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Abstract—Neuromorphic computing is a leading option for 
reestablishing growth of the IT sector. This growth is often 
credited to Moore’s Law, but it is just a prediction that 
incremental progress will continue until the physical limits are 
reached. These limits are now just a decade away, turning the 
physical limits into an argument that progress must end. 

This paper shows that a careful reading of Landauer’s 
seminal paper on physical limits reveals the community has 
generalized an AND-gate example beyond what he intended. 
This paper applies the same analysis to a carefully designed 
neuromorphic synapse and finds a maximum energy efficiency 
100× higher than what is often claimed to be the limit. 

This paper shows how to update ideas on theoretical 
maximum energy efficiency to neuromorphic computers in 
three steps, creating a theoretical framework for neuromorphic 
computing that can leverage CMOS infrastructure and 
continue a growth path like Moore’s Law for longer. 

I. INTRODUCTION 

The computer industry grew exponentially for decades, 
establishing exponential growth in computer capability as the 
baseline for industry health. Roadmaps project 
semiconductor chips only have about another decade of 
scaling at the same power per chip, meaning per-chip 
computing capability must flat line. If neuromorphic, 
quantum, and a few other less-known computing approaches 
were better understood, they could possibly enable 
continuation of traditional growth rates. 

In this paper, we will explain conflicting interpretations 
of the energy efficiency limits of computation. Are they 
fundamental or simply artifacts of the way to do things? This 
distinction could be a relevant because nature used an 
independent development path for neural systems, so their 
pertinent characteristics could be different. 

The power dissipation limits of current computers were 
studied by Landauer [1], who stated in the abstract of his 
paper that there would be a “minimum heat generation, per 
machine cycle, typically of the order of kT for each 
irreversible function.” Using an AND gate as an example, his 
paper computes a minimum dissipation of .82 kT1 using a 
table duplicated within the blue outline in Fig. 1A 

(annotations outside the blue outline are due to the current 
author). “Reversible” computing had not been invented at the 
time of [1], so the qualifier “irreversible” seems to have been 
ignored. The information just presented is apparently the 
justification for a widespread view that there is a minimum 
dissipation of ~kT per use (clock cycle) of a binary logic gate. 
This interpretation is excessively narrow and misleading. 
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1 Landauer’s original paper had a math error and actually reported 1.18 
kT. Landauer corrected this in a later paper. 

The body of Landauer’s paper [1] contains other 
reasoning that is more sophisticated. The table in Fig. 1A is 
explained in the body text as an AND gate’s transformation 
of input combinations to output combinations2. Each row i 
represents an input combination that occurs with probability 
pi during the system’s operation. The paper states that the 
example’s inputs are in “thermodynamic equilibrium,” which 
is a way of saying that all input combinations occur with 
equal probability (i. e. .125 for each of the eight rows in Fig. 
1A—however, the probability markings in orange were not in 
the original paper). When a function maps multiple input 
combinations to the same output values, the rows merge into 
a single output state and dissipate a minimum energy based 
on the various pi’s. Rows not participating in any merging do 
not contribute to dissipation—however, the probabilities in 
purple in Fig. 1A were not in the original paper. It is also 
notable that Landauer’s analysis is for stateless gates; 
however the analysis method can be readily extended to state 
machines or memories. 

Neuromorphic computing is based on synapses rather 
than AND gates, and they have different behaviors. Recent 
breakthroughs on artificial neural networks suggest learning 
is more computationally intensive than non-learning 
operation (called performance) [2]. So let us concentrate on 
the energy efficiency of learning. While learning is essential, 
most experiences do not cause a given synapse to change 
state. For example, most readers of this paper will have 
learned the English alphabet as a child. By now, there is 
nothing more to learn by seeing the letter “L” for the 
millionth time. However, seeing the letter “Л” may invoke 
learning and cause synapse changes for readers unfamiliar 
with the letter equivalent to “L” in Russian (Cyrillic). 

The discussion above leads to an open door. Synapses 
have three characteristics that were covered in the body of 
Landauer’s paper but are not part of the currently popular 
interpretation: Synapses are essentially (1) storage devices 
where learning is a (2) critical consumer of energy, but they 
change state (3) only infrequently. Perhaps these 
characteristics can be exploited to create a theory of 
neuromorphic system energy efficiency that has lower energy 
minimum than the ~kT “limit” that appears in the literature. 

2 The circuit actually comprises a 2-input AND gate plus an extra wire 
that has no function, but the wire serves to create 8 input combinations. 



  

Such a theory would not invalidate the statement in the 
abstract of Landauer’s paper, since artificial synapses were 
not typical in the 1960s. 

II. THE MINIMUM DISSIPATION OF A SYNAPSE 

We will repeat the procedure in [1] but replacing the 
AND gate with an artificial synapse of sorts. A synapse 
changes state during learning when a “cause” is different 
from the desired “effect.” There are different learning 
algorithms, but an old-style magnetic core memory has the 
necessary behavior. In such an implementation, the row 
conductors would be the cause, the column conductors would 
be the effect, and the magnetic field direction in the cores 
would be the learned behavior. Cause and effect would each 
be turned into a current of magnitude 0 or ±1, with the core 
flipping at a current of ±1.5 through its center in the same 
units. If cause and effect are the same direction, a current of 
±2 would go through the center and cause a flip—but only if 
the core was not already in the correct state. When cause and 

effect are different (including 
either or both being 0), the 
maximum total current through 
the core will be too small to 
cause a flip. A core’s flipping is 
an energetic event and causes 
energy dissipation, but a 
fluctuating current through a 
core dissipates very little 
energy otherwise. 

Figure 1B is in the same 
form as the AND gate in [1]. 
However, the table is actually 
derived from an Excel 
spreadsheet where the green 
parameter labeled “probability 
of a learning event” triggers a 
sequence of computations. The 
parameter in green is the 
probability of a state change in 
the synapse being analyzed 
during one “machine cycle.” 
This parameter is part of the 
problem definition and relates 
(per previous discussion) to the 
probability of an unexpected 
event in the input data, such as 
a “Л.” The spreadsheet 
distributes this probability 
(.001) equally between the two 
states in the center of the chart 
(.0005). The remaining 
probability (.999) is equally 
distributed across the other 
states. To model the behavior 
of the core, only states A and I 
merge. 

In accordance with 
Landauer’s method, the 
spreadsheet computes initial 
entropy (Si), final entropy (Sf), 
and the minimum dissipation as 

their difference. The computed value (.005831) is not 
fundamental; almost any dissipation is possible by changing 
the value in green. 

III. THREE CHANGES NEEDED 

The previous section analyzed a system that yielded a 
minimum energy below the widely believed ~kT limit, but is 
there a way to synthesize systems with this property on 
demand? The basic process and its implications are described 
below, with more detail in [3]. 

The actual process for creating the core-based synapse 
model involved the author reverse-engineering Landauer’s 
method of computing minimum energy and figuring out how 
to synthesize systems that would have an unusually low 
minimum energy. The example in Fig. 1B also involved 
searching for a computational primitive useful in the learning 
phase of neuromorphic computing. 

A. Landauer's paper figure 5 (AND gate plus wire)
BEFORE CYCLE AFTER CYCLE FINAL

Prob, p q r p 1 q 1 r 1 STATE S i (k's) S f (k's)
0.125 1 1 1 → 1 1 1 Alpha 0.2599302 0.25993
0.125 1 1 0 → 0 0 1 Beta 0.2599302 0.25993
0.125 1 0 1 → 1 1 0 Gamma 0.2599302 0.367811
0.125 1 0 0 → 0 0 0 Delta 0.2599302 0.367811
0.125 0 1 1 → 1 1 0 Gamma 0.2599302 0
0.125 0 1 0 → 0 0 0 Delta 0.2599302 0
0.125 0 0 1 → 1 1 0 Gamma 0.2599302 0
0.125 0 0 0 → 0 0 0 Delta 0.2599302 0

S f (k's) 2.0794415 1.2554823
B. Synapse Example S i-S f (k's) 0.8239592
probability of a learning event: 0.001

cause effect field 
dir.

cause effect field 
dir.

State S i (k's) S f (k's)

0.0624375 -1 -1 -1 → -1 -1 -1 A 0.173176 0
0.0624375 -1 0 -1 → -1 0 -1 B1 0.173176 0.173176
0.0624375 -1 1 -1 → -1 1 -1 C1 0.173176 0.173176
0.0624375 0 -1 -1 → 0 -1 -1 D1 0.173176 0.173176
0.0624375 0 0 -1 → 0 0 -1 E1 0.173176 0.173176
0.0624375 0 1 -1 → 0 1 -1 F2 0.173176 0.173176
0.0624375 1 -1 -1 → 1 -1 -1 G1 0.173176 0.173176
0.0624375 1 0 -1 → 1 0 -1 H1 0.173176 0.173176

0.0005 1 1 -1 → 1 1 1 I 0.0038005 0.1740608
0.0005 -1 -1 1 → -1 -1 -1 A 0.0038005 0.1740608

0.0624375 -1 0 1 → -1 0 1 B2 0.173176 0.173176
0.0624375 -1 1 1 → -1 1 1 C2 0.173176 0.173176
0.0624375 0 -1 1 → 0 -1 1 D2 0.173176 0.173176
0.0624375 0 0 1 → 0 0 1 E2 0.173176 0.173176
0.0624375 0 1 1 → 0 1 1 F2 0.173176 0.173176
0.0624375 1 -1 1 → 1 -1 1 G2 0.173176 0.173176
0.0624375 1 0 1 → 1 0 1 H2 0.173176 0.173176
0.0624375 1 1 1 → 1 1 1 I 0.173176 0

S f (k's) 2.7784165 2.7725852
S i-S f (k's) 0.005831



  

It appears three changes in computer design will be 
required to systematically create systems with the energy 
efficiency of Fig. 1B. These are illustrated as a cube in Fig. 2. 
The cube is not intended to represent a geometric structure, 
but rather a series of ideas related in a way that has the same 
topology as vertices and edges on a cube. Starting with 
CMOS and Boolean logic on the upper left, each dimension 
of the cube represents a design change. Traversing all three 
dimensions in any order gets to the lower right corner that 
produced the low minimum energy in Fig. 1B. Interestingly, 
traversing just one or two dimensions sometimes leads to a 
known computing approach (e. g. reversible computing, 
processor-in-memory, and analog computing). 

One design change would be to exploit probabilities in 
data and in the design of logic. All gates in today’s CMOS 
have the same schematic diagram, notably complementary 
pull-up and pull-down trees. If it is known that one bit 
possibility occurs more often than another [1], the design of a 
gate can be customized to the circumstance and yield a lower 
dissipation limit. This idea is actually in Landauer’s paper 
[1], yet is a topic of continued research area [3] [4]. 

This idea was exploited in the design of the synapse used 
in Fig. 1B by arranging for the most common data inputs to 
result in no dissipation. Specifically, a synapse mostly 
verifies that it has learned what it needs to know as opposed 
to actually changing state. Fig. 1B maps these most common 
inputs into the rows of the chart that do not merge and hence 
do not have dissipation. 

A second design change is to try and discover physical 
devices that execute higher-level functions in one step. 
Boolean logic is universal and hence can compute anything, 
but it is almost never true that a group of maximally energy-
efficient Boolean logic gates will compute a function with 
maximum energy efficiency. This is because each logic gate 
cleans up signal noise through overdriven amplification and 
clipping. This restorative process essentially forces the 
minimum dissipation analysis of Fig 1 to be executed once 
per gate and the dissipations added. Since the magnetic core 
example in figure 1B performs a function equivalent to four 
NAND gates, a Boolean logic implementation should have a 
minimum of ~kT dissipation. 

The open door is to engage in physical science research to 
find devices with new functions. This might allow creating an 
inventory of devices that could be combined in many ways. 
Alternatively, some important functions could be identified 
and then physical science research would seek the device. 

Another idea is to tightly integrate logic and memory. The 
ideas above may not be helpful to designers intending to 
create the processor portion of a von Neumann-style 
computer. Today’s logic design style assumes memory is 
concentrated in a specific subsystem. The user gets happier as 
the number of devices in the memory subsystem increases, 
because this means more memory and the computer becomes 
more useful. However, the designer is supposed to minimize 
the number of devices in the processor portion because these 
devices tend to be larger, more expensive, and consume more 
energy. Logic with highly skewed probabilities of 0s and 1s 
are wasteful and the designer would be encouraged to 
redesign irrespective of any discussion in this paper. 

However, synapses in biological neural networks both 
contain state (i. e. they are memory) and perform some logic. 
As Fig 1B shows, integrating these functions allows much 
lower minimum energy. If the data was stored elsewhere, it 
would have to be moved with the consequent increase in 
energy just for the movement. 

IV. CONCLUSIONS 
Moore’s Law was never a physical law, but could be 

considered a statement of optimism whose believability 
depended on its not violating physical law. It is difficult to 
imagine the optimism continuing with physical limits 
looming just a decade ahead. Alternative computing 
paradigms should not be able to beat the physical limits 
either, if they are real limits. We show in this paper that the 
popular interpretation of computational energy-efficiency 
limits became tied to the way we do things, such as using 
Boolean logic and the von Neumann architecture. 

If we reapply theory on the limits of computation to 
society’s evolving expectations of computers instead of 
historical artifacts, we find the limits to be further out. The 
desire for more arithmetic prowess is giving way in some 
user communities to interest in machines that learn—such as 
learning to drive cars or learning our preferences on what 
consumer products to buy from online retailers. 

This gives theoretical support for continuing R&D in 
neuromorphic computing. This paper specifically shows how 
integrated logic and memory can improve energy efficiency 
by reducing energy-consuming communications, creating a 
role for new physical devices with functional diversity 
beyond just switches and transistors, and shows how these 
systems could be well matched to artificial neural networks 
or neuromorphic computing. 
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