
that a faster solution that processes more images may achieve
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a better score in terms of mAP/energy. The energy cost is
similar in the two solutions since both of them do not finish
processing all the images (5,000 images) in the limited time
(10 minutes).

G. Related Work and Discussion

Modern general object detection tasks are mainly based on
the R-CNN framework [14], which includes three steps: 1)
coarse-grained region proposal extraction; 2) CNN feature ex-
traction and object classification; and 3) fine-grained bounding
box regression. The original R-CNN requires to perform a
full execution of CNN for each region proposal and it is slow
[14]. SPPnet improves the speed by ∼ 10× through reusing
the convolutional feature map [15]. Fast R-CNN [13] uses a
simplified version of SPPnet and combines step 2 and 3 to
CNN to improve the detection accuracy by realizing a better
bounding box regression. However, all the above frameworks
use traditional bottom-up region proposal methods like Selec-
tiveSearch (SS) or EdgeBoxes (EB). The framework is not
an “End-to-End” solution and region proposal methods are
currently the speed bottleneck in the framework, especially for
the Fast R-CNN. Therefore, a recent proposed method, Faster
R-CNN [20], merges all the three steps into CNN, and realizes
an “End-to-End” detection framework by using CNN to extract
region proposals. State-of-the-art results have been reported
by this method. The team believes the “End-to-End” model
will attract more attention in the future. Finally, the team
used embedded GPU platform for the ease-of-development,
and FPGA had been demonstrated to be more energy efficient
than CPU and GPU. A more energy efficient FPGA-based
detection solution was expected to realize better low power
image recognition systems.

IV. OBJECT DETECTION BASED ON FAST OBJECT
PROPOSAL AND REPRESENTATION

A. Introduction

The CASIA-Huawei team introduced two integrated frame-
works of BING (Binarized Normed Gradients) and fast-RCNN
(region-based convolutional neural networks) for object detec-
tion of 200 classes. The two frameworks were embedded in
the NVIDIA Jetson TK1 platform [21].

Fig. 4: The pipeline of the second team.

B. Method
With the power of convolutional neural networks

(CNN) [19], modern object detection methods significantly
improve the accuracy. With the power of object proposal
methods, modern detection methods are speeded up by
excluding many detection windows. To meet the requirements
of LPIRC, the team adopted BING [17] to extract object
proposals, and two different CNNs were used to extract
feature presentation in the framework of fast-RCNN [13]
for 200 classes object detection. BING [17] proposed by
Cheng et al. is a very fast method for extracting object
proposals. According to the paper, BING generates a small
set of category-independent, high quality windows. Fast-
RCNN [13] proposed by Ross is an enhancement over the
famous framework of object detection called region-based
CNN (RCNN) [14]. There are two main improvements.
First, the Region-Of-Interest Pooling layer is used to achieve
146 times faster performance for the VGG16 network [22].
Second, adding truncated SVD of full-connected layers in
CNN further enhances the speed. In total, Fast-RCNN runs
213 times faster than RCNN. The pipeline of our method is
shown in Figure 4.
C. Implementation

BING: The original BING extracts features of different scale
rectangles. To make it faster, the team directly dropped the
smallest 10 scales. Moreover, the team only stored top 100
scored proposals for further use in fast-RCNN.

Fast-RCNN: The team prepared two CNNs: Alex-net [19]
and small-net. Alex-net is directly downloaded from Caffes
official website. The small-net is designed by us to process
all 5,000 images in 10 minutes. Its structure is: K5N64S3-
K4N128S2-K3N192-K3N128S1-Fc512-Fc512-Fc1000, where
“K” for “kernel size”, “N” for “channels” and “S” for “stride”.
The small-net is trained from scratch and fed with ILSVRC
1000-class images from its training set with top-1 accuracy of
0.284. For both networks, the team fine-tuned them in Fast-
RCNN using the validation set of ILSVRC 2013.
D. Results

Solution Accuracy Energy (WH) Score
Alex-net 0.01750 1.457 1.198e-002

Small-net 0.00519 1.183 4.386e-003

TABLE I: Results in LPIRC with TK1.

Solution Accuracy Speed† #images in 10 minutes
Alex-net 0.073 0.170 2629

Small-net 0.025 0.094 5000

TABLE II: Offline testing with TK1. †: second/image.

The competition results are reported in Table I and Table II
reports the offline results. For the offline results, 15,121 images
from ILSVRC 2013 validation dataset were used for fine-
tuning and the rest 5,000 images for testing, and the accuracy
was calculated by mAP. In the competition, the Alex-net
solution was ranked the 2nd in all 20 solutions and the
Small-net solution obtained the prize of the lowest power
with good accuracy. The main difference (about 4 times in
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accuracy) between the offline results and the competition
results mainly came from the slow image downloading and
the results uploading in the competition. Since the method
demonstrates a processing speed near 150 ms for each image,
the speed is very close to the rate of image downloading
and the result uploading via the network. The network had
a great influence to the final score. A possible solution is to
make a separate pipeline stage for the image downloading
and uploading, which would be the team’s advice to future
contestants.

V. CONCLUSION

IEEE Rebooting Computing aims to rethink future di-
rections of computer technologies. This initiative explores
many possible solutions and has obtained supports from many
organizations. Energy efficiency is one of the pillars in fu-
ture computer technologies and the first Low Power Image
Recognition Challenge serves as a benchmark. Future RC
activities may include conferences, roadmaps, and standards.
The second LPIRC will be held in 2016.
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