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2. Executive Summary 

Asteroids are dangerous objects for Earth, as evidenced by previous asteroid impacts that 
have had planet-wide effects. It is therefore important to document the orbits of asteroids in our 
solar system to ensure fair warning should an asteroid approach Earth. Astronomical 
observatories worldwide constantly observe the sky to find new asteroids and update the orbits of 
known asteroids. 

Computerized methods of analyzing longitudinal astronomical image data would greatly 
aid in this goal. Advances here could lead to the identification of previously unknown asteroids, 
greater understanding of the patterns in asteroid orbit perturbations, and more effective real-time 
astronomical monitoring of our night sky. 

Our project focuses on this longitudinal image analysis. We have developed a conceptual 
framework for how existing astronomical image data may be analyzed for unknown object 
sightings as well as how these sightings may be further analyzed to document asteroids. 

We have developed systems to find asteroids in images and accurately locate these 
images in the sky. In the process, we implemented enhancements to the methods we used to 
increase their accuracy. These enhancements are unique to our work.  

We have used the GPU (graphical processing unit) to analyze which observations of 
unidentified objects could be of the same asteroid. This process involves running orbit 
determination on a GPU, and is also original to our work. During this analysis, we observed the 
GPU calculating orbits 40 times faster than the CPU. 
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3. Introduction 

Asteroids are dangerous objects for Earth, as evidenced by previous asteroid impacts that 
have had planet-wide effects. Therefore, it is vitally important to carefully track the motion of all 
potentially dangerous asteroids in our solar system. This goal is difficult to achieve, in part, 
because the small mass of asteroids make their orbits easily perturbed, or changed, by the 
gravitational pull of other solar bodies. Further, not all asteroids have been discovered.  

The primary mission of many well known observatories is to find new asteroids and 
update the orbits of previously known asteroids through continuous monitoring of the night sky. 

A companion approach to finding and updating asteroid orbits is to analyze existing 
astronomical data rather than relying solely on new observations. A large-scale analysis of 
existing image data could lead to identifying new asteroids, to better understanding the patterns 
in asteroid orbit perturbations, and to more effective real-time observations. Our project focuses 
on this type of longitudinal image processing analysis. 

3.1 Problem Statement  

How can astronomical image data be automatically, accurately, and efficiently analyzed 
for possible asteroid observations? How can these observations be most effectively used to 
further our knowledge of objects in our solar system? 

3.2 Procedure Overview 

Our study begins with the acquisition of raw heterogeneous astronomical images for data 
analysis. Such images often come in standard astronomical data formats, which usually include 
an approximate location in the sky as part of the format. This location is used to query reference 
star catalogues to find what stars should be in the image.  

Using this data, we then compare the stars in the image to the stars in the sky by finding 
similar triangles between corresponding stars. This determines the exact location and orientation 
of the image we are analyzing.  

Any objects that are in the image then are translated to a location in the sky and recorded 
with the time of observation. This constitutes one object observation. These observations may be 
further analyzed to find previously unknown asteroids or patterns in asteroid perturbations. 

One way to aid in finding asteroid observations that are of the same object involves 
calculating potential orbits for unknown object observations. We have implemented this 
compute-intensive process on the GPU, or Graphical Processing Unit, to aid in the discovery of 
new asteroids. 
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4. Background Research 

4.1 Asteroid Perturbations 

Since most asteroids have much smaller masses than planets and their moons, they are 
easily affected by the gravitational tugs of other celestial objects. These influences, while subtle, 
can completely alter an asteroid’s orbital path. It is important for scientists and astronomers to 
continually update the orbits of asteroids, particularly the ones that are potential threats to the 
Earth. NEOs, or Near-Earth-Objects, need to be frequently monitored because a slight 
perturbation could send the asteroid directly toward the Earth.  

Updating asteroid orbits is not a new area of science. In fact, there are multi-million 
dollar telescopes, such as the Magdalena Ridge Observatory, whose purpose is to track asteroids 
through the night sky. By refining an asteroid’s orbit through careful observation, it is possible to 
increase the accuracy of its collision probability estimate with the Earth. An example of this is 
99942 Apophis, an asteroid that was initially labeled with 2.7% chance of collision. However, 
after more accurate observations were made, this probability was lowered to a 1 in 45,000 
chance (Brown). This shows the utility and importance of asteroid observations. In this case, the 
collision probability was reduced after orbit refinement based on detailed observations. What if 
the slight perturbations had increased, instead of decreased, the collision probability? It could be 
catastrophic to the planet if scientists were not aware of increased collision chances because they 
did not continuously monitor the orbits of NEOs.  

 
4.2 Asteroid Identification 

In an image of the night sky, an asteroid looks exactly like any star. Therefore, 
astronomers need methods to analyze an image and identify the asteroids. One can manually find 
asteroid observations by analyzing two images of the same region taken consecutively. By 
looking at any objects that have moved in between the images, it is possible to locate asteroids. 
However, this method is tedious and impractical because it requires two images that are identical 
except for the movement of the asteroid.  

In our project we experiment with various automated methods to identify asteroids in 
images. These methods begin with identifying the centers of all the objects in the image, called 
centroids. The centroids reduce an image to a list of points, the basis for the rest of our asteroid 
identification process. 

4.3 Equatorial Coordinate System 

It is difficult to plot the night sky because of the constant motion of the Earth. 
Astronomers have developed a system known as Equatorial Coordinates to be able to pinpoint 
any location in the night sky regardless of the position and time on Earth. This coordinate system 
assumes that the Earth is in the center and all the celestial objects are in a sphere surrounding the 
Earth. The plane of the Earth’s axes is offset approximately 23.5 degrees from the ecliptic, or the 
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plane of the sun.  

1 
The two units in this coordinate system are Right Ascension (RA) and Declination (Dec). 

Right Ascension is similar to longitude on Earth, and is parallel to the Earth’s axes. Zero degrees 
RA is defined as the point on the celestial sphere where the ecliptic plane goes through the 
equatorial plane and RA increase counter-clockwise from there. Declination is similar to latitude 
lines on Earth, and is perpendicular to the axes of Earth. Zero degrees Dec is the celestial equator 
and increases as we approach the North Celestial Pole. Using this system, astronomers can give a 
unique set of coordinates to every star in the sky. 

4.4 Locating a Picture in the Sky 

In order to find the location of a picture in the sky, it is necessary to devise a method of 
determining the exact celestial coordinates of each star in the image. Traditionally this is done, at 
least partially, by hand. Researchers select several stars in the image and then, using the celestial 
coordinates of these reference stars as well as their pixel coordinates, determine a translation 
from (x,y) to (Ra, Dec). These celestial coordinates pinpoint any location in the image. 

Padgett, Kreutz-Delgado, and Udomkesmalee's paper "Evaluation of Star Identification 
Techniques" details three methods to automatically find an image's orientation and position in the 
sky. The methods they examine are often used as backup for satellite guidance systems, and 
therefore database size and required compute power are primary concerns. The paper compares 
three methods that reduce the image into a searchable pattern by varying degrees.  

The method they found to be most effective for satellite guidance was called the 'grid 
method,' which turns each image into a series of very low-resolution black and white images, 
usually 20 by 20 pixel ‘grids,’ aligning each with different pairs of stars on a fixed axis. These 
grids may then be easily searched against a database of similarly formed catalogue patterns.  

                                                
1 http://www.astro.virginia.edu/class/whittle/astr130/im/RA-Dec-celsphere.jpg 
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Although they found the grid method to be the most efficient for their goal, they did not 
implement some of the optimizations we took into account when using another method they 
called the 'triangle method.' They also assume that the spacecraft has no prior knowledge of 
where it pointed, whereas for our application we have an approximate location in the sky for the 
images we wish to align. For their purpose, it is especially important to minimize the time 
needed to search an extensive database. Our application increases the importance of minimizing 
the time needed to create the search elements. 

For these reasons, we chose to use the triangle method as the best method to locate our 
image in the sky. In this method we have a list of centroids of stars in the image in (x,y) and a list 
of stars in the approximate area of the sky in (Ra, Dec). We draw triangles between the centroids 
and the stars, and then search for similar triangles by comparing the ratio of side lengths. 
Triangles between corresponding stars in a set of points will form similar triangles. From the 
coordinates of the vertexes of these triangles, we can calculate scale, rotation, and translation 
between (x,y) coordinates and (Ra, Dec). 

 
We cannot be sure that we have chosen the same stars to form triangles in the image and 

in the sky, so there will be many triangles that have no correct match. There also will be triangles 
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The triangle method finds congruent triangles between two sets of points, in this case the 
centroids in an image and the corresponding reference star catalogue. Some triangles, the red 
triangles in this case, have closely corresponding side length proportions and are used to find 
scale, rotation, and translation between the two images. Others, the blue triangles, are false close 
matches. 
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between non-corresponding stars that happen to be similar. These triangles must be automatically 
eliminated before the true scale, rotation, and translation may be calculated through various 
filtering techniques to ensure an accurate conversion between (x,y) and (Ra, Dec). 

4.5 Analysis of Asteroid Observations  

Once a list of asteroid observations is made, it is possible to determine if any of the 
observations belong to the same asteroid. To do this, it is necessary to analyze the orbits created 
by the asteroid observations. Six unique orbital elements define a unique elliptical orbit for an 
asteroid around the sun. These orbital elements are as follows: 

The first two orbital elements are a (semi-major axis) and e (eccentricity). These 
elements define the ellipse that the asteroid orbits in.  

The next two orbital elements are i (inclination angle) and longitude of ascending 
node). These elements define the orientation of the asteroid’s orbital plane with the ecliptic 
plane, or the plane of the sun.  

2 
As shown in the diagram, i is the angle between the orbital and the ecliptic plane. Setting 

i will lock the position of the orbital plane in one aspect. However, the orbital plane can still 
rotate horizontally, so another orbital element is needed. The longitude of ascending node  is 
defined as the angle between the reference direction (x-axis) and the line of ascending node. This 
line is where the orbital plane ascends through the ecliptic plane. The combination of i and 
lock the orbital plane’s orientation with the ecliptic plane.  

The fifth orbital element is the  (argument of perihelion). Even though the orbital plane 

                                                
2 http://en.wikipedia.org/wiki/Orbital_elements 
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is now locked into position, the orbit of the asteroid can still rotate within the orbital plane. The 
argument of perihelion is the angle between the ascending node and the perihelion of the orbit, or 
the point in the orbit at which it is farthest from the sun.  

The last orbital element is M (mean anomaly). This orbital element describes where the 
asteroid is along its orbit, so is the only element that changes with time. The orbital elements 
combine to determine a unique orbit for an asteroid.  

In order to determine the values of the orbital elements, at least three observations of the 
same asteroid are needed. Three observations will define a unique set of the orbital elements. 
Once the RA and Dec for three asteroid observations are recorded, then it is possible to solve the 
Fundamental Vector Triangle Problem using the Method of Gauss. The Method of Gauss is 
essentially a two-body problem taking into account the gravitational attractions of the Earth and 
the Sun. The Earth is only an observational body in the problem, and its gravitational pulls are 
not calculated. 

  
In this method, there are three vectors. Vector p is the Earth-Asteroid vector. This is the 

vector that is observed and calculated from the image analysis process. R is the Earth-Sun vector, 
which is known and well documented. By subtracting these two vectors, it is possible to 
calculate r, or the orbital vector. The actual process of solving this vector problem is very 
complicated, and we have provided a brief summary below. These equations are exactly 
implemented in the code, this is why many of them simply re-define variables for readability. 

 
1. We input nine numbers into the problem. The method requires three observations, 
each with a Julian date, RA (), and Dec (). 
2. Based on the RA and Dec for each observation, we can create a unit-vector L that 

is equivalent to ೛
→

௣
, or the unit vector pointing from the Earth to the asteroid. Then, through 

coordinate transforms, we can find vector L to be equal to  
పሬሬሬ⃗ܮ = 〈cosߜ௜ cosߙ௜ , cosߜ௜ sinߙ௜ , sin  〈௜ߜ

for i=1, 2, 3 for our three observations. 

 

 
 

p 

R 

r 
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3. We can calculate vector R for each observation. This is done by generating an 
ephemeris for the sun with respect to the Earth. A description of the ephemeris generator 
we used can be found in the Code Overview. 
4. We need to define the times of our observations relative to each other. This is 
done though calculating proper time, or τ. In these equations, k is the Gaussian 
gravitational constant. We also define  as the difference between 3 and 1. 

߬ଵ = ଵݐ)݇ −  (ଶݐ
߬ଶ = 0 

߬ଷ = ଷݐ)݇ −  (ଶݐ
5. Next, we calculate the D-coefficients, which are as follows. These values will 
eventually allow us to determine p, or the distance between the Earth and the asteroid.         

଴ܦ                        = ଷሬሬሬሬ⃗ܮ ∙ ଵሬሬሬሬ⃗ܮ) × ଶሬሬሬሬ⃗ܮ ) 
ଵ௝ܦ = ଷሬሬሬሬ⃗ܮ ∙ ( ఫܴሬሬሬ⃗ × ଶሬሬሬሬ⃗ܮ ) 

ଶ௝ܦ = ଷሬሬሬሬ⃗ܮ ∙ ଵሬሬሬሬ⃗ܮ) × ఫܴሬሬሬ⃗ ) 

ଷ௝ܦ = ଵሬሬሬሬ⃗ܮ ∙ ଶሬሬሬሬ⃗ܮ) × ఫܴሬሬሬ⃗ ) 
6. We also assign A and B coefficients for the quantities based on time. Once again, 

these coefficients are shorthand for the eventual calculation of p. 
ଵܣ = ఛయ

∆ఛ
ଷܣ                                           = − ఛభ

∆ఛ
 

ଵܤ = ஺భ
଺

(∆߬ଶ − ߬ଷଶ)                     ܤଷ = ஺య
଺

(∆߬ଶ − ߬ଵଶ) 

7. We then define the A, B, E, and F coefficients. This is purely used to get the 
coefficients that will allow us to solve an eighth-degree polynomial. This will 
eventually give us an initial estimate for the asteroid’s distance from the sun. 

ܣ = −
ଶଵܦଵܣ − ଶଶܦ + ଶଷܦଷܣ

଴ܦ
 

ܤ = −
ଶଵܦଵܤ + ଶଷܦଷܤ

଴ܦ
 

ܧ = ଶሬሬሬሬ⃗ܮ)2− ∙ ܴଶሬሬሬሬ⃗ ) 
ܨ = ܴଶଶ 

8. We then find the a, b, and c coefficients, where ߤ is equal to 1. 
ܽ = ଶܣ− + ܧܣ +  ܨ
ܾ = ܤܣ2)ߤ− +  (ܧܤ

ܿ =  ଶܤଶߤ−
9. Using Newton’s Method, we can solve for r2. This gives us the distance from the Sun 

to the asteroid at the time of the second observation, or the middle observation. This 
is important because it gives us an initial approximation that we can improve to solve 
the orbital vector. 

ଶ଼ݎ + ଶ଺ݎܽ + ଶଷݎܾ + ܿ = 0 
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10. Use r2 to approximate f and g series. These are Taylor polynomials that will allow us 
to estimate the r vector, or the orbital vector. For now, we will only take two 
iterations, but we will refine this later in the process. For i = 1,3 

௜݂ = 1 −
1
௜߬ݑ2

ଶ 

݃ଵ = ߬௜ −
1
ଶ߬௜ݑ6

ଷ 

ଶݑ =
ߤ
ଶଷݎ

 

11. Now we get the c-coefficients. We will use this in the determination of the p vectors. 

ଵܥ =
݃ଷ

ଵ݂݃ଷ − ଷ݂݃ଵ
 

ଶܥ = −1 

ଷܥ =
݃ଵ

ଵ݂݃ଷ − ଷ݂݃ଵ
 

12. As well as the p-coefficients. These are the distance between the Earth and the 
asteroid at all three observations. 

ଵܲ =
ଵଵܦଵܥ + ଵଶܦଶܥ + ଵଷܦଷܥ

଴ܦଵܥ
 

ଶܲ =
ଶଵܦଵܥ + ଶଶܦଶܥ + ଶଷܦଷܥ

଴ܦଶܥ
 

ଷܲ =
ଷଵܦଵܥ + ଷଶܦଶܥ + ଷଷܦଷܥ

଴ܦଷܥ
 

13. Now we can finally find the orbital vectors r. 
పሬሬ⃗ݎ = ௜ܲܮపሬሬሬ⃗ − ܴపሬሬሬ⃗  

14. We next evaluate the d-coefficients. Once again, these are primarily used to clean up 
the equations for further use. 

݀ଵ = ଷ݂

ଷ݂݃ଵ − ଵ݂݃ଷ
 

݀ଷ = − ଵ݂

ଷ݂݃ଵ − ଵ݂݃ଷ
 

15. We then find the derivative of the r-vector to find the orbital velocity vector. This 
involves the use of the orbital vectors from the other two observations. 

ଶሬሬሬ̇⃗ݎ = ݀ଵݎଵሬሬሬ⃗ + ݀ଷݎଷሬሬሬ⃗  
16. We then perform several steps to refine the orbital velocity. 

16.1 – First, we apply the correction for light travel time. 

௖௜ݐ = ௜ݐ −
௜ܲ

173.1446 

߬ଵ = ௖ଵݐ)݇ −  (௖ଶݐ
߬ଷ = ௖ଷݐ)݇ −  (௖ଶݐ
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∆߬ = ߬ଷ − ߬ଵ 
16.2 - Then, we re-evaluate the f and g series, keeping up to 4th order terms this time. 

This will give us more accuracy in this process. 

௜݂ = 1 −
ଶݑ
2 ߬ଵଶ +

ଶߦଶݑ
2 ߬௜ଷ +

1
24

൫3ݑଶܳଶ − ଶߦଶݑ15
ଶ + ଶଶ൯߬௜ସݑ + ⋯ 

݃௜ = ߬ଵ −
ଶݑ
6 ߬ଵଷ +

ଶݑ
4 ଶ߬௜ସߦ + ⋯ 

  Where ݑଶ = ఓ
௥మ

ଶߦ   , = ௥మሬሬሬሬ⃗ ∙௥మሬሬሬሬ̇⃗
ଶ

, and ܳଶ = ௥మሬሬሬሬ̇⃗ ∙௥మሬሬሬሬ̇⃗
௥మ

 

16.3- We then perform steps 11-15 again. 
16.4 - Finally, we use the new orbital velocity to redo this loop again. This will 
eventually gives us accurate orbital vectors. 

17. At this point, we have refined the orbital vector. The next steps are to extract the 
orbital elements of the asteroid from this orbital vector and velocity. First, we convert 
to elliptical coordinates from equatorial. This is because the asteroid orbits the Sun, 
not Earth, and we should base our coordinates with the Sun at the center. In this 
equation, epsilon is approximately 23.45 degrees, or the angle between the plane of 
the sun and the Earth. 

ଶሬሬሬ⃗ݎ
ா஼ = ොݔଶݔ + ௫ݕ) cos ߝ + ଶݖ sin ොݕ(ߝ + ଶݕ−) sin ߝ + ଶݖ cos  ݖ̂(ߝ

ଶሬሬሬ⃗ݎ
ா஼̇ = ොݔଶ̇ݔ + ௫̇ݕ) cos ߝ + ଶ̇ݖ sin ොݕ(ߝ + ଶ̇ݕ−) sin ߝ + ଶ̇ݖ cos  ݖ̂(ߝ

18. We define an h-vector. This is a constant vector for a particular asteroid because from 
Kepler’s 2nd Law, an orbiting body will “sweep” the same amount of area in its orbit 
over a constant amount of time no matter where it is in its orbit. This will cause 
asteroids to move slower when farther away, and faster when closer to the sun. 

ℎሬ⃗ = ଶா஼ሬሬሬሬሬሬሬሬ⃗ݎ × ଶா஼ሬሬሬሬሬሬሬሬ⃗̇ݎ  
19. We find the first orbital element a, or the semi-major axis. This is derived from the 

relationship between orbital speed and position, as given by Kepler’s 2nd Law.  

ܽ = ቌ
2
ଶா஼ݎ

−
ଶா஼ሬሬሬሬሬሬሬሬ⃗ݎ ∙̇ ଶா஼ሬሬሬሬሬሬሬሬ⃗̇ݎ 

ߤ
ቍ

ିଵ

 

20. The next element is e, or eccentricity.  

݁ = ඨ1 −
ℎଶ

 ܽߤ

21. The third orbital element i, or inclination can be calculated from its cosine value 
given that it is 0 ≤ ݅ ≤ 180. Vector h is always perpendicular to the orbital plane, and 
this allows us to find the angle between the orbital and ecliptic plane. 

cos ݅ =
ℎ௭
ℎ  
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22. The fourth orbital element or the longitude of ascending node can be calculated 
from the known values of both its sine and cosine.  

cosΩ =
ℎ௭

ℎ sin ݅                             sinΩ =
ℎ௫

ℎ sin ݅ 

23. We then calculate U, also from its known cosine and sine values. U is time dependent, 
but we can use it to find our fifth orbital element. 

cos U =
ଶ௫ݎ

ா஼ cosΩ + ଶ௫ݎ
ா஼ sinΩ

ଶா஼ݎ
                             sin U =

ଶ௭ݎ
ா஼

ଶா஼ݎ sin ݅ 

24. We then calculate V, also from its known cosine and sine values. Like U, it is also 
related to time, but it changes at the same rate as U. Therefore, by subtracting V from 
U, then it is possible to define a constant value. 

cos V =
1
݁  ቆ

ܽ(1− ݁ଶ)
ଶா஼ݎ

− 1ቇ                            sin V =
ܽ(1 − ݁ଶ)

݁
ቌ
ଶா஼ሬሬሬሬሬሬሬሬ⃗ݎ ∙̇ ଶா஼ሬሬሬሬሬሬሬሬ⃗ݎ  
ℎݎଶா஼

ቍ 

25. The fifth orbital element or the angle of perihelion can be calculated by =U-V. 
26. Next, we calculate E, which will always lie in the same quadrant as V. E is the 

eccentric anomaly, and gives a relation between geometry and time for the orbit. 

cosܧ =
1
݁ ቆ1−

ଶா஼ݎ

ܽ ቇ 

27. Finally, we get the last orbital element M, by ܯ = ܧ −  This is the mean .ܧ݊݅ݏ݁
anomaly, and defines the location of an asteroid in its orbit.  
 

From the list of all the possible asteroid sightings, we run an orbital determination 
process for every subset of three observations. From here, it is possible to determine which of the 
orbits are reasonable. For example, if the generated orbit has a semi-major axis of 10000 AU’s 
(astronomical units), then the orbit is most likely wrong because the majority of asteroids lie 
within the solar system. Furthermore, if an orbital element turns out negative, then the orbit is 
also incorrect.  

Once we determine which asteroids appear in our images, we can begin the process of 
checking for perturbations. Using an ephemeris generator based on our orbital elements, we can 
determine the position of an asteroid at any time. Therefore, we can obtain images of the regions 
where an asteroid is scheduled to be at a certain time and check for asteroids in the image. If we 
find that an asteroid is no longer where it should be according to our initial orbit, then we can 
conclude that its orbit has been perturbed. It is then possible to backtrack the asteroid’s orbit to 
the area where it is first perturbed. The more observations of an asteroid there are, the more 
refined its orbit can be. We believe this is extremely important in our goal to analyze 
perturbations and update asteroid orbits. An easier method to cite and identify asteroids is one of 
our main motivations in this project.  
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4.6 The GPU Architecture 

Graphical Processing Units, or GPUs, are specifically designed to meet compute-
intensive graphics applications such as rendering. In recent years, methods of programming 
GPUs for applications other than graphics have become available, most notably NVIDIA’s 
CUDA compiler. These advances have become known as General Purpose GPU (GPGPU), 
where the compute power of the GPU is used for other massively parallel applications beyond 
graphics. 

The structure of a GPU can be compared to a multi-core processor but with many more 
processors and less on-board memory, as shown below.3 CPUs have large amounts of control 
over how computations are scheduled for processors as well as relatively large amounts of fast 
cache memory. This allows them to perform versatile tasks. The GPU has far more processors 
but far less control over what these processors compute. In fact, each processor on a GPU must 
execute the same calculation at any given time. Also, computations that are conditional are 
handled differently on the GPU; if-statements, for example, are always scheduled for 
computation regardless of whether or not the conditional was true because the GPU has so little 
hardware devoted to controlling processes. 

 
The GPU’s hardware configuration makes it perfect for graphics processing, where the 

same compute-intensive calculations are performed on very little data. Another aspect of the 
GPU’s graphics origins is that it does not support highly accurate calculations because it uses 
single-precision. The low-memory requirements of graphics also make the amount of cache 
limited. Below is a more detailed image of the types of memory on a GPU. 

                                                
3 GPU architecture pictures similar to those in the NVIDIA CUDA Programming Guide. 

CPU GPU 

Processor Control 

Cache 
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The GPU used in this project NVIDIA GT 8600, which has two multiprocessors with 

eight processors each. Other GPUs have different numbers of processors and multiprocessors. 
Each processor has immediate access to its registers. The shared memory for each multiprocessor 
is read-write and constant and texture memory is read-only for all processors. Loading data from 
the CPU and interface between the multiprocessors is achieved through device memory, which 
has an overhead of over 100 times all the other types of memory, and is used as little as possible. 

The GPU’s huge amounts of compute power are difficult to exploit in other applications 
because of its specialized configuration. Applications other than graphics that will run well on 
the GPU are those that require little memory, are massively parallel, have few conditional 
statements, and have large amounts of computation. There are few such applications.  

In our project we use the GPU to determine if object sightings could potentially be of the 
same asteroid. This process is detailed in section 6.4. 

Multiprocessor 2 

Instruction 
Unit 

Processor 1 Processor 2 Processor 8 Processor 3 
Registers Registers Registers Registers 

Shared Memory 

… 

Constant 
Memory 
Texture 

Memory 

Multiprocessor 1 

Device Memory 
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5. Procedure: Image Analysis 

Image processing consists of an image input, such as a photograph; the output can be 
either an image or a set of characteristics related to the image. In our project, image processing 
has allowed for the extraction of specific, valuable information from pictures. 

 
5.1 Sources of Image Data 

This project focuses on the analysis of heterogeneous astronomical images. For this 
reason, we want to refine our software approach with data from a variety of telescopes in 
different locations worldwide with varying filters and recorded information. The goal is to create 
robust analysis methods that can work for this wide variety of images.  

Many observatories use similar methods as those employed by this project to extract the 
relevant data out of memory-intensive images. Hawaii’s Pan-STARRS Observatory, for example, 
collects around 10 TB of image data a night, which is processed and reduced down to relevant 
measurements, disregarding the original image data (Scientific Detectors for Astronomy). Even 
for smaller projects, astronomical data is usually proprietary. For these reason, data is not readily 
available. 

We used several sources of data for this project. Mr. Bill Wallace, an Albuquerque 
Astronomical Society member, provided us with some of his images. We also used a publicly 
available catalog of original pictures from the ESO (European Southern Observatory) 
organization, which provides original pictures from a variety of telescopes in the Southern 
Hemisphere. Mr. Holmes of The Astronomical Research Institute provided us access to even 
more images. These pictures are downloaded in zipped form through their FTP website. The 
pictures themselves are in a standard astronomical format called FITS files, which is a versatile 
format, containing several options of data types that are common in astronomy. They all contain 
a header file, in which telescopes automatically record the Julian date, Ra, Dec, latitude, 
longitude of each image. To read these files, we used the CCfits library to extract the relevant 
data and convert the image into a format we could read more easily. The FITS file format allows 
images to be easily shared between astronomers because of the completeness of their data. 

Although file formats have been designed to be complete, archives such as the ESO plate 
library are rare because of the amount of memory required to hold original images. It is not 
standard practice to store raw data. Most publicly accessible databases contain reduced data, 
such as information about the variability of stars and their spectra, rather than images. Some 
sources do contain images to help astronomers recognize stars visually, but these images are 
usually conglomerations of surveys of the sky over many nights, and so are not time dated. 
While these types of images are not suitable for our purpose because we need to exact time of an 
observation, they can be immensely useful when constructing test data. For example, we used the 
USNO Image and Catalog Archive Server extensively to construct test data, as it returns actual 
images that are not precisely time dated. 
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5.2 Reference Stars 

While there are relatively few sources of original images of the sky, star catalogs are 
relatively plentiful. The source we chose is the VizieR Service, an online system that allows 
access to hundreds of different catalogs. Searching this database can be done by constructing a 
hyperlink containing the desired catalogs, search window, and position, allowing the computer to 
automatically access this online information. We have selected several different catalogs for 
different purposes. Bright stars in an image are found using the UCAC2 Bright Star Supplement 
catalog and the All-sky Compiled Catalogue of 2.5 million star. A more general catalog of all 
stars in an image is found using The UCAC2 Catalogue.  

 
We have developed a program to automatically query these catalogs, download the 

HTML page they return, and allow it to be used in the rest of our calculations. Above is a sample 
of a page VizieR might return, from which our program parses and extracts the needed 
information. 

 

5.3 Centroids 

Used in image processing, image moments are certain particular weighted averages of the 
image pixels’ intensities or functions of those moments. The central moment, or centroid, of an 
image is defined (Shutler) as  

ߤ = න න(ݔ − ݕ)(ݔ̅ − ,ݔ)݂(തݕ ݔ݀(ݕ ݕ݀
ஶ

ିஶ

ஶ

ିஶ
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Where ̅ݔ = ெభబ
ெబబ

  and ݕത = ெబభ
ெబబ

  are the components of the centroid. 

If f(x,y) is a digital image, then the previous equation becomes 

ߤ = ෍෍(ݔ − ݕ)(ݔ̅ − ,ݔ)݂(തݕ (ݕ
௬௫

 

As it pertains to our project, the first segment of image processing consists of preparing 
the image for and the performing of centroid computation. This is a necessary step because the 
observation images we are given have heavy background noise and each star is irregularly 
shaped and varies in pixel size. By calculating the centroid for each star, we obtain its accurate, 
x-y coordinate location. 

In preparing the image, background noise must be removed. This is attained through 
thresholding, a technique that converts the grayscale image to a binary image based upon a 
threshold value. If a pixel in the image has an intensity value less than the threshold value, the 
corresponding pixel in the resultant image is set to black. Otherwise, if the pixel intensity value 
is greater than or equal to the threshold intensity, the resulting pixel is set to white. As for 
choosing a reasonable threshold value, we used a histogram. The histogram consists of the 
vertical axis being a ratio between a pixel intensity value of “x” to the total number of pixels in 
an image. The horizontal axis will contain the pixel value “x”. A sample grayscale image and its 
corresponding histogram are seen below. 

  
Looking at the picture on the left, we can see that there are no white pixel intensity 

values. From the histogram representation on the right, we can see that the most dominant pixel 
value is 107. So if we select a threshold value of 107 and make every pixel with an intensity 
below the threshold black, and every pixel with an intensity above the threshold white, we come 
up with the following binary image:  
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To further clean the image, a blurring reduction technique is used in which a 9 by 9 
window is created around each pixel in the binary image. Then, the median value of these 9 
pixels is taken. If the median is 0, then the center pixel is set to black. If the median is 1, the 
center pixel is set to white (remember the image is inverted, so stars are black).The resulting 
stars are much more defined and clearly separated.  

The last step of the preparation phase is grouping and labeling each star’s region based on 
pixel connectivity. The process works by scanning an image, pixel-by-pixel (from top to bottom 
and left to right) in order to identify connected pixel regions, i.e. regions of adjacent pixels which 
share the same set of intensity values V. (For a binary image V={0}). The labeling operator scans 
the image by moving along a row until it comes to a point p (where p denotes the pixel to be 
labeled at any stage in the scanning process) for which V={0}. When this is true, it examines the 
four neighbors of p which have already been encountered in the scan (i.e. the neighbors (i) to the 
left of p, (ii) above it, and (iii and iv) the two upper diagonal terms). Based on this information, 
the labeling of p occurs as follows: 

a. If all four neighbors are 1, assign a new label to p, else 
b. If only one neighbor has V={0}, assign its label to p, else 
c. If more than one of the neighbors have V={0}, assign one of the labels to p and make a 

note of the equivalences. 
After completing the scan, the equivalent label pairs are sorted into equivalence classes 

and a second label is assigned to each class. As a final step, a second scan is made through the 
image, during which each previous label is replaced by the second label assigned to its 
equivalence class. For display, the final labels are shown by their different gray levels. 

Now that every star has its own label, it becomes fairly simple to step through the image 
and record the pixel coordinates and brightness value for every pixel in each star. Now that all 
the necessary information has been found, we can perform a centroid calculation, which is 
essentially calculating the x-y pixel center of each star weighted by brightness.  

 
This allows us to reduce the image down to the coordinates of the center of stars and 

objects. 
 

5.4 Triangle Method 

Now that we know the pixel coordinates of objects in our image from centroid calculation 
as well as the celestial coordinates of the reference stars in the field, we can use the triangle 
method to find a conversion factor between (x,y) and (Ra, Dec). In order to make this process 
efficient and effective in finding an accurate result, we modified the process for optimal 
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performance, as discussed in our “Analysis of Methods Section.” 
The resulting conversion factor allows us to immediately know the celestial coordinates 

of any objects we find in the image. Combined with the Julian date on which the photo was 
taken, we can record these possible asteroid observations. 

The triangle method is also used between multiple images of the same star field to aid in 
the identification of possible asteroids in the image. 

 

5.5 Identifying and Recording Possible Asteroids in Images 

Once both images have been aligned by rotation, scale, and translation, we can find a 
conversion factor between the two images and transcribe the centroids of one image into the sky 
or into another image.  

There are several methods of identifying asteroids in images. The first is to use two 
pictures of the same area. Any centroid in one image whose area does not lie within a centroid’s 
area in the other image is considered to be potential asteroid. However, given images with 
varying exposure, often dim stars on the threshold of being filtered out appear in one image but 
not the other, creating false positives for asteroid observations. 

Another method is to compare the centroids in an image to a list of all the stars in the 
image’s area. This method still has the possibility of creating false positives because often star 
catalogs do not include every star in a range of brightnesses. A combination of the two methods, 
finding possible new asteroids between two images and then verifying that they are not dim stars, 
was used in this project. 

Once possible asteroids observations have been found in an image, they are recorded with 
information pertaining to the name of the image they were found in, their celestial coordinates, 
and the precise time of observation taken from the FITS header file. 

 
5.6 Determining Which Asteroid is in an Observation and Perturbations 

 It is possible to identify an asteroid solely by its celestial coordinates at a precise time. 
Through our image analysis, we obtain a set of celestial coordinates for any possible asteroids in 
an image. From error analysis, we are confident that these coordinates are accurate, and can be 
paired with the time at which the image was taken. With these two pieces of information, we can 
use the MP Checker (Minor Planet Checker http://scully.cfa.harvard.edu/~cgi/CheckMP) to 
identify our asteroid. In this online database, we can designate an area of the sky (usually around 
5-15 arcminutes across), and check for the presence of any asteroids at any time.  
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The database will output a list of all known asteroids that will appear in this window at 

our designated time.  

 
 Since the database allows searches for windows up to 900 arcminutes, we are confident 

that we can identify any asteroids found in our images since the error from image analysis is 
dwarfed by the search size. In the case that no asteroid is found in the region, it may be possible 
that the asteroid found from image analysis is unknown. Another possible cause for the lack of 
matching may be perturbations.  

From our accurate image analysis results, it is possible to detect asteroid perturbations. 
Using the Minor Planet Checker, we can find all asteroids that are supposedly in a particular 
region at any time. Then, we can obtain images of that region at the exact time, and perform our 
image analysis. Since the error of the image analysis is a few pixels at most, we can be confident 
in our conclusion that the asteroid has been perturbed if it does not appear in the image.  Of 
course, we need to confirm that certain conditions are met first, such as ensuring that the asteroid 
is bright enough to be caught by the telescope. To confirm a perturbation, we may need to 
perform this image analysis for several different celestial locations and times. 
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6. Analysis of Methods 

Analyzing diverse data is challenging because it requires adaptable methods that work for 
a wide variety of images. During the course of our research, we have discovered many methods 
that make the baseline idea more applicable to diverse data, more accurate, or more efficient, as 
presented in this section. 

6.1 Methods of Identifying Asteroids in Images 

 We had to rework the actual method to find asteroids to account for exposure differences 
between different images. Our original idea to compare the centroids from two images was to 
take the Fast Fourier Transform (FFT) of each, subtract the two frequency representations, and 
then inverse-FFT the image. This showed any discrepancies between the two images.  

 
However, this method could not account for differences in exposure time, rotation, and 

scale in both images. Likewise, with our current method, we cannot simply transpose and 
compare the centroids from both images. Instead, we cross-reference our asteroid candidates 
with a dim reference star catalogue to address the differences between the two pictures due to 
exposure inconsistencies. 

 
 

subtracted 

The difference in exposure causes the 
‘subtraction’ of the two images to be an 
ineffective way of identifying the 
asteroid. While the asteroid is visible in 
the difference of the two images, it is 
dwarfed by the exposure difference on 
bright stars, even though the two pictures 
are essentially the same.  
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6.2 Automatically Adapting for Difficult Images and Histograms 

In preparing an image for centroids, we first convert the grayscale image into a filtered, 
binary representation through the thresholding process. However, because images vary in 
exposure, we cannot filter two different pictures based on same threshold. Pictures with dimmer, 
fewer stars require a lower threshold, lest their stars get completely filtered out. Pictures with 
many clearly defined stars require a higher threshold to filter out noise and keep the number of 
stars reasonable. To account for these “difficult” images and exposure discrepancies during 
thresholding, our program dynamically iterates through each image and uses a binary search to 
alter the threshold level in accordance with the number of stars left in the image by the end of 
each filter iteration. We ultimately arrive at filtered, binary images with appropriate numbers of 
stars. 
 Similarly, during the triangle method, we implement multiple histograms in finding the 
correct scale, rotation, and translation between images and reference catalogs. However, 
histograms may occur in which the most-occurring value, the peak, is spread out along a wide 
distribution. The program addresses this issue by adjusting the number of bins for any given 
parameter based on the distribution of the peak values at the end of each histogram iteration. For 
more difficult histograms, the program re-histograms the distribution using more bins until it 
obtains a clear peak value. 

6.3 Improving the Triangle Method 

As described in the paper “Asteroid identification at discovery,” the triangle method was 
found to be the most inefficient out of three baseline approaches for locating a picture in the sky. 
For our purposes, we reasoned that the triangle method would work effectively for our task of 
localized searches, rather than the whole-sky searches the paper discussed. In light of this, we 
have implemented the triangle method and incorporated our own insights on the approach. 

There are two primary challenges in the triangle method. The first is picking a small 
number of the same stars in both the image and in the sky for accurate and efficient comparison. 
Second, identifying ‘spurious’ triangles that only happen to be similar between the two images. 
Our attempts to mitigate these problems are detailed below. 

6.3.1 Eliminating Certain Triangle Shapes 

Not all triangles are easily compared between images. Consider stars forming equilateral 
triangles in both the image and in the reference. While the computer would easily identify the 
two triangles as similar, it would be easy for which side is ‘longest’ to change, causing an 
incorrect calculation of rotation between those two triangles. Similarly, triangles that are two 
isosceles, either because they are close to equilateral or because the are excessively scalene, are 
prone to the same miscalculation of rotation. 
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Since many of these triangles would have rotation and translation that is very close to the 

correct value, they would be especially difficult to eliminate through filtering. Instead, we 
eliminate these triangles immediately. Above is a picture of the types of triangles we eliminate 
and types we keep. 

6.3.2 Filtering Triangles 

The result of the triangle method to align images is a list of rotations, scales, and 
translations for the image based on their values for various matching triangles. However, this list 
is not completely accurate. Sometimes, two triangles will appear to look similar even though 
they are comprised of completely different stars. The computer will still recognize these triangles 
as pairs due to their similar length ratios. We want to eliminate the rotation, scale, and translation 
elements based on these inaccurate triangle pairs. Therefore, it is necessary to “filter” our list of 
elements to sort out the good triangles from the bad triangles.  

Triangles on the left are too equilateral and are eliminated, as are the ones in the middle, which are too 
scalene. The triangles to the right have sides that are not easily to confuse, and are used in the analysis. 
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These are four graphs 
of histograms of the x 
and y translation 
elements. Each 
element has a 
histogram applied 
twice. For the first 
element, the peak 
clearly falls 
completely within one 
bin. The elements in 
this best bin are then 
re-analyzed in the 
second histogram. 
Here the answer 
seems to fall over 
multiple bins. To 
ensure the elimination 
of all bad triangles, 
only the two bins on 
either side of the best 
bin are then included 
in the final range of 
accepted values. 
For the y translation 
histogram, the peak 
appears to fall 
between two bins. 
Both bins are then re-
histogramed. 
 
By considering the 
relative size of 
multiple bins, the 
program better 
accounts for peaks 
falling between bins, 
and loses fewer 
correct triangles in the 
final answer. 
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 Our original method of filtering was to average all the elements of rotations, scales, and 
translations. However, this did not work because of the large number of bad triangle matches. 
Furthermore, this method was extremely susceptible to bad values for the elements. For example, 
a single scale factor that is an outlier can be very influential on the rest of our data. Therefore, we 
were forced to devise a better method to filter out the rotations, scales, and translations formed 
by bad triangle matches. Upon further investigation, we discovered that the correct rotation, 
scale, and translation between two pictures appear much more frequently in our list than any 
other value. This is because any correct pair of triangle matches will generate the same, correct 
rotation, scale, and translation; any incorrect pair will generate an incorrect set of elements that 
varies from triangle to triangle. This means that if we plot the different values of rotation, scale, 
and translation, there will be a “peak” in the graph where the correct value lies. 

 Based on our observations, our current method utilizes a histogram function to identify 
this peak among the noise of incorrect elements. First, all the values of scale between the two 
pictures are sorted and distributed among a preset number of bins. Next, the best with the highest 
frequency is recorded and its frequency is compared with those of the adjacent bins. If the 
neighboring bins also have a high frequency, it means that the peak may be spread over a bin 
boundary. Therefore, we also place the neighboring bin into our range for the peak, or the correct 
scale. To obtain more accuracy in determining the correct scale, we then divide the “best bin” 
into smaller bins, and repeat the histogram. The result of this process is a narrow range of values 
in which the correct scale between the two images falls in.  

 The histogram process is also repeated to find the correct angle and translation. Finally, 
when all these ranges of values are found, we cross-reference them with the list of all rotations, 
scales, and translations. In order for a set of elements generated from two triangles to be correct, 
then it must fall in all of the ranges. Through these criteria, we can drastically cut down the 
number of triangles pairs to a smaller number of pairs that we can ensure the accuracy of. 
Throughout this entire process, there are many adjustable variables such as the number of bins 
we use for the histograms. This is crucial to the method because our analysis images are so 
different in quality as well as how many stars they have in them. It is important to be able to 
change these variables to adjust for all the different images that we analyze. 

6.3.3 Retaining Multiple Matching Triangles 

When trying to find the correct conversion between two sets of points it is important to 
make sure there are a large number of correct triangles as well as evenly distributed bad 
triangles. One way to ensure both is to create a list of best matches to one triangle, rather than 
picking only the best match. 

Consider a single triangle in the image. The program will go through all the triangles in 
the reference and try to find triangles similar to the image triangle. It is possible that the 
reference stars do not include one of the vertexes of the triangle, in which case the program will 
not find an exact match. However, it is also possible that a different, incorrect triangle in the 
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reference will be more similar than the correct corresponding triangle. In this case, if every 
triangle was matched one-to-one, the correct triangle would be lost. However, when we keep the 
closest N similar triangles to a correct triangle, we are almost guaranteed that the correct triangle 
will be included and that all the others will only contribute to evenly distributed noise, increasing 
the effectiveness of the histogram method. 

6.3.4 Signal to Noise Ratio 

When we first started to work with the triangle method, we assumed that the 
overwhelming majority of the similar triangles the program found would be correct. Much to our 
surprise, this is not necessarily the case. Foremost, it is very difficult to pick the same points to 
compare in an image and its reference stars, or even between two images’ centroids. This 
decreases the number of possible corresponding triangles and increases the number of non-
corresponding triangles that may cause spurious matches. Secondly, in order to immediately 
eliminate difficult-to-filter bad angles, we ignore certain isosceles triangle shapes. Since we are 
not sure of the accuracy of the centroids at the start of the analysis, we slightly over-filter out 
these shapes, reducing the number of potential correct triangles. Finally, keeping more than one 
similar triangle increases the signal, but also the noise. While all of these partially contribute to a 
low signal to noise ratio, they also help adapt the method for use with histograms, ultimately 
improving the final answer. 

The more surprising fact is that, given two partially corresponding sets of points, it is 
easier to form two similar triangles between non-corresponding points than one would expect. In 
fact, approximately half of all the similar triangles the program identifies are wrong. Below are 
some examples of such triangles. 
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It is for this reason that the signal to noise ratio is not as high as we initially expected. 

However, we have still improved on the performance of the triangle method by making these 
modifications. 

6.3.5 Dim Stars 

A possible refinement of the results can be made by comparing centroids to a dim star 
reference. Dim stars tend to be smaller in the picture, so their centroids will be more defined, 
leading to increased accuracy. Therefore, we devised a method to refine the rotation, scale, and 
translation generated by comparing centroids to bright stars. We do this by comparing the 
centroids to the dimmer stars in the reference catalog. Using similar methods as bright stars, we 
can find a rotation, scale, and translation factor for the images based on their dimmer stars. 

 As promising as this seems, there is one major problem. Unlike bright stars, we cannot 
be sure that the dim stars in the reference catalog will be visible in the image. Even if they are 
visible, they may be so faint that a centroid is not calculated for them. Therefore, there will 
actually be fewer corresponding stars between the centroids and the reference database. This 
means fewer correct triangle matches will be generated, which leads to a smaller peak in the 
distribution of the three elements. Despite more accurate centroids, calculating rotation, scale, 
and translation based on dim stars actually gives worse results than the elements calculated from 

The yellow dots are the centroids from two pictures of the same star field. Each of the 
triangles in the same colors in both images show triangles the program has identified as 
similar. These triangles need to be filtered out because they are not between 
corresponding stars. 
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bright stars.  
 
6.3.6 Image Processing Error Analysis 

In order to ensure enough accuracy in our image analysis to identify asteroids, we ran 
tests over several images. Once we obtain scale, rotation, and translation factors between an 
image and the reference, we then apply these factors to all the pixel coordinates of the stars in the 
image. This creates a list of RA’s and Dec’s for all the stars based solely on our image 
processing. Next, this list of stars coordinates is manually compared to the list of RA’s and Dec’s 
given by the reference catalog, and the difference between the two sets of coordinates for a star is 
calculated in degrees. 

 The following chart shows the error analysis for one of our test images. The Test RA and 
Dec are the coordinates generated by our program, while the real RA and Dec are the coordinates 
from the reference catalog.  

Image: 3n1 
STAR # TEST RA TEST DEC REAL RA REAL DEC DIFF 

Star 0 -0.000101 -0.066103 -0.0009738 -0.0653548 0.00115 

Star 1 0.038786 -0.065288 0.0374318 -0.0648148 0.001434 

Star 2 0.033753 -0.040985 0.032575 -0.040528 0.001264 

Star 3 0.011726 -0.073419 0.0107595 -0.072648 0.001236 

Star 4 0.056945 -0.079492 0.055573 -0.078531 0.001675 

Star 5 -0.017012 0.044111 -0.016866 0.044137 0.000148 

Star 6 0.076075 0.056427 0.075424 0.056572 0.000667 

Star 7 0.048595 -0.006802 0.047348 -0.00667 0.001254 

Star 8 0.039844 0.001476 0.0390103 0.0015342 0.000836 

Star 9 -0.009788 0.012226 -0.010391 0.012356 0.000617 

Star 10 0.026509 -0.046877 0.025612 -0.04672 0.000911 

Star 11 -0.047238 -0.074628 -0.04785 -0.073764 0.001059 

Star 12 0.031797 -0.006524 0.0306109 -0.006237 0.00122 

Star 13 0.075849 0.01008 0.0745021 0.010037 0.001348 

Star 14 0.020711 0.06013 0.019942 0.060056 0.000773 

The average difference in coordinates was 0.001039 degrees, which corresponds to 
3.440397 pixels on our picture. The most likely source comes from centroid computation. 
Although we optimize accuracy by weighing the center of the star by brightness, there is still 
error involved. In particular, bigger, brighter stars have less accuracy in their centroids due to 
their larger size on the picture. In this image, it is noticeable that Stars 1 through 4 have large 
errors. This is because the stars are numbered in order of total brightness, and these stars are 
bigger. Despite this, the 0.001039 degree average error is well within the bounds needed to 
identify asteroids.  
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On another image fch2a, we ran another error test, yielding the following results. 
Image: fch2a 

STAR # TEST RA TEST DEC REAL RA REAL DEC DIFF 

Star 0 183.125300 3.404217 183.124843 3.404046 0.000488 

Star 1 183.150471 3.454929 183.150265 3.454743 0.000278 

Star 2 183.157712 3.371486 183.157822 3.371195 0.000311 

Star 3 183.322195 3.332647 183.322437 3.332794 0.000284 

Star 4 183.294007 3.597640 183.293506 3.597453 0.000535 

Star 5 183.139349 3.488501 183.138423 3.488331 0.000941 

Star 6 183.146056 3.479500 183.145737 3.478391 0.001154 

Star 7 183.142848 3.417571 183.142527 3.417396 0.000365 

Star 8 183.164346 3.543978 183.164354 3.543655 0.000323 

Star 9 183.107176 3.593695 183.106660 3.592966 0.000894 

Star 10 183.332481 3.318382 183.332997 3.318900 0.000730 

Star 11 183.158839 3.399388 183.158701 3.399170 0.000258 

Star 12 183.274130 3.503729 183.273827 3.503750 0.000303 

Star 13 183.176141 3.361482 183.176042 3.361426 0.000114 

Star 14 183.299652 3.363647 183.299677 3.363405 0.000244 

This picture also yielded extremely accurate results, seeing that the average error for the 
stars was 0.000481 degrees, which is actually only 0.795041 pixels for this image.  

 
6.4 Orbit Determination on the GPU 

In this project, we use the GPU for orbit determination. Given a large number of object 
observations, we want to find out which of these observations are of the same object. To do this, 
it is necessary to analyze the orbits such observations would potentially form. First, rough orbits 
can be calculated and analyzed for whether or not they are reasonable (many orbit determination 
methods only produce reasonable results for very accurate data). This throws out a huge number 
of incorrect orbits. The remaining reasonable orbits are then calculated with a more advanced 
and compute intensive method, such as N-body correction, and the process of verifying these 
orbits begins. 

Normally, for a large number of observations, N, performing the initial rough orbit 
calculation would involve calculating ൫ேଷ൯ orbits with the Method of Gauss (which requires three 
observations), and would take a prohibitively large amount of time. However, this problem has 
now become a potential candidate for the GPU’s large compute power. It requires little data, only 
six numbers per orbit, describing the time, Ra, and Dec of three observations as well as a single 
bit that returns whether or not the orbit is reasonable. The Method of Gauss itself involves large 
amounts of computation, and although it does have two loops, it does not have any other 
conditional statements. Since the goal is to compute a rough orbit, the fact that some GPUs do 
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not support high-precision variables is not an issue. In fact, the difference high-precision makes 
in the answer is less than the accuracy that the Method of Gauss provides. 

For the majority of the analysis, we used a GTX 280 GPU, which has 30 multiprocessors 
with eight processors per multiprocessor and supports double-precision. We also experimented 
with a GeForce 6800 GT for the single-precision analysis, a board which has far less compute 
power and does not support double-precision. 

There are many challenges in calculating orbits on the GPU. Two primary concerns are 
memory restrictions in the code itself and the specifics of how single-precision effects the 
calculation, as detailed below. 

 
6.4.1 Optimization for Low-Memory Conditions 

While the amount of bandwidth the process requires is very limited because of the small 
input and output, the amount of memory needed for the calculation itself is large. The orbit 
determination program itself is essentially a series of algebraic statements, where each variable 
requires memory from the platform. The size of the calculation makes the memory requirement 
for calculating an orbit higher than the available register memory for each individual processor 
on the GPU.  

The amount of memory used in the program will also affect runtime. Pipelining is where 
the GPU loads the data needed for multiple orbits into the memory of a processor. When this data 
is quickly available the processor spends the least time idle waiting for the next orbit’s data, and 
therefore is most efficient. For this reason, it is beneficial to not crowd each processor’s registers 
with variables pertaining to each calculation, leaving more room for efficient pipelining. 

Reducing the memory needed for calculation is done in several ways. Foremost is reusing 
variables after they are no longer needed. This was done by entering constants directly into the 
code and using #defines that transform where variables are stored without changing the 
readability of the code. For example, the following original code 

 
    ////////////////////////// 
    //EARTH ORBITAL ELEMENTS// 
    ////////////////////////// 
    double earth_a=1.000732110928368E+00; 
    double earth_e=1.599910197101524E-02; 
    double earth_i=1.509328650209302E-03*pi/180; 
    double earth_omegacap=1.242780078662596E+02*pi/180; 
    double earth_omegasmall=3.392836473925709E+02*pi/180; 
    double earth_M2=1.784467221663580E+02*pi/180; 
    double tmid=2453555.50000; 
    double teph1=t1; 
    double teph2=t2; 
    double teph3=t3;    
 
    ////////////////////// 
    //GENERATE R VECTORS// 
    ////////////////////// 
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    double n=k*sqrt(mew/pow(earth_a,3)); 
    double Meph1=n*(teph1-tmid)+earth_M2; 
    double Meph2=n*(teph2-tmid)+earth_M2; 
    double Meph3=n*(teph3-tmid)+earth_M2; 
 
    double E1=findE(Meph1, earth_e); 
    double E2=findE(Meph2, earth_e); 
    double E3=findE(Meph3, earth_e); 
 
    tvec r_orb1=orbitalvector(earth_a,earth_e,E1); 
    tvec r_orb2=orbitalvector(earth_a,earth_e,E2); 
    tvec r_orb3=orbitalvector(earth_a,earth_e,E3); 
 
    tvec r_ec1=rtoecliptic(r_orb1.x, r_orb1.y, r_orb1.z, earth_omegasmall, earth_i, earth_omegacap); 
    tvec r_ec2=rtoecliptic(r_orb2.x, r_orb2.y, r_orb2.z, earth_omegasmall, earth_i, earth_omegacap); 
    tvec r_ec3=rtoecliptic(r_orb3.x, r_orb3.y, r_orb3.z, earth_omegasmall, earth_i, earth_omegacap); 
 
    tvec R1=ecliptictoequitorial(r_ec1.x, r_ec1.y, r_ec1.z, epsilon); 
    tvec R2=ecliptictoequitorial(r_ec2.x, r_ec2.y, r_ec2.z, epsilon); 
    tvec R3=ecliptictoequitorial(r_ec3.x, r_ec3.y, r_ec3.z, epsilon); 

 
Was transformed into the following code 

 
#define earth_a   1.000732110928368E+00 
#define earth_e   1.599910197101524E-02 
#define earth_i   1.509328650209302E-03*pi/180 
#define earth_omegacap  1.242780078662596E+02*pi/180 
#define earth_omegasmall 3.392836473925709E+02*pi/180 
#define earth_M2  1.784467221663580E+02*pi/180 
#define tmid   2453555.50000 
 
#define n w1 

n=k*sqrt(mew/pow3(earth_a)); 
 
#define r_orb1 v1 
#define r_orb2 v2 
#define r_orb3 v3 
     
    r_orb1=orbitalvector(earth_a, earth_e, findE(n*(t1-tmid)+earth_M2, earth_e)); 
    r_orb2=orbitalvector(earth_a, earth_e, findE(n*(t2-tmid)+earth_M2, earth_e)); 
    r_orb3=orbitalvector(earth_a, earth_e, findE(n*(t3-tmid)+earth_M2, earth_e)); 
 
#undef n 
#define r_ec1 v4 
#define r_ec2 v5 
#define r_ec3 v6 
 
    r_ec1=rtoecliptic(r_orb1.x, r_orb1.y, r_orb1.z, earth_omegasmall, earth_i, earth_omegacap); 
    r_ec2=rtoecliptic(r_orb2.x, r_orb2.y, r_orb2.z, earth_omegasmall, earth_i, earth_omegacap); 
    r_ec3=rtoecliptic(r_orb3.x, r_orb3.y, r_orb3.z, earth_omegasmall, earth_i, earth_omegacap); 
 
#undef r_orb1 
#undef r_orb2 
#undef r_orb3 
#define R1 v1 
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#define R2 v2 
#define R3 v3 
    R1=ecliptictoequitorial(r_ec1.x, r_ec1.y, r_ec1.z, epsilon); 
    R2=ecliptictoequitorial(r_ec2.x, r_ec2.y, r_ec2.z, epsilon); 
    R3=ecliptictoequitorial(r_ec3.x, r_ec3.y, r_ec3.z, epsilon); 
#undef r_ec1 
#undef r_ec2 
#undef r_ec3 

 
The original code required 17 floats and 9 vectors, a total of 44 floats The new code 

requires at its peak six vectors, a total of 18 floats, and only retains the answer, three vectors or 9 
floats. The remaining three vectors and one float may be reused later in the program. This type of 
transformation cut the amount of required memory about in half, down to 10 vectors and 26 
floats, a total of 56 floats. 

Another source of memory usage is from variables in functions the orbit determination 
uses. While all the functions we wrote specifically for the orbit determination were optimized 
similarly for minimal memory usage, there are other functions that take up large amounts of 
memory. Trigometric functions and power functions were two huge sources of memory usage. In 
fact, at one point, all the trig functions were #defined into square roots just to get the program to 
run at all! To fix this, all the powers were moved out of the power function and into expanded 
form. So pow(x,6) became x*x*x*x*x*x. This alone reduced the runtime of the program by half, 
as well as reducing the amount of memory needed. 

The reason for the effect of power functions is that they use complex algorithms to 
accommodate non-integer powers. Examining the assembly language reveals some of effect. 
Multiplying numbers together continuously calls the “mul” operator multiple times, while doing 
the same thing with the power function stars declaring variables and moving memory around, 
performing very few actual calculations. 

These optimizations are enough to run the program on the GPU. By further moving some 
variables out of the processors’ registers and into shared memory finally allowed the large 
number of variables used in the orbit determination program to be run successfully on the GPU. 
Further optimizations reduce the amount of needed memory as well as more selectively picking 
which variables should be in shared memory for efficient runtime. 

 
6.4.2 Optimization for Low-Precision Conditions 

Although the GPU used in this analysis is a GTX 280, which supports double precision, 
many GPUs do not. We experimented with such a single-precision board, a GeForce 6800 GT. 
Single-precision calculations do not have a significant effect on the answer of any given orbit, 
but they can effect runtime. In the orbit determination, it is necessary to find roots of an eighth 
order polynomial, in this case using Newton’s method. This involves calculating the value of a 
function at a ‘guess’ and using a calculated derivative to move your guess closer to the root until 
it is within some desired accuracy. The original code for this process is below: 
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float equation(float a,float b,float c,float r2){ 
    return pow(r2,8)+a*pow(r2,6)+b*pow(r2,3)+c; 
} 
 
float derv (float a,float b,float c,float r2){ 
    return 8*pow(r2,7)+6*a*pow(r2,5)+3*b*pow(r2,2); 
} 
 
float newton (float a,float b,float c,float userguess){ 
    float slope=derv (a,b,c,userguess); 
    float yintercept=equation(a,b,c,userguess)-(slope)*userguess; 
    float xintercept=-1*yintercept/slope; 
    return xintercept; 
} 
 
    float guess = 3; 
    float answer=newton(a, b, c, guess); 
while (abs((newton(a, b, c, answer)-answer))>=0.000001) 
            answer=newton(a,b,c,answer); 
    float r2=answer; 

 
We eventually added a counter to the loop and found that it had trouble converging when 

using single precision but not double precision. The most important reason for this is the 
equation and derv functions. When using single precision, these functions will add up rounded 
versions of each of these numbers raised to a power. By modifying the code as shown below, the 
calculation’s accuracy increases merely by changing the order of operations so as not to round as 
often.  
 
float equation( float a, float b, float c, float r2){ 
    return ((pow2(r2)+a)*pow3(r2)+b)*pow3(r2)+c; 
} 
 
float derv ( float a, float b, float c, float r2){ 
    return ((8*pow2(r2)+6*a)*pow3(r2)+3*b)*pow2(r2); 
} 

 
This change saves memory, loops fewer times, and decreases runtime by increasing the 

accuracy of the calculation. 
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6.4.3 GPU Precision Analysis 

Even though we are using the double-precision GTX 280 in this analysis, we do not 
expect the GPU and CPU to get exactly the same answer because they are completely different 
architectures. In order to check to what extent the two agree on calculations, we tracked where 
the first different digit was for several different variables, as shown below. 

 
 
This indicates that the GPU and CPU differ around the 15th decimal place.  
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6.4.4 GPU Runtime Analysis 

These optimizations have allowed us to run the orbital determination on the GPU despite 
stringent memory constraints. Since the number of orbits needed to be calculated is ൫ேଷ൯, we 
expect the runtime to be cubic with the number of observations, N. In order to compare the 
GPU’s runtime to that of the CPU, we structured the program so that exactly the same optimized 
code is run on both the CPU and GPU sequentially. Below are the runtime graphs for the two 
architectures. 
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The cubic runtime trend is especially visible in the CPU’s runtime, partially because of 
the dramatic speedup the GPU achieves, as graphed below. 

 
 
As shown, even calculating only ൫ଶସ଴ଷ ൯ orbits, the GPU runs forty times faster than the 

CPU. Below ൫ଵ଴଴ଷ ൯ orbits calculated, the runtime of both the CPU and GPU is dominated by 
startup costs. After this point, the GPU begins to utilize more of its processors and pipeline the 
orbits, causing a performance boost over the CPU. Since this type of analysis would only be used 
for far more than 240 observations, we can assume that the GPU performance will eventually flat 
line at over 40 times speedup. 
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4 
This speedup shows that we are effectively using the computer power available in the 

GPU. Comparing the peak-to-peak performance for a GTX 280 (950 GFLOP/s) and one core of 
a 3GHz Athalon 64 6000+ processor (25 GFLOP/s), we would expect the GPU to go 38 times 
faster. Of course, neither the GPU nor CPU achieves peak performance. The fact that we achieve 
40 times speedup shows that the CUDA compiler gets the same fraction of peak on the GPU as 
Visual Studio gets on the CPU. This is a major accomplishment, especially considering that orbit 
determination is a non-graphics application that could have proved very difficult to hoast on a 
GPU, irrespective of performance. 
 

6.4.5 Effect of the GPU Running 40 Times Faster than the CPU 

How much of a difference will the GPU running 40 times faster make? We can calculate 
how many orbits can be calculated in 12 hours by a computer with four cores versus a computer 
with four GPUs. 

For the GPU: 

 

The same calculation would take 20 days for a four-CPU computer.  
This analysis assumes that the four-core computer will run four times as fast as a single 

core (which is unlikely) and that the GPU will not attain further speedup (also unlikely), both of 
which favor the CPU’s runtime. This clearly shows that the GPUs speedup brings searching for 
asteroid linkages through orbit determination into the realm of practical possibility. 
  

                                                
4 NVIDIA CUDA Programming Guide , Version 2.1 , 12/8/2008  
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7. Sample Results 

We begin with two images, skv2a.bmp and skv2b.bmp. 

 
Although these images are of the same approximate region in the sky, each was taken at a 

different time. Furthermore, skv2a is from the Near-earth Asteroid Tracking Service while the 
other image, skv2b, is a reference spectra image. Therefore there exists a major exposure 
difference between the two. This creates an issue for image processing because we cannot filter 
both images the same way. To account for these exposure discrepancies, our image analysis code 
iterates through both images until it finds a unique, reasonable binary threshold for each image 
based on the number of stars. 

For skv2a, the image itself is much dimmer, so the program takes 3iterations in 
computing the acceptable threshold. 

 
After the first filter iteration with the default threshold setting, the image retains only 6 
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stars. Since this star number is less than the minimum required number of stars, the threshold is 
lowered through a binary search that converges on the new, more correct threshold. 

 
After the second pass with the new threshold value, we arrive at an image that retains 15 

stars, a number that still does not meet the minimum required number of stars. Thus, the program 
again conducts a second binary search for a more appropriate threshold. 

  
After the third filter iteration using the new, lower threshold value, we finally arrive at an 

image with 58 stars that easily passes the minimum star number requirement. Thus, the 
thresholding iterations stop for skv2a. 

For skv2b, the image is already much more defined than skv2a, so the program more 
easily finds a viable threshold. 
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The default threshold value is enough to filter the image, leaving 48 stars. 
After thresholding, centroids are calculated. This returns a list of stars and the 

corresponding X-Y pixel center for each.  

 
The program then performs the triangle method, finding a conversion factor between the 

images and between the X-Y coordinates and the RA-DEC celestial coordinates.  In doing so, the 
program filters triangles through multiple histogram bins for scale, rotation, and translation. For 
example, we can see there is a clear peak bin for this parameter.  

 
Then, the program uses the conversion factor obtained from the triangle method to 

transpose the centroids from one image to another. This obtains possible asteroid candidates, 
which we then cross-reference with the dim star catalog to verify these candidates are indeed 
asteroids and not dim stars or the result of exposure differences. 

 
 

Lastly, the program prints out our asteroid and its location in both X-Y and RA-DEC 
coordinates. 
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Referring back to our original two observational images, we can see that the program has 

successfully identified an asteroid that has moved from one image to another.  

 
Note that this method works for images from completely different times- these two 

images only happened to have objects in similar locations. This makes our analysis very different 
from traditional forms of asteroid identification, which primarily look for the movement of 
objects. 
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8. Future Work 

This project is still in progress. In the future we would like to: 
 Apply our program to a larger quantity of data.  
 Further improve our methods of image analysis. Particularly, we would like to 

develop better methods of choosing the same stars in the image and in the reference 
catalog. This would greatly improve the results of the triangle method for difficult star 
fields. 

 Apply our GPU orbital determination program to a larger number of asteroid 
observations. Constructing sets that contain known asteroids can give us an 
understanding of how useful this type of analysis will be when applied to real data. 

 Improve and analyze the performance of our programs. There are several 
optimizations that can be made to the image analysis program, especially for larger 
numbers of stars. Reducing the memory needed for the GPU program would also aid 
its performance. 
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9. Conclusion 

We have been able to identify asteroids in sets of diverse images. These images can be 
taken by different telescopes at completely different times. We have also proposed a method to 
link these asteroid observations to form orbits using a GPU. Traditionally, this has not been a 
feasible option due to the massive amount of compute power required. However our work with 
the GPU suggests that this process will be practical in the future because our observed 40 times 
speedup will drastically cut down the time required to generate orbits. 
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12. Appendix 

In the following sections, we provide a guide to the code, its functions, and how it 
incorporates the methods we have described in our report. All of the code we have developed is 
included after its overview. 

12.1 Online Interfacing Guide - C++ 

The online interface code takes a FITS file image, looks up the reference stars for that 
image, and writes all the data into a form we can use in the next program. First, the RA and DEC 
are obtained from the header of the FITS file. The program constructs a hyperlink to the query 
the VizieR online star database with the Ra and Dec. The program then opens a connection to the 
website, uses the hyperlink that has been created, and downloads the HTML page the website 
returns with the DBaccess function. 

Each star catalog we query returns different information, so parsing the webpage has 
separate cases for each. First, hyperlinks are stripped from the webpage in the 
deleathyperlinks function. We assign a pointer to the position of the beginning of each 
catalog, and then use this information to decide how to parse stars at different locations in the 
file. This puts all the star information in the RefStars array. 

Some locations will have stars that are right next to each other but have coordinates on 
the 0-360 break. We correct the stars’ positions for this, favoring negative angles over large 
separations. 

Finally, we print a file that begins with the number of stars in the image and lines 
containing each stars’ Ra, Dec, proper motion, magnitude, and what catalog they were from. This 
file is used in the next processing stage.  

12.2 Online Interfacing Code 

#include "CImg.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include "stdafx.h" // must be present for Visual C++. For Unix, stdafx.h can be empty 
#include <math.h> 
#include <string.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
 
using namespace cimg_library; 
using namespace std; 
 
#define THRESHOLD_ADJUST 65 
#define MAX_STAR_NUM 500 
#define MAX_STAR_SIZE 900 
#define NUMREFSTARS 15 
#define NUMIMGSTARS 20 
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#define NUMKEEP 8 
#define INTRODUCEDERROR 0.0 
#define TESTDATAMODE 0 //set to 1 to manually rotate and scale a set of reference stars 
 
//Erika stuff 
#define _CRT_SECURE_NO_WARNINGS 1 
#define _CRT_NONSTDC_NO_WARNINGS 1 
 
extern int mStartup(); 
extern char* DBaccess(char*); 
extern int mCleanup(); 
 
#define pi 3.141592653589793238462643 
#define MAXSTARSIMG 1000 
 
struct Star{ 
double RA; 
double DEC; 
int alivebit; //deleated or no? 
double vMAG; 
double pmRA; 
double pmDEC; 
int checknum; 
int catalogtype; //0 for bright, 1 for all 
}; 
 
struct vector{ 
double a; 
double b; 
double c; 
}; 
 
struct pointvec{ 
vector a; 
vector b; 
vector c; 
}; 
 
double spaceatof(char *pointer){ 
while (*pointer==' ') 
pointer++; 
return atof(pointer); 
} 
 
void deleathyperlinks(char *page){ 
char *rpointer=page; 
char *wpointer=page; 
while(*rpointer!=0){ 
if (*rpointer!='<') 
*wpointer++ = *rpointer++; 
else if (strncmp(rpointer, "</EM></A>", 9) == 0) 
for (int i = 0; i < 9; i++) *wpointer++ = *rpointer++; 
else if(rpointer[0]=='<' && rpointer[1]=='/' && rpointer[2]=='A' && rpointer[3]=='>') 
rpointer+=4; 
else if(strncmp(rpointer, "<A HREF=", 8) == 0) { 
while (*rpointer!=0 && *rpointer !='>') 
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rpointer++; 
if (*rpointer=='>') rpointer++; 
} 
else 
*wpointer++ = *rpointer++; 
} 
*wpointer = 0; 
} 
 
//pixel coordinates and brightness 
typedef struct { 
int x; 
int y; 
int val; 
} PIX; 
 
int cmp(const void* av, const void *bv){ //sorting thing 
double *a = (double *)av; 
double *p1 = (double *)bv; 
if (*a>*p1) 
return 1; 
if (*a==*p1) 
return 0; 
else 
return -1; 
} 
 
int main() { 
/*** 
Reference Star Section- Preprocessing 
***/ 
double RAdeg=0; 
double DECdeg=0; 
int arcminwid=0; 
int arcminhgt=0; 
ofstream fout ("starsa1.out"); //file to write the stars to when done parsing 
ifstream fin ("starsa1.in"); //file to read for approximate RA and DEC from FITS 
fin >> RAdeg; 
fin >> DECdeg; 
fin >> arcminwid; 
fin >> arcminhgt; 
 
printf("hello world\n"); 
 
//internet access version 
char iAddress[300]; 
sprintf(iAddress, "/viz-bin/VizieR?-source=I/289,I/294,I/280A,I/297&-c=%.6f%+.6f&-c.bm=%dx%d&-
out.max=100&-out.form=;SV", RAdeg, DECdeg, arcminwid, arcminhgt); 
printf("url is %s\n", iAddress); 
mStartup(); 
char* bar=DBaccess(iAddress); 
 
char *UCACC, *UCACB, *ASC, *NOMAD; 
deleathyperlinks(bar); 
//pointer to beginnning of UCAC2 Catalogue (Zacharias+ 2003) The Second U.S. Naval Observatory CCD 
Astrograph Catalog (48330571 rows) 
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UCACC =strstr(bar, "UCAC2 C");  
//pointer to beginnning of UCAC2 Bright Star Supplement (Urban+, 2004) UCAC Bright Star Supplement (430000 
rows) 
UCACB =strstr(bar, "UCAC2 B");  
//pointer to beginnning of All-sky Compiled Catalogue of 2.5 million stars (Kharchenko 2001) The all-sky catalogue 
of 2.5million stars (2501313 rows) 
ASC =strstr(bar, "All-sky C"); 
//pointer to beginnning of All-sky Compiled Catalogue of 2.5 million stars (Kharchenko 2001) The all-sky catalogue 
of 2.5million stars (2501313 rows) 
NOMAD=strstr(bar, "NOMAD"); 
 
Star RefStars[MAX_STAR_NUM]; 
int starnum=0; 
char *here; //pointer to current position  
here=bar; 
while ((here=strstr(here, "</EM></A>"))!=0){ 
char *fieldstart, *raplace, *decplace, *magplace, *pmraplace, *pmdecplace; 
int typebit=-1; 
if(UCACB > here && here > UCACC){ //UCAC2 Catalogue 
fieldstart = here+9; 
raplace = fieldstart + 12; 
decplace = fieldstart + 25; 
magplace = fieldstart + 46; 
pmraplace = fieldstart + 62; 
pmdecplace = fieldstart + 74; 
typebit=0; 
} 
else if(ASC > here && here > UCACB){ //UCAC2 Bright Star Supplement 
fieldstart = here+9; 
raplace = fieldstart + 12; 
decplace = fieldstart + 26; 
magplace = fieldstart + 59; 
pmraplace = fieldstart + 70; 
pmdecplace = fieldstart + 78; 
typebit=0; 
} 
else if(here > ASC){ //All-sky Compiled Catalogue 
fieldstart = here+9; 
raplace = fieldstart + 2; 
decplace = fieldstart + 16; 
pmraplace = fieldstart + 48; 
pmdecplace = fieldstart + 58; 
magplace = fieldstart + 74; 
typebit=0; 
} 
else{ 
printf("VERY BADDDDDDDD!!!! Help with looking up reference stars parsing thing!\n"); 
} 
if(here>NOMAD){ //NOMAD 
fieldstart=here+29; 
raplace=fieldstart; 
decplace=fieldstart+13; 
pmraplace=fieldstart+32; 
pmdecplace=fieldstart+49; 
magplace=fieldstart+62; 
typebit=1; 
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} 
RefStars[starnum].RA=atof(raplace); //adding on a degree DELEATEEEEEEEEEEEEEEEEE!!!!!!!!!!!!!!!!! 
RefStars[starnum].DEC=atof(decplace); 
RefStars[starnum].vMAG=spaceatof(magplace); 
RefStars[starnum].pmRA=spaceatof(pmraplace); 
RefStars[starnum].pmDEC=spaceatof(pmdecplace); 
RefStars[starnum].checknum=starnum; 
RefStars[starnum].alivebit=1; 
RefStars[starnum].catalogtype=typebit; 
starnum++; 
here+=9; 
} 
 
/*if(starnum>NUMREFSTARS){ 
//pick the top NUMREFSTARS brightest stars 
double sortit0[MAX_STAR_NUM]; 
for(int i=0; i<starnum; i++){ 
sortit0[i]=RefStars[i].vMAG; 
} 
qsort((void*) sortit0, starnum, sizeof(double), &cmp); 
double maxmag=sortit0[NUMREFSTARS]; 
for(int i=0; i<starnum; i++){ 
if(RefStars[i].vMAG>maxmag) 
RefStars[i].alivebit=0; 
} 
}*/ 
//Making sure we don't have a 0-360 overlay problem. 
double sortit1[MAX_STAR_NUM]; 
double sortit2[MAX_STAR_NUM]; 
for(int i=0; i<starnum; i++){ 
sortit1[i]=RefStars[i].RA; 
sortit2[i]=RefStars[i].DEC; 
} 
qsort((void*) sortit1, starnum, sizeof(double), &cmp); 
qsort((void*) sortit2, starnum, sizeof(double), &cmp); 
if (sortit1[starnum-2]-sortit1[0] > 180){ 
for(int i=0; i<starnum; i++){ 
if (RefStars[i].RA > 180){ 
RefStars[i].RA=RefStars[i].RA - 360; 
} 
} 
} 
if (sortit2[starnum-2]-sortit2[0] > 180){ 
for(int i=0; i<starnum; i++){ 
if (RefStars[i].DEC > 180){ 
RefStars[i].DEC=RefStars[i].DEC - 360; 
} 
} 
} 
 
//mCleanup(); 
printf("closed internet \n"); 
delete bar; 
/* 
Format: 
number of stars # 
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each line has Ra Dec pmRA pmDEC vMAg catalog -all with spaces in between 
*/ 
fout << starnum << endl; 
for(int i=0; i< starnum; i++){ 
fout << RefStars[i].RA << " " << RefStars[i].DEC << " " << RefStars[i].pmRA << " " << RefStars[i].pmDEC << " " 
<< RefStars[i].vMAG << " " << RefStars[i].catalogtype << endl; 
} 
printf("ending program\n"); 
return 0; 

} 
12.3 Image Analysis Guide - C++ 

The image analysis portion of the code extracts possible asteroid data using a set of two 
corresponding images and reference star catalogs. Image analysis itself is separated into several 
major parts. Centroid calculation is the first major part. The centroid function requires a 
bitmap image input and it outputs the number of stars in the image and a STAR array. The STAR 
structure stores the area and brightness of each star, a PIX array which includes the x-y 
coordinates and brightness of each pixel in each star, and a CENTROID structure, which 
contains its own set of centroid x-y coordinates. In preparing the image for centroids, each image 
is filtered and made binary through a thresholding process. The program automatically 
compensates for exposure differences on different images by dynamically adjusting the threshold 
value based on the number of stars in any given image.   

We perform centroid on two images, A and B. The function returns two corresponding 
STAR arrays, ImageStarsA and ImageStarsB. Using the resulting ImageStars arrays, which 
contain the centroids for each image, we then implement the FindTriangle method to align 
the images and find a conversion factor from x-y coordinate system to the RA-DEC coordinate 
system. In filtering for viable triangles, getHistogram narrows down our matching triangles 
based on a distribution of rotation, scale, and translation “bins”. Like it does for image 
thresholding, the program dynamically adjusts the number of bins for each parameter based on 
the distribution of the most occurring “peak” values, ultimately arriving at a clearly defined peak 
value.  FindTriangle is first used image-to-image so we can obtain a conversion factor from 
ImageStarsA to ImageStarsB. Then, we loop though both images and transpose each centroid 
from ImageStarsB onto ImageStarsA, obtaining a new ImageStarsC. After comparing the 
distances between the centroids of ImgStarsC, any centroid in the image that does not lie within 
a reasonable distance from another centroid is considered to be a potential asteroid. Using the 
results from the triangle method, we can determine the RA-DEC celestial coordinates for each 
potential asteroid. The FindTriangle is then used two more times: ImageStarsB to the (bright) 
reference stars, RefStars, and ImageStarsB to the dim stars, dimRefStars. This essentially 
compares the results from our image-to-image analysis with actual stars in the sky. 

 The last portion of image analysis determines whether or not a centroid is an asteroid. A 
possible asteroid from the image-to-image analysis is cross-referenced with stars in dimRefStars. 
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If a centroid in dimRefStars corresponds to the asteroid candidate, then the program prints the 
centroid as a dim star. If not, then the centroid is declared an asteroid and its x-y and RA-DEC 
coordinates are printed. 

12.4 Image Analysis Code 

#include "CImg.h" 
#include <stdio.h> 
#include <stdlib.h> 
//#include "stdafx.h" // must be present for Visual C++. For Unix, stdafx.h can be empty 
#include <math.h> 
#include <string.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
 
using namespace cimg_library; 
using namespace std; 
 
#define WANTEDSTARNUM 110 //min number of stars a picture must have 
#define NUMROOM 10 //how far away it can be from WANTEDSTARNUM 
#define DIIFICULTIMAGE 0 //if 1 goes through thresholds more slowly, without binary search 
#define MAXREPEAT 9 //max number of times you go through centroids 
#define INITIALTHRES 80 //initial try for threshold 
#define MAXTHRES 190 //maximum threshold 
#define MAX_STAR_NUM 2001 
#define MAX_STAR_SIZE 900 
#define NUMREFSTARS 40 
#define NUMIMGSTARS 40 
#define NUMKEEP 4 
#define INTRODUCEDERROR 0.0 
#define TESTDATAMODE 0 //set to 1 to manually rotate and scale a set of reference stars 
#define FIRSTBINS 200 //200 original. Sets tolerance, lower for higher tolerance. DO NOT change! 
#define MAXLOOP 10 //how many times to loop the histograms max, no more than 19 
#define CEN_PERFORM 0 //weather or not to add extra timers in the centroid function 
 
//Erika stuff 
#define _CRT_SECURE_NO_WARNINGS 1 
#define _CRT_NONSTDC_NO_WARNINGS 1 
 
extern int mStartup(); 
extern char* DBaccess(char*); 
extern int mCleanup(); 
 
#define pi 3.141592653589793238462643 
#define MAXSTARSIMG 4000 //1000 
#define MAXBINNUM 100 
 
void magicalbreakpoint(const char *t) { 
printf("\n"); 
printf(t); 
printf("\n"); 
} 
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#ifdef _DEBUG 
#define ASSERT(c) if (!(c)) magicalbreakpoint("Assert failed " #c "\n"); 
#else 
#define ASSERT(c) ; 
#endif 
struct Star{ 
double RA; 
double DEC; 
int alivebit; //deleated or no? 
double vMAG; 
double pmRA; 
double pmDEC; 
int checknum; 
int catalogtype; //0 for bright, 1 for all 
}; 
 
class StarArray { 
unsigned int Size; 
Star *Base; 
//ImgStarsB[MAX_STAR_NUM]; 
public: 
StarArray(unsigned int s) { 
Size = s; 
Base = new Star[s]; 
} 
~StarArray() { 
delete Base; 
} 
Star &operator[](unsigned int index) { 
ASSERT(index < Size); 
return Base[index]; 
} 
}; 
 
struct vector{ 
double a; 
double b; 
double c; 
}; 
 
struct pointvec{ 
vector a; 
vector b; 
vector c; 
}; 
 
struct triangle{ 
vector pos1; 
vector pos2; 
vector pos3; 
pointvec numberedstars; //ordered pair of pos num of star opposite smallest to largest side 
int check1; 
int check2; 
int check3; 
double d12; //distance between stars 
double d23; 
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double d31; 
double sd; //small, medium, large relative side lengths 
double md; 
double ld; 
int CorrTri[NUMKEEP]; //corresponding triangle in other list 
double currdiff[NUMKEEP]; //current difference between corresponding triangle and yourself 
//factors for img->ref 
double scale[NUMKEEP]; 
double angle[NUMKEEP]; 
vector displacement[NUMKEEP]; 
int onoff[NUMKEEP]; //1 if triangle is beign included for consideration in end rotation, scale, translation 
}; 
 
class trianglearray{ 
unsigned int size; 
triangle *data; 
triangle **adata; 
//triangle foobar[MAXSTARSIMG*5]; 
public: 
trianglearray(){ 
size=10; 
data=new triangle[10]; 
} 
~trianglearray(){ 
delete data; 
} 
triangle &operator[](unsigned int index) { 
if(index>=size) { 
triangle *newdata=new triangle[index*3/2]; 
ASSERT(newdata); 
for(unsigned int i=0; i<size; i++) 
newdata[i]=data[i]; 
printf("growing to %d\n", index*3/2); 
delete data; 
data=newdata; 
size=index*3/2; 
} 
return data[index]; 
} 
}; 
 
double spaceatof(char *pointer){ 
while (*pointer==' ') 
pointer++; 
return atof(pointer); 
} 
 
void deleathyperlinks(char *page){ 
char *rpointer=page; 
char *wpointer=page; 
while(*rpointer!=0){ 
if (*rpointer!='<') 
*wpointer++ = *rpointer++; 
else if (strncmp(rpointer, "</EM></A>", 9) == 0) 
for (int i = 0; i < 9; i++) *wpointer++ = *rpointer++; 
else if(rpointer[0]=='<' && rpointer[1]=='/' && rpointer[2]=='A' && rpointer[3]=='>') 



58 
 

rpointer+=4; 
else if(strncmp(rpointer, "<A HREF=", 8) == 0) { 
while (*rpointer!=0 && *rpointer !='>') 
rpointer++; 
if (*rpointer=='>') rpointer++; 
} 
else 
*wpointer++ = *rpointer++; 
} 
*wpointer = 0; 
} 
 
vector sort3(vector me){ 
double Small=me.a; 
double Medium=me.b; 
double Large=me.c; 
while(Small>Medium || Medium>Large || Small>Large){ 
if(Small>Medium){ 
double hold=Medium; 
Medium=Small; 
Small=hold; 
} 
if(Medium>Large){ 
double hold=Large; 
Large=Medium; 
Medium=hold; 
} 
} 
vector sorted; 
sorted.a=Small; 
sorted.b=Medium; 
sorted.c=Large; 
return sorted; 
} 
 
void SetTri(triangle *Tri, Star &a, Star &b, Star &c, double error = 0.){ 
Tri->pos1.a=a.RA + error*rand()/32767; Tri->pos1.b=a.DEC + error*rand()/32767; 
Tri->pos2.a=b.RA + error*rand()/32767; Tri->pos2.b=b.DEC + error*rand()/32767; 
Tri->pos3.a=c.RA + error*rand()/32767; Tri->pos3.b=c.DEC + error*rand()/32767; 
Tri->d12= sqrt((Tri->pos1.a-Tri->pos2.a)*(Tri->pos1.a-Tri->pos2.a)+(Tri->pos1.b-Tri->pos2.b)*(Tri->pos1.b-Tri-
>pos2.b)); 
Tri->d23= sqrt((Tri->pos2.a-Tri->pos3.a)*(Tri->pos2.a-Tri->pos3.a)+(Tri->pos2.b-Tri->pos3.b)*(Tri->pos2.b-Tri-
>pos3.b)); 
Tri->d31= sqrt((Tri->pos3.a-Tri->pos1.a)*(Tri->pos3.a-Tri->pos1.a)+(Tri->pos3.b-Tri->pos1.b)*(Tri->pos3.b-Tri-
>pos1.b)); 
vector sort1; 
sort1.a=Tri->d12; 
sort1.b=Tri->d23; 
sort1.c=Tri->d31; 
sort1=sort3(sort1); 
Tri->sd=1; 
Tri->md=sort1.b/sort1.a; 
Tri->ld=sort1.c/sort1.a; 
 
if (Tri->d12==sort1.a) 
Tri->numberedstars.a=Tri->pos3; 
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else if (Tri->d23==sort1.a) 
Tri->numberedstars.a=Tri->pos1; 
else if (Tri->d31==sort1.a) 
Tri->numberedstars.a=Tri->pos2; 
 
if (Tri->d12==sort1.b) 
Tri->numberedstars.b=Tri->pos3; 
else if (Tri->d23==sort1.b) 
Tri->numberedstars.b=Tri->pos1; 
else if (Tri->d31==sort1.b) 
Tri->numberedstars.b=Tri->pos2; 
 
if (Tri->d12==sort1.c) 
Tri->numberedstars.c=Tri->pos3; 
else if (Tri->d23==sort1.c) 
Tri->numberedstars.c=Tri->pos1; 
else if (Tri->d31==sort1.c) 
Tri->numberedstars.c=Tri->pos2; 
 
for(int i=0; i<NUMKEEP; i++){ 
Tri->CorrTri[i]=-2; 
Tri->currdiff[i]=100; 
Tri->onoff[i]=1; 
} 
 
vector sort2; 
sort2.a=a.checknum; 
sort2.b=b.checknum; 
sort2.c=c.checknum; 
sort2=sort3(sort2); 
Tri->check1=(int)sort2.a; 
Tri->check2=(int)sort2.b; 
Tri->check3=(int)sort2.c; 
} 
 
void FindTranslation(triangle *Img, triangle *Ref, int i){ 
//scale 
vector sortImg; 
sortImg.a=Img->d12; 
sortImg.b=Img->d23; 
sortImg.c=Img->d31; 
sortImg=sort3(sortImg); 
vector sortRef; 
sortRef.a=Ref->d12; 
sortRef.b=Ref->d23; 
sortRef.c=Ref->d31; 
sortRef=sort3(sortRef); 
double scaleImgtoRef=sortRef.c/sortImg.c; 
Img->scale[i]=scaleImgtoRef; 
 
//rotation 
vector ImgLSide; 
ImgLSide.a=Img->numberedstars.a.a - Img->numberedstars.b.a; 
ImgLSide.b=Img->numberedstars.a.b - Img->numberedstars.b.b; 
double ImgAngle=atan2(ImgLSide.b, ImgLSide.a); 
if(ImgAngle<0) 
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ImgAngle+=2*pi; 
vector RefLSide; 
RefLSide.a=Ref->numberedstars.a.a - Ref->numberedstars.b.a; 
RefLSide.b=Ref->numberedstars.a.b - Ref->numberedstars.b.b; 
double RefAngle=atan2(RefLSide.b, RefLSide.a); 
if(RefAngle<0) 
RefAngle+=2*pi; 
double Theta=RefAngle-ImgAngle; 
if (Theta<0) 
Theta+=2*pi; 
Img->angle[i]=Theta; 
 
//translation 
double newRA= (cos(Theta)*Img->numberedstars.a.a-sin(Theta)*Img->numberedstars.a.b)*scaleImgtoRef; 
double newDec=(sin(Theta)*Img->numberedstars.a.a+cos(Theta)*Img->numberedstars.a.b)*scaleImgtoRef; 
vector translate; 
translate.a=Ref->numberedstars.a.a-newRA; 
translate.b=Ref->numberedstars.a.b-newDec; 
Img->displacement[i]=translate; 
if(translate.a<-100000){ 
int waaaaa=1; 
} 
} 
 
void XYtoRADEC(double x, double y, double scale, double rotation, double translationra, double translationdec, 
double *answera, double *answerb){ 
double newRA= (cos(rotation)*x-sin(rotation)*y)*scale; 
double newDEC=(sin(rotation)*x+cos(rotation)*y)*scale; 
newRA+=translationra; 
newDEC+=translationdec; 
*answera=newRA; 
*answerb=newDEC; 
} 
 
//Back to Chris code 
//star centroid 
typedef struct { 
double x; 
double y; 
} CENTROID; 
 
//pixel coordinates and brightness 
typedef struct { 
int x; 
int y; 
int val; 
} PIX; 
 
//star 
typedef struct { 
PIX pixels[MAX_STAR_SIZE]; 
int area; 
double brightness; 
CENTROID cent; 
} STAR; 
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int cmp(const void* av, const void *bv){ //sorting thing 
double *a = (double *)av; 
double *p1 = (double *)bv; 
if (*a>*p1) 
return 1; 
if (*a==*p1) 
return 0; 
else 
return -1; 
} 
 
void getHistogram(int *bins, int binNum, double *sortit, int newtrinum, double *sortit2, int *bestbinfill, int 
ifangle=0) 
{ 
//decimal percent. if a bin adjacent to the best bin exceeds this percent of the best bin it is also included 
double perct=.2;  
//reset array of bins 
for (int i = 0; i < 2000; i++) { 
bins[i] = 0; 
} 
 
//deciding the width of each bin 
double binwidth = ((sortit[newtrinum - 1] - sortit[0]) / binNum); 
double binleft = sortit[0]; 
double binright = binleft + binwidth; 
 
//look at elements to fill bins. Now we have the histogram 
for (int bin = 0; bin < binNum; bin++) { 
for (int i = 0; i < newtrinum; i++) { 
if (sortit[i] <= binright && sortit[i] > binleft) { 
bins[bin]++; 
} 
} 
binleft = binleft + (binwidth); 
binright = binright + (binwidth); 
} 
 
int bestbin = -1; 
int counter2 = 0; 
int NumInBestBin=0; 
 
//find the best bin. NumInBestBin consistantly will be the original number of elements in the single best bin 
for (int i = 0; i < binNum; i++) { 
if (bins[i] > *bestbinfill) { 
bestbin = i; 
*bestbinfill=NumInBestBin = bins[i]; 
} 
} 
//check to see if the bin above should also be included in peak 
if(bestbin<newtrinum) 
if(bins[bestbin+1] > (int)(perct*NumInBestBin)) 
*bestbinfill+=bins[bestbin+1]; 
//whole mod 2pi exception, patching up between first and last bin- only for angle 
if(ifangle){  
//if the best bin is last, do I include the first bin as well? 
if(bestbin==binNum-1 && bins[0] > (int)(perct*NumInBestBin)){ 
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*bestbinfill+=bins[0]; 
for(int i=0; i<newtrinum; i++){ //subtract 2pi from everythign over pi 
if(sortit[i]>pi){ 
sortit[i]-=2*pi; 
} 
} 
} 
 
//if the best bin is first, so I include the last bin as well? 
if(bestbin==0 && bins[binNum-1] > (int)(perct*NumInBestBin)){ 
*bestbinfill+=bins[binNum-1]; 
for(int i=0; i<newtrinum; i++){ //subtract 2pi from everythign over pi 
if(sortit[i]>pi){ 
sortit[i]-=2*pi; 
} 
} 
} 
} 
 
//standard non-wrapping lower bound 
if(bestbin>0 && bins[bestbin-1] > (int)(perct*NumInBestBin) ){  
*bestbinfill+=bins[bestbin-1]; 
for (int i = 0; i < bestbin-1; i++) //counter2=number of elements before the (best bin-1) 
counter2 += bins[i]; 
} 
else{ 
for (int i = 0; i < bestbin; i++) //counter2=number of elements before the best bin 
counter2 += bins[i]; 
} 
 
//add elements in the best bin to the outgoing array 
for (int i = 0; i < *bestbinfill; i++) { 
sortit2[i] = sortit[counter2 + i]; 
} 
 
//add on last bin elements for angle wrapping 
if(ifangle && bestbin==0){  
int NumBefWrap=*bestbinfill-bins[binNum-1]; 
for (int i = 0; i < binNum-1; i++) 
counter2 += bins[i]; 
for (int i = counter2; i < newtrinum-1; i++) { 
sortit2[NumBefWrap+i-counter2] = sortit[i]; 
} 
} 
//add on first bin elements for angle wrapping 
if(ifangle && bestbin==binNum-1){  
int NumBefWrap=*bestbinfill-bins[0]; 
for (int i = 0; i < bins[0]; i++) { 
sortit2[NumBefWrap+i] = sortit[i]; 
} 
} 
} 
 
//prints out histogram and checks if there are multiple sizeable peaks 
void checkhistogram(int *counter, int size, int printbit=0){ 
int largepeak=0; 
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int largepeak2=0; //second largest peak 
for(int i=0; i<size; i++){ 
if(counter[i]>largepeak){ 
largepeak2=largepeak; 
largepeak=counter[i]; 
} 
else if(counter[i]>largepeak2) 
largepeak2=counter[i]; 
} 
if(printbit){ 
printf("\n Largest peak: %d, second largest %d. Printing bins:\n", largepeak, largepeak2); 
for(int i=0; i<size; i++){ 
printf("%d ", counter[i]); 
} 
printf("\n"); 
} 
} 
 
//takes the triangle data from BTri[i].[j], accesses PointsA,B, and plots triangles.  
void printtriangles(StarArray &PointsB, int numpointb, StarArray &PointsA, int numpointa, trianglearray &ATri, 
trianglearray &BTri, int i, int j,  
double RAsubtract=0, double DECsubtract=0, double mult=1.5){ 
int Wid = 422*3/2, Hei = 532*3/2; 
CImg<int> imgd0a(Wid, Hei, 1, 3, 255); 
CImg<int> imgd0b(Wid, Hei, 1, 3, 255); 
const unsigned char color1[] = { 255, 150, 1, }; 
for(int a=0; a<numpointa; a++){ 
imgd0a.draw_circle((int)((PointsA[a].RA-RAsubtract)*mult), (int)((PointsA[a].DEC-DECsubtract)*mult), 2, 
color1, 1); 
} 
for(int a=0; a<numpointb; a++){ 
imgd0b.draw_circle((int)(PointsB[a].RA*3/2), (int)(PointsB[a].DEC*3/2), 2, color1, 1); 
} 
 
CImgList<int> points; 
points.insert(CImg<int>::vector((int)((ATri[BTri[i].CorrTri[j]].pos1.a-RAsubtract)*mult), 
(int)((ATri[BTri[i].CorrTri[j]].pos1.b-DECsubtract)*mult))); 
points.insert(CImg<int>::vector((int)((ATri[BTri[i].CorrTri[j]].pos2.a-RAsubtract)*mult), 
(int)((ATri[BTri[i].CorrTri[j]].pos2.b-DECsubtract)*mult))); 
points.insert(CImg<int>::vector((int)((ATri[BTri[i].CorrTri[j]].pos3.a-RAsubtract)*mult), 
(int)((ATri[BTri[i].CorrTri[j]].pos3.b-DECsubtract)*mult))); 
points.insert(CImg<int>::vector((int)((ATri[BTri[i].CorrTri[j]].pos1.a-RAsubtract)*mult), 
(int)((ATri[BTri[i].CorrTri[j]].pos1.b-DECsubtract)*mult))); 
unsigned char color[] = { 1, 255, 1, }; color[0] = rand(); color[1] = rand(); color[2] = rand(); 
imgd0a.draw_line(points, color, (float).8); 
CImgList<int> points2; 
points2.insert(CImg<int>::vector((int)(BTri[i].pos1.a*3/2), (int)(BTri[i].pos1.b*3/2))); 
points2.insert(CImg<int>::vector((int)(BTri[i].pos2.a*3/2), (int)(BTri[i].pos2.b*3/2))); 
points2.insert(CImg<int>::vector((int)(BTri[i].pos3.a*3/2), (int)(BTri[i].pos3.b*3/2))); 
points2.insert(CImg<int>::vector((int)(BTri[i].pos1.a*3/2), (int)(BTri[i].pos1.b*3/2))); 
imgd0b.draw_line(points2, color, (float).8); 
CImgDisplay d1(imgd0a,"a corresponds", 2), d2(imgd0b,"b corresponds", 2); 
while (!d1.is_closed && !d2.is_closed) { 
CImgDisplay::wait(d1, d2); 
} 
} 
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//gives translation from parameter 1 to parameter 2, that is, PointsB->PointsA 
void FindTriangle(StarArray &PointsB, int numpointb, StarArray &PointsA, int numpointa, int catalogtype,  
double *nScale, double *nAngle, double *nTransx, double *nTransy,  
double Scaletomatch=0, double Angletomatch=0, double Transxtomatch=0, double Transytomatch=0, 
double RAsubtract=0, double DECsubtract=0, double mult=1.5){ 
trianglearray ATri; 
trianglearray BTri; 
int trinum1=0; 
int trinum2=0; 
 
int Wid = 422*3/2, Hei = 532*3/2; 
int num = 8; 
CImg<int> imgd0a(Wid, Hei, 1, 3, 255); 
CImg<int> imgd1a(Wid, Hei, 1, 3, 255); 
CImg<int> imgd2a(Wid, Hei, 1, 3, 255); 
CImg<int> imgd3a(Wid, Hei, 1, 3, 255); 
CImg<int> imgd0b(Wid, Hei, 1, 3, 255); 
CImg<int> imgd1b(Wid, Hei, 1, 3, 255); 
CImg<int> imgd2b(Wid, Hei, 1, 3, 255); 
CImg<int> imgd3b(Wid, Hei, 1, 3, 255); 
 
int trianglecount1=0; 
int trianglecount2=0; 
int trianglecount3=0; 
 
for(int a=0; a<numpointa-1; a++){ 
if(PointsA[a].alivebit==1) 
for(int b=a+1; b<numpointa-1; b++){ 
if(PointsA[b].alivebit==1) 
for(int c=b+1; c<numpointa-1; c++){ 
if(PointsA[c].alivebit==1) 
if(1){ 
SetTri(&ATri[trinum1], PointsA[a], PointsA[b], PointsA[c]); 
CImgList<int> points; 
points.insert(CImg<int>::vector((int)((ATri[trinum1].pos1.a-RAsubtract)*mult), (int)((ATri[trinum1].pos1.b-
DECsubtract)*mult))); 
points.insert(CImg<int>::vector((int)((ATri[trinum1].pos2.a-RAsubtract)*mult), (int)((ATri[trinum1].pos2.b-
DECsubtract)*mult))); 
points.insert(CImg<int>::vector((int)((ATri[trinum1].pos3.a-RAsubtract)*mult), (int)((ATri[trinum1].pos3.b-
DECsubtract)*mult))); 
points.insert(CImg<int>::vector((int)((ATri[trinum1].pos1.a-RAsubtract)*mult), (int)((ATri[trinum1].pos1.b-
DECsubtract)*mult))); 
unsigned char color[] = { 1, 255, 1, }; color[0] = rand(); color[1] = rand(); color[2] = rand(); 
if (ATri[trinum1].ld < 1.5) { 
if(trianglecount1==num){ 
imgd1a.draw_line(points, color, (float).8); 
trianglecount1=0; 
} 
trianglecount1++; 
} 
else if (ATri[trinum1].ld>8){ 
if(trianglecount2==num){ 
imgd2a.draw_line(points, color, (float).8); 
trianglecount2=0; 
} 
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trianglecount2++; 
} 
else { 
if(trianglecount3==num){ 
imgd3a.draw_line(points, color, (float).8); //changeback! 
trianglecount3=0; 
} 
trianglecount3++; 
//imgd.draw_line(points, color, .3); 
trinum1++; 
} 
} 
} 
} 
} 
 
trianglecount1=0; trianglecount2=0; trianglecount3=0; 
for(int a=0; a<numpointb-1; a++){ 
if(PointsB[a].alivebit==1) 
for(int b=a+1; b<numpointb-1; b++){ 
if(PointsB[b].alivebit==1) 
for(int c=b+1; c<numpointb-1; c++){ 
if(PointsB[c].alivebit==1) 
if(1){ 
SetTri(&BTri[trinum2], PointsB[a], PointsB[b], PointsB[c], INTRODUCEDERROR); 
CImgList<int> points; 
points.insert(CImg<int>::vector((int)(BTri[trinum2].pos1.a*3/2), (int)(BTri[trinum2].pos1.b*3/2))); 
points.insert(CImg<int>::vector((int)(BTri[trinum2].pos2.a*3/2), (int)(BTri[trinum2].pos2.b*3/2))); 
points.insert(CImg<int>::vector((int)(BTri[trinum2].pos3.a*3/2), (int)(BTri[trinum2].pos3.b*3/2))); 
points.insert(CImg<int>::vector((int)(BTri[trinum2].pos1.a*3/2), (int)(BTri[trinum2].pos1.b*3/2))); 
unsigned char color[] = { 1, 255, 1, }; color[0] = rand(); color[1] = rand(); color[2] = rand(); 
if (BTri[trinum2].ld < 1.5) { 
if(trianglecount1<num) 
imgd1b.draw_line(points, color, (float).8); 
trianglecount1++; 
} 
else if (BTri[trinum2].ld>8){ 
if(trianglecount2<num) 
imgd2b.draw_line(points, color, (float).8); 
trianglecount2++; 
} 
else { 
if(trianglecount3<num) 
imgd3b.draw_line(points, color, (float).8); 
trianglecount3++; 
//imgd.draw_line(points, color, .3); 
trinum2++; 
} 
} 
} 
} 
} 
 
//printing out examples of triangles ignored because they were too scalene, equalateral, OK triangles, and just stars 
if(0){ 
const unsigned char color[] = { 255, 100, 1, }; 



66 
 

for(int i=0; i<numpointa; i++){ 
imgd0a.draw_circle((int)((PointsA[i].RA-RAsubtract)*mult), (int)((PointsA[i].DEC-DECsubtract)*mult), 2, color, 
1); 
imgd1a.draw_circle((int)((PointsA[i].RA-RAsubtract)*mult), (int)((PointsA[i].DEC-DECsubtract)*mult), 1, color, 
1); 
imgd2a.draw_circle((int)((PointsA[i].RA-RAsubtract)*mult), (int)((PointsA[i].DEC-DECsubtract)*mult), 1, color, 
1); 
imgd3a.draw_circle((int)((PointsA[i].RA-RAsubtract)*mult), (int)((PointsA[i].DEC-DECsubtract)*mult), 1, color, 
1); 
} 
for(int i=0; i<numpointb; i++){ 
imgd0b.draw_circle((int)(PointsB[i].RA*3/2), (int)(PointsB[i].DEC*3/2), 2, color, 1); 
imgd1b.draw_circle((int)(PointsB[i].RA*3/2), (int)(PointsB[i].DEC*3/2), 1, color, 1); 
imgd2b.draw_circle((int)(PointsB[i].RA*3/2), (int)(PointsB[i].DEC*3/2), 1, color, 1); 
imgd3b.draw_circle((int)(PointsB[i].RA*3/2), (int)(PointsB[i].DEC*3/2), 1, color, 1); 
} 
CImgDisplay d1(imgd1a,"a <2", 2), d2(imgd2a,"a >10", 2), d3(imgd3a,"a OK", 2), d4(imgd1b,"b <2", 2), 
d5(imgd2b,"b >10", 2), d6(imgd3b,"b OK", 2), d7(imgd0a,"a dots", 2), d8(imgd0b,"b dots", 2); 
while (!d1.is_closed && !d2.is_closed && !d3.is_closed && !d4.is_closed && !d5.is_closed && !d6.is_closed && 
!d7.is_closed && !d8.is_closed) { 
CImgDisplay::wait(d1, d4); 
CImgDisplay::wait(d2, d5); 
CImgDisplay::wait(d3, d6); 
CImgDisplay::wait(d7, d8); 
} 
} 
 
for(int b=0; b<trinum2; b++){ 
for (int a=0; a<trinum1; a++){ 
double diff=sqrt((ATri[a].md-BTri[b].md)*(ATri[a].md-BTri[b].md)+(ATri[a].ld-BTri[b].ld)*(ATri[a].ld-
BTri[b].ld)); 
int tempa=a; 
for(int i=0; i<NUMKEEP; i++){ 
if (diff<BTri[b].currdiff[i]){ 
int movea=BTri[b].CorrTri[i]; 
double movediff=BTri[b].currdiff[i]; 
BTri[b].CorrTri[i]=tempa; 
BTri[b].currdiff[i]=diff; 
tempa=movea; 
diff=movediff; 
} 
} 
} 
for(int i=0; i<NUMKEEP; i++){ 
FindTranslation(&BTri[b], &ATri[BTri[b].CorrTri[i]], i); 
} 
} 
 
double asortit[MAXSTARSIMG*20]; 
double ssortit[MAXSTARSIMG*20]; 
double trasortit[MAXSTARSIMG*20]; 
double tdecsortit[MAXSTARSIMG*20]; 
 
int newtrinum=0; 
for(int i=0; i<trinum2; i++){ 
for(int j=0; j<NUMKEEP; j++) 



67 
 

if(BTri[i].currdiff[j]<.01 && newtrinum < MAXSTARSIMG*20){ 
asortit[newtrinum]=BTri[i].angle[j]; 
ssortit[newtrinum]=BTri[i].scale[j]; 
trasortit[newtrinum]=BTri[i].displacement[j].a; 
tdecsortit[newtrinum]=BTri[i].displacement[j].b; 
BTri[i].onoff[j]=1; 
if(0) if(BTri[i].currdiff[j]<.01){ 
printtriangles(PointsB, numpointb, PointsA, numpointa, ATri, BTri, i, j, RAsubtract, DECsubtract, mult); 
} 
newtrinum++; 
} 
else 
BTri[i].onoff[j]=0; 
} 
 
qsort((void*) asortit, newtrinum, sizeof(double), &cmp); 
qsort((void*) ssortit, newtrinum, sizeof(double), &cmp); 
qsort((void*) trasortit, newtrinum, sizeof(double), &cmp); 
qsort((void*) tdecsortit, newtrinum, sizeof(double), &cmp); 
 
int acounter[50]; 
for(int i=0; i<50; i++){ 
acounter[i]=0; 
} 
int scounter[50]; 
for(int i=0; i<50; i++){ 
scounter[i]=0; 
} 
int counter[2000]; 
 
double numbertosum=0; 
int numberRepeats=0; 
while (numbertosum==0 && numberRepeats<MAXLOOP){ 
double ahigher = 0, alower = 0, shigher = 0, slower = 0, trahigher = 0, tralower = 0, tdechigher = 0, tdeclower = 0; 
//Filtering for Bright Stars 
if (catalogtype==0){ 
int numbins1=FIRSTBINS-10*numberRepeats; 
int numbins2=10;  
if(numbins1<20) 
numbins2=18-numberRepeats; 
 
if(0) for(int i=0; i<newtrinum; i++){ 
printf("anglesort=%f, scalesort=%f\n",asortit[i], ssortit[i]); 
} 
double asortit2[MAXSTARSIMG*20], ssortit2[MAXSTARSIMG*20], trasortit2[MAXSTARSIMG*20], 
tdecsortit2[MAXSTARSIMG*20]; 
int abestbinfill = -1, sbestbinfill = -1, trabestbinfill = -1, tdecbestbinfill = -1, abestbinfill2 = -1, sbestbinfill2 = -1, 
trabestbinfill2 = -1, tdecbestbinfill2 = -1; 
int anglebit=0; 
if (numberRepeats==1) anglebit=1; 
getHistogram(counter, numbins1, asortit, newtrinum, asortit2, &abestbinfill, anglebit); 
checkhistogram(counter, numbins1, 1); 
if(anglebit) 
qsort((void*) asortit, newtrinum, sizeof(double), &cmp); 
qsort((void*) asortit2, abestbinfill, sizeof(double), &cmp); 
getHistogram(counter, numbins1, ssortit, newtrinum, ssortit2, &sbestbinfill); 
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checkhistogram(counter, numbins1, 1); 
getHistogram(counter, numbins1, trasortit, newtrinum, trasortit2, &trabestbinfill); 
checkhistogram(counter, numbins1, 1); 
getHistogram(counter, numbins1, tdecsortit, newtrinum, tdecsortit2, &tdecbestbinfill); 
checkhistogram(counter, numbins1, 1); 
 
double asortitbest[MAXSTARSIMG*20], ssortitbest[MAXSTARSIMG*20], trasortitbest[MAXSTARSIMG*20], 
tdecsortitbest[MAXSTARSIMG*20]; 
getHistogram(counter, numbins2, asortit2, abestbinfill, asortitbest, &abestbinfill2); 
checkhistogram(counter, numbins2, 1); 
getHistogram(counter, numbins2, ssortit2, sbestbinfill, ssortitbest, &sbestbinfill2); 
checkhistogram(counter, numbins2, 1); 
getHistogram(counter, numbins2*2, trasortit2, trabestbinfill, trasortitbest, &trabestbinfill2); 
checkhistogram(counter, numbins2*2, 1); 
getHistogram(counter, numbins2*2, tdecsortit2, tdecbestbinfill, tdecsortitbest, &tdecbestbinfill2); 
checkhistogram(counter, numbins2*2, 1); 
 
alower = asortitbest[0]; 
ahigher = asortitbest[abestbinfill2-1]; 
slower = ssortitbest[0]; 
shigher = ssortitbest[sbestbinfill2-1]; 
tralower = trasortitbest[0]; 
trahigher = trasortitbest[trabestbinfill2-1]; 
tdeclower = tdecsortitbest[0]; 
tdechigher = tdecsortitbest[tdecbestbinfill2-1]; 
 
for(int i=0; i<trinum2; i++){ 
for(int j=0; j<NUMKEEP; j++){ 
if(1) if (BTri[i].angle[j]<alower || BTri[i].angle[j]>ahigher){ 
BTri[i].onoff[j]=0; 
} 
if(1) if (BTri[i].scale[j]<slower || BTri[i].scale[j]>shigher){ 
BTri[i].onoff[j]=0; 
} 
if(1) if (BTri[i].displacement[j].a<tralower || BTri[i].displacement[j].a>trahigher){ 
BTri[i].onoff[j]=0; 
} 
if(1) if (BTri[i].displacement[j].b<tdeclower || BTri[i].displacement[j].b>tdechigher){ 
BTri[i].onoff[j]=0; 
} 
} 
} 
} 
//Filtering for Dim Stars 
else { 
ahigher = Angletomatch*1.05; 
alower = Angletomatch*0.95; 
shigher = Scaletomatch*1.05; 
slower = Scaletomatch*0.95; 
trahigher = Transxtomatch*1.05; 
tralower = Transxtomatch*0.95; 
tdechigher = Transytomatch*1.05; 
tdeclower = Transytomatch*0.95; 
 
for(int i=0; i<trinum2; i++){ 
for(int j=0; j<NUMKEEP; j++){ 
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if(1) if (BTri[i].angle[j]<alower || BTri[i].angle[j]>ahigher){ 
BTri[i].onoff[j]=0; 
} 
if(1) if (BTri[i].scale[j]<slower || BTri[i].scale[j]>shigher){ 
BTri[i].onoff[j]=0; 
} 
if(0) if (BTri[i].displacement[j].a<tralower || BTri[i].displacement[j].a>trahigher){ 
BTri[i].onoff[j]=0; 
} 
if(0) if (BTri[i].displacement[j].b<tdeclower || BTri[i].displacement[j].b>tdechigher){ 
BTri[i].onoff[j]=0; 
} 
} 
} 
} 
 
 
double sumscale=0, sumangle=0, sumtransra=0, sumtransdec=0; 
for(int b=0; b<trinum2; b++){ 
for(int j=0; j<NUMKEEP; j++){ 
//printf("d=%f,s=%f,a=%f,t=<%f,%f>\n", BTri[b].currdiff[j], BTri[b].scale[j], BTri[b].angle[j], 
BTri[b].displacement[j].a, BTri[b].displacement[j].b); 
if(BTri[b].onoff[j]==1){ 
sumscale+=BTri[b].scale[j]; 
sumangle+=BTri[b].angle[j]; 
sumtransra+=BTri[b].displacement[j].a; 
sumtransdec+=BTri[b].displacement[j].b; 
//printf("d=%f,s=%f,a=%f,t=<%f,%f>\n", BTri[b].currdiff[j], BTri[b].scale[j], BTri[b].angle[j], 
BTri[b].displacement[j].a, BTri[b].displacement[j].b); 
//******************** 
//HERE IS THE FANCY PRINTING TRIANGLE FUNCTION TOOOOOONY ************************ 
printtriangles(PointsB, numpointb, PointsA, numpointa, ATri, BTri, b, j, RAsubtract, DECsubtract, mult); 
//******************** 
numbertosum++; 
/* For when doing test data 
if(((BTri[b].check1!=ATri[BTri[b].CorrTri[j]].check1) 
||(BTri[b].check2!=ATri[BTri[b].CorrTri[j]].check2)||(BTri[b].check3!=ATri[BTri[b].CorrTri[j]].check3))){ 
printf("-------Incorrect Counted match:\n"); 
printf("d=%f,s=%f,a=%f\n", ImgTri[b].currdiff[j], ImgTri[b].scale[j], ImgTri[b].angle[j]); 
printf("%d:%d:%d\n", ImgTri[b].check1, ImgTri[b].check2, ImgTri[b].check3); 
printf("%d:%d:%d\n", RefTri[ImgTri[b].CorrTri[j]].check1, RefTri[ImgTri[b].CorrTri[j]].check2, 
RefTri[ImgTri[b].CorrTri[j]].check3); 
printf("-------\n"); 
printf("* "); 
} 
else{ 
printf(" "); 
} 
*/ 
} 
//else 
//printtriangles(PointsB, numpointb, PointsA, numpointa, ATri, BTri, b, j, RAsubtract, DECsubtract, mult); 
} 
} 
*nScale=sumscale/numbertosum; 
*nAngle=sumangle/numbertosum; 
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*nTransx=sumtransra/numbertosum; 
*nTransy=sumtransdec/numbertosum; 
if(numbertosum==0){ 
printf("difficult to histogram\n"); 
*nScale=(shigher+slower)/2; 
*nAngle=(ahigher+alower)/2; 
*nTransx=(trahigher+tralower)/2; 
*nTransy=(tdechigher+tdeclower)/2; 
} 
printf("\n"); 
numberRepeats++; 
} 
} 
 
int centroid(char *imgName, int *numStar, STAR starCent[]) { 
LARGE_INTEGER start, end, freq, start2, end2, freq2, start3, end3, freq3, start4, end4, freq4; 
CImg<unsigned char> img(imgName); 
img=img.get_channel(0); 
CImg<unsigned char> bin(532,535); 
CImg<unsigned char> bin2(532,535); 
STAR stars[MAX_STAR_NUM]; 
int starNum=0; //total number of stars 
int thres = 0; 
int cnt = 0; //total number of pixels in a star 
PIX pixel; 
float xf, yf; //float x and y coordinates for centroid computation 
float brightness; //total brightness 
int tmp; 
STAR tmpStar; 
 
 
int numrepeat=0; 
int thresmax=MAXTHRES; 
int thresmin=1; 
 
do { //adjust for images with less brightness 
starNum=0; 
thres=(int)(thresmax+thresmin)/2; 
if(numrepeat==0) 
thres=INITIALTHRES; 
if(DIIFICULTIMAGE) 
thres=INITIALTHRES-30*numrepeat; 
if(1) for(int i=0; i< MAX_STAR_NUM; i++){ 
stars[i].area=0; 
stars[i].brightness=0; 
} 
if(CEN_PERFORM) 
QueryPerformanceCounter(&start); 
 
//Convert the image into binary 
//img.display(); 
bin = img.get_threshold(thres); 
 
//bin.display("bin"); 
if(CEN_PERFORM){ 
QueryPerformanceCounter(&end); 
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QueryPerformanceFrequency(&freq); 
QueryPerformanceCounter(&start2); 
} 
 
/*Filter,Remove noise. 'Shrink' function. 
bin2 = bin; 
if (1) for (int i=1; i<bin2.dimx()-1; i++) { 
for (int j=1; j<bin2.dimy()-1; j++) { 
int a = bin(i, j); 
int b = bin2(i,j)=bin(i+1,j)|bin(i-1,j)|bin(i,j+1)|bin(i,j-1)|bin(i,j); 
double fd = 213.; 
} 
}*/ 
 
bin2 = bin.get_blur_median(); 
 
//bin2.display("filtered"); 
 
bin2 = bin2.get_blur_median(); 
bin2 = bin2.get_blur_median(); 
//bin2.display("filtered3"); 
 
bin2.label_regions(); 
//bin2.display("label"); 
 
if(CEN_PERFORM){ 
QueryPerformanceCounter(&end2); 
QueryPerformanceFrequency(&freq2); 
QueryPerformanceCounter(&start3); 
} 
if (1) for (int i=0; i<bin2.dimx(); i++) { 
for (int j=0; j<bin2.dimy(); j++) { 
int k = bin2(i, j)-1; 
if (k < 0) continue; 
if (k == 0) 
double fdfdf = 234.; 
pixel.x=i; pixel.y=j; pixel.val = img(i,j); 
if(stars[k].area<MAX_STAR_SIZE && k < MAX_STAR_NUM) 
stars[k].pixels[stars[k].area++] = pixel; 
if(k+1 > starNum) 
starNum=k+1; 
} 
} 
printf("\n current starnum is %d, thres was %d\n", starNum, thres); 
 
if(CEN_PERFORM){ 
QueryPerformanceCounter(&end3); 
QueryPerformanceFrequency(&freq3); 
QueryPerformanceCounter(&start4); 
} 
 
//compute star centroid and brightness 
if(1) for (int k=0; k<starNum; k++) { 
xf = 0; 
yf = 0; 
brightness = 0; 
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for (int i=0; i<stars[k].area; i++) { 
xf += (stars[k].pixels[i].x*stars[k].pixels[i].val); 
yf += (stars[k].pixels[i].y*stars[k].pixels[i].val); 
brightness += stars[k].pixels[i].val; 
} 
stars[k].cent.x = xf/brightness; 
stars[k].cent.y = yf/brightness; 
stars[k].brightness = brightness/stars[k].area; 
} 
 
cnt = 0; 
for (int k=0; k<starNum; k++) { 
tmp = cnt; 
for (int i=cnt; i<starNum; i++) { 
if (stars[i].area > stars[tmp].area) { 
tmp = i; 
} 
} 
tmpStar = stars[cnt]; 
stars[cnt] = stars[tmp]; 
stars[tmp] = tmpStar; 
cnt++; 
} 
 
if(0) for (int k=0; k<starNum; k++) { 
printf("star %d: (%f, %f), area %d, bright %f\n", k, stars[k].cent.x, stars[k].cent.y, stars[k].area, stars[k].brightness); 
} 
 
*numStar = starNum; 
memcpy(&starCent[0], &stars[0], (starNum * sizeof(STAR))); 
numrepeat++; 
if(abs(WANTEDSTARNUM-starNum)>NUMROOM){ 
if(starNum>WANTEDSTARNUM) 
thresmax=thres; // too many stars 
else 
thresmin=thres; // too few, raise the minimum 
} 
if(CEN_PERFORM){ 
QueryPerformanceCounter(&end4); 
QueryPerformanceFrequency(&freq4); 
double deltat = (double)(end.QuadPart - start.QuadPart)/(double)freq.QuadPart; 
printf("\n centroid timer1 time=%f \n", deltat); 
double deltat2 = (double)(end2.QuadPart - start2.QuadPart)/(double)freq2.QuadPart; 
printf("\n centroid timer2 time=%f \n", deltat2); 
double deltat3 = (double)(end3.QuadPart - start3.QuadPart)/(double)freq3.QuadPart; 
printf("\n centroid timer3 time=%f \n", deltat3); 
double deltat4 = (double)(end4.QuadPart - start4.QuadPart)/(double)freq4.QuadPart; 
printf("\n centroid timer4 time=%f \n", deltat4); 
} 
} while(abs(WANTEDSTARNUM-starNum)>NUMROOM && numrepeat<MAXREPEAT); 
 
return 0; 
} 
 
int main() { 
//test (centroids) 
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int num; 
int num2; 
static STAR centroids[MAX_STAR_NUM]; 
static STAR centroids2[MAX_STAR_NUM]; 
 
LARGE_INTEGER start; 
QueryPerformanceCounter(&start); 
 
printf("centroids IMAGE 1 \n"); 
centroid("hol1a.bmp", &num, centroids); 
printf("centroids IMAGE 2 \n"); 
centroid("hol1b.bmp", &num2, centroids2); 
 
LARGE_INTEGER end, freq; 
QueryPerformanceCounter(&end); 
QueryPerformanceFrequency(&freq); 
LARGE_INTEGER start2; 
QueryPerformanceCounter(&start2); 
 
 
/*** 
Reference Star Section 
***/ 
//making fake imput to play with 
ifstream fin ("hol1.txt"); 
int allstarnum=-1; 
fin >> allstarnum; 
StarArray RefStars(allstarnum); //bright 
StarArray dimRefStars(allstarnum); 
StarArray allRefStars(allstarnum); 
for(int i=0; i<allstarnum; i++){ 
fin >> allRefStars[i].RA; 
fin >> allRefStars[i].DEC; 
fin >> allRefStars[i].pmRA; 
fin >> allRefStars[i].pmDEC; 
fin >> allRefStars[i].vMAG; 
allRefStars[i].checknum=i; 
allRefStars[i].alivebit=1; 
fin >> allRefStars[i].catalogtype; 
} 
 
int brightstarnum=0; 
int dimstarnum=0; 
for (int i=0; i< allstarnum; i++){ 
if(allRefStars[i].catalogtype==0){ 
RefStars[brightstarnum]=allRefStars[i]; 
brightstarnum++; 
} 
else if(allRefStars[i].catalogtype==1){ 
dimRefStars[dimstarnum]=allRefStars[i]; 
dimstarnum++; 
} 
} 
 
if(brightstarnum>NUMREFSTARS){ 
//pick the top NUMREFSTARS brightest stars from the bright star catalog (0) 
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double sortit0[MAX_STAR_NUM]; 
int numbright=0; 
for(int i=0; i<brightstarnum; i++){ 
if(RefStars[i].catalogtype==0){ 
sortit0[i]=RefStars[i].vMAG; 
numbright++; 
} 
} 
qsort((void*) sortit0, numbright, sizeof(double), &cmp); 
double minmag=sortit0[brightstarnum-NUMREFSTARS]; 
for(int i=0; i<brightstarnum; i++){ 
if(RefStars[i].vMAG<minmag && RefStars[i].catalogtype==0) 
RefStars[i].alivebit=0; 
} 
} 
 
if(dimstarnum>NUMREFSTARS){ 
//pick the middle NUMREFSTARS dim stars from the dim star catalog (1) 
double sortit0[MAX_STAR_NUM]; 
int numbright=0; 
for(int i=0; i<dimstarnum; i++){ 
if(dimRefStars[i].catalogtype==1){ 
sortit0[i]=dimRefStars[i].vMAG; 
numbright++; 
} 
} 
qsort((void*) sortit0, numbright, sizeof(double), &cmp); 
int dimstarnum_min = int(dimstarnum/3); 
int dimstarnum_max = int(2*dimstarnum/3); 
double maxmag=sortit0[dimstarnum_max]; 
double minmag=sortit0[dimstarnum_min]; 
for(int i=0; i<dimstarnum; i++){ 
if(dimRefStars[i].vMAG>maxmag || dimRefStars[i].vMAG<minmag && dimRefStars[i].catalogtype==1) 
dimRefStars[i].alivebit=0; 
} 
} 
 
/*** 
Image Star Section 
***/ 
StarArray ImgStarsA(num); 
StarArray ImgStarsB(num2); 
StarArray ImgStarsDim(num2); 
int starnum2a=0; 
int starnum2b=0; 
int starnumdim=0; 
if(TESTDATAMODE){ 
starnum2a=brightstarnum; //only uses one picture 
for(int i=0; i<brightstarnum; i++){ //faking data 
double theta=180*pi/180; //degrees rotated clockwise of data images from ref imgs 
int j=i; 
double introducedscale=1; 
double offset1=.42; 
double offset2=.36; 
ImgStarsA[i].pmDEC=-1; 
ImgStarsA[i].pmRA=-1; 
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ImgStarsA[i].vMAG=RefStars[j].vMAG*1.3; 
ImgStarsA[i].RA= ( cos(theta)*(RefStars[j].RA+offset1)-sin(theta)*(RefStars[j].DEC+offset2))*introducedscale; 
//<RA,Dec> 
ImgStarsA[i].DEC=( sin(theta)*(RefStars[j].RA+offset1)+cos(theta)*(RefStars[j].DEC+offset2))*introducedscale; 
ImgStarsA[i].checknum=RefStars[j].checknum; 
ImgStarsA[i].alivebit=1; 
} 
} 
else{ 
double maxbrightA=1000; 
double maxbrightB=1000; 
double maxbrightdim=1000; 
if(num>NUMIMGSTARS){ 
double sortbrightnessA[MAXSTARSIMG]; 
for(int i=0; i<num; i++){ 
sortbrightnessA[i]=centroids[i].brightness; 
} 
qsort((void*) sortbrightnessA, num, sizeof(double), &cmp); 
maxbrightA=sortbrightnessA[NUMIMGSTARS]; //Hard coded assertion that we deal with NUMIMGSTARS image 
stars 
} 
for(int i=0; i<num; i++){ 
if(centroids[i].brightness<maxbrightA){ 
ImgStarsA[starnum2a].vMAG=centroids[i].brightness; 
ImgStarsA[starnum2a].RA= centroids[i].cent.x; //<RA,Dec> 
ImgStarsA[starnum2a].DEC=centroids[i].cent.y; 
ImgStarsA[starnum2a].pmDEC=-1; 
ImgStarsA[starnum2a].pmRA=-1; 
ImgStarsA[starnum2a].checknum=-1; 
ImgStarsA[starnum2a].alivebit=1; 
starnum2a++; 
} 
} 
if(num2>NUMIMGSTARS){ 
double sortbrightnessB[MAXSTARSIMG]; 
for(int i=0; i<num2; i++){ 
sortbrightnessB[i]=centroids2[i].brightness; 
} 
qsort((void*) sortbrightnessB, num2, sizeof(double), &cmp); 
maxbrightB=sortbrightnessB[NUMIMGSTARS]; //Hard coded assertion that we deal with NUMIMGSTARS image 
stars 
maxbrightdim=sortbrightnessB[num2-NUMIMGSTARS]; //Hard coded assertion that we deal with 
NUMIMGSTARS image stars 
} 
for(int i=0; i<num2; i++){ 
if(centroids2[i].brightness<maxbrightB){ 
ImgStarsB[starnum2b].vMAG=centroids2[i].brightness; 
ImgStarsB[starnum2b].RA= centroids2[i].cent.x; //<RA,Dec> 
ImgStarsB[starnum2b].DEC=centroids2[i].cent.y; 
ImgStarsB[starnum2b].pmDEC=-1; 
ImgStarsB[starnum2b].pmRA=-1; 
ImgStarsB[starnum2b].checknum=-1; 
ImgStarsB[starnum2b].alivebit=1; 
starnum2b++; 
} 
if(centroids2[i].brightness>=maxbrightdim){ 
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ImgStarsDim[starnumdim].vMAG=centroids2[i].brightness; 
ImgStarsDim[starnumdim].RA= centroids2[i].cent.x; //<RA,Dec> 
ImgStarsDim[starnumdim].DEC=centroids2[i].cent.y; 
ImgStarsDim[starnumdim].pmDEC=-1; 
ImgStarsDim[starnumdim].pmRA=-1; 
ImgStarsDim[starnumdim].checknum=-1; 
ImgStarsDim[starnumdim].alivebit=1; 
starnumdim++; 
} 
} 
} 
 
//making triangles for image and reference stars 
 
//for(int i=0; i<starnum2b; i++){ 
// printf("%d,%f,%f\n",i, ImgStarsB[i].RA,ImgStarsB[i].DEC); 
//} 
//for(int i=0; i<starnum2a; i++){ 
// printf("%d,%f,%f\n",i, ImgStarsA[i].RA,ImgStarsA[i].DEC); 
//} 
 
 
double scaleII=0, rotationII=0, translationxII=0, translationyII=0; 
FindTriangle(ImgStarsB, starnum2b, ImgStarsA, starnum2a, 0, &scaleII, &rotationII, &translationxII, 
&translationyII); 
printf("**********\nImageA->ImageB::Scale=%f,Angle=%f,trans=<%f,%f>\n**********\n", scaleII, rotationII, 
translationxII, translationyII); 
 
double scaleIR=0, rotationIR=0, translationxIR=0, translationyIR=0; 
FindTriangle(ImgStarsB, starnum2b, RefStars, brightstarnum, 0, &scaleIR, &rotationIR, &translationxIR, 
&translationyIR, 0, 0, 0, 0, 183.07, 3.26, 1500);//38.39, 5.1, 2200.); 
printf("**********\nImageB->Reference::Scale=%f,Angle=%f,trans=<%f,%f>\n**********\n ", scaleIR, 
rotationIR, translationxIR, translationyIR); 
 
StarArray ImgStarsC(starnum2b); //ImgStarsB, but converted into the A frame. 
for(int i=0; i<starnum2b; i++){ 
ImgStarsC[i].vMAG=ImgStarsB[i].vMAG; 
ImgStarsC[i].pmDEC=ImgStarsB[i].pmDEC; 
ImgStarsC[i].pmRA=ImgStarsB[i].pmRA; 
ImgStarsC[i].checknum=ImgStarsB[i].checknum; 
ImgStarsC[i].alivebit=ImgStarsB[i].alivebit; 
double answerx=0; double answery=0; 
XYtoRADEC(ImgStarsB[i].RA, ImgStarsB[i].DEC, scaleII, rotationII, translationxII, translationyII, &answerx, 
&answery); 
ImgStarsC[i].RA= answerx; //<RA,Dec> 
ImgStarsC[i].DEC= answery; 
} 
 
for(int i=0; i<starnum2b; i++){ 
double Pdistance=100; 
for(int j=0; j<num; j++){ 
double Ndistance=sqrt((ImgStarsC[i].RA-centroids[j].cent.x)*(ImgStarsC[i].RA-
centroids[j].cent.x)+(ImgStarsC[i].DEC-centroids[j].cent.y)*(ImgStarsC[i].DEC-centroids[j].cent.y)); 
if(Ndistance<Pdistance) 
Pdistance=Ndistance; 
} 
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if(Pdistance>3){ //centroids more than 3 pixels apart=ASTEROID 
double answerx=0; double answery=0; 
XYtoRADEC(ImgStarsC[i].RA, ImgStarsC[i].DEC, scaleIR, rotationIR, translationxIR, translationyIR, &answerx, 
&answery); 
double currdist=100; 
for(int j=0; j<dimstarnum; j++){ 
double Adistance=sqrt((answerx-dimRefStars[j].RA)*(answerx-dimRefStars[j].RA)+(answery-
dimRefStars[j].DEC)*(answery-dimRefStars[j].DEC)); 
if(Adistance<currdist) 
currdist=Adistance; 
} 
if(currdist<.03) 
printf("Possible Asteroid at XY(%f,%f) RADEC(%f,%f)\n",ImgStarsC[i].RA, ImgStarsC[i].DEC, answerx, 
answery); 
} 
} 
 
for (int k=0; k<starnum2b; k++) { 
double answerx=0; double answery=0; 
XYtoRADEC(ImgStarsC[k].RA, ImgStarsC[k].DEC, scaleIR, rotationIR, translationxIR, translationyIR, &answerx, 
&answery); 
ImgStarsC[k].RA= answerx; //<RA,Dec> 
ImgStarsC[k].DEC= answery; 
printf("star %d: %f %f %f %f\n", k, centroids2[k].cent.x, centroids2[k].cent.y, ImgStarsC[k].RA, 
ImgStarsC[k].DEC); 
} 
 
LARGE_INTEGER end2, freq2; 
QueryPerformanceCounter(&end2); 
QueryPerformanceFrequency(&freq2); 
double deltat = (double)(end.QuadPart - start.QuadPart)/(double)freq.QuadPart; 
printf("\n centroid body timer time=%f \n", deltat); 
double deltat2 = (double)(end2.QuadPart - start2.QuadPart)/(double)freq2.QuadPart; 
printf("\n program body timer time=%f \n", deltat2); 
printf("ending program\n"); 
return 0; 

} 
 

12.5 Orbital Determination Guide – Python and C 

This code uses the Method of Gauss for a two-body program to calculate the orbital 
elements for every subset of three observations. An initial program was written in Python, but 
then converted into the C language for compatibility with the GPU. The python version of the 
code can be found below and the C version is part of the GPU code. The basic code structure is 
as follows. 

First, we read in a file that contains the time, RA, and Dec for each observation. Then, the 
function orbits is called up which actually calculates the orbital elements of an orbit based on 
any three observations. However, to solve for the orbital elements, it is necessary to define the 
Earth-Sun vector at the times of observations. Therefore, inside the orbits function, there is an 
R-vector generator, or the Earth-Sun vector. This section essentially takes the known orbital 
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elements of the Earth, and plugs them into an ephemeris generator. From the orbital elements, the 
function is able to generate the vector relating the positions of the Earth and the Sun at any time. 
Using this vector, we can solve the fundamental vector triangle problem and determine the six 
orbital elements for an asteroid based on three observations. We can then loop the orbits 
function for every possible subset of three observations. From the list of all orbital element sets 
generated, we can go through and determine which orbital element sets are reasonable. We then 
cross-reference these orbital elements with the JPL-Horizons online asteroid database.  

However, the generated orbital elements are not very accurate. In particular, the R-vector 
generator is not accurate due to the fact that more than two bodies are involved. There are many 
perturbations in the orbit of the Earth itself, and while these may not make a big initial 
difference, they do affect the final answer a great deal. Therefore, we looked elsewhere to find an 
n-body simulator, in which gravitational forces from all objects including planets, moons, and 
asteroids are accounted for.  

 
12.6 Ephemeris Generator, Zeno - C 

We found a site http://home.att.net/~srschmitt/planetorbits.html that offers a free 
ephemeris generator written in Zeno. Although we had an ephemeris generator written in Python, 
it did not account for variations in the orbital elements of the planets, which is crucial in 
generating an accurate Earth-Sun vector. We have since converted the program into the C 
language and assimilated it into our orbit determination code. A brief description of this process 
is as follows: 

Given the time, it is possible to calculate the subtle changes in the orbital elements of the 
Earth. Using these modified orbital elements, we can then calculate the heliocentric radius of the 
Earth, based on the semi-major axis and eccentricity. We then must convert these coordinates 
into geocentric coordinates of the Sun with respect to the Earth. This will allow us to calculate 
the vector that relates the position of the Earth to the Sun at any time.  

 
12.7 Python Orbit Determination Code 

from __future__ import division 
from visual import* 
from visual.graph import* 
from math import* 
 
########################################################################## 
#CONSTANTS 
########################################################################## 
k=.01720209895 
cl=173.1446 
mew=1 
pi=4*arctan(1) 
epsilon = 23.45/180*pi 
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########################################################################## 
#FUNCTIONS 
########################################################################## 
def convertdms2d(x,y,z): 
    degreeonly=x + y/60. + z/3600. 
    return degreeonly 
 
def converthms2d(x,y,z): 
    degreeonly=(x + y/60. + z/3600.)*15. 
    return degreeonly 
 
def convertd2rad(deg): 
    return deg*pi/180 
 
def r2d (radian): 
    return radian*180/pi 
 
def equation(a,b,c,r2): 
    return r2**8+a*r2**6+b*r2**3+c 
 
def derv (a,b,c,r2): 
    return 8.*r2**7.+6.*a*r2**5.+3.*b*r2**2. 
 
def newson (a, b, c, userguess): 
    slope=derv (a,b,c,userguess) 
    yintercept=equation(a,b,c,userguess)-(slope)*userguess 
    xintercept=-1*yintercept/slope 
    return xintercept 
 
def findangle(sin,cos): 
    arcsin=r2d(asin(sin)) 
    arccos=r2d(acos(cos)) 
#if there the cos and sin input'ed don't match up 
# if it is in the first quad the arccos and arcsin 
#are positive and between 0 and 90 
    if arcsin>0 and arccos < 90: 
        return arcsin 
# if arccos is more than 90 and less than 180 and arcsin is 
#between 0 and 90, it is in the 2nd quad 
    if arcsin>0 and arccos > 90: 
        return arccos 
#if arccos is between 0 and 90 and arcsin is in the 4th quad, 
#it is in the 4th quad 
    if arcsin<0 and arccos < 90: 
        return arcsin+360 
#if arccos is in 2nd quad and arcsin is in 4th quad, angle is in 3rd quad 
    if arcsin<0 and arccos > 90: 
        return 180+(180-arccos) 
#for the 0, 90, 180, and 270 
#0 
    if arcsin==0 and arccos==0: 
        return arcsin 
#90 
    if arcsin==90 and arccos==180: 
        return arccos 
#180 
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    if arcsin==0 and arccos==180: 
        return arccos 
#270 
    if arcsin==-90 and arccos==0: 
        return arcsin 
     
def orbitalvector(a,e,E): 
    x=a*cos(E)-a*e 
    y=a*sqrt(1-e**2)*sin(E) 
    z=0 
    orb_orbital=[x,y,z] 
    return orb_orbital 
 
def rtoecliptic(x, y, z, omega, i, omegacap): 
    x1=x*cos(omega)-y*sin(omega) 
    y1=x*sin(omega)+y*cos(omega) 
    z1=z 
    x2=x1 
    y2=y1*cos(i)-z1*sin(i) 
    z2=y1*sin(i)+z1*cos(i) 
    xec=x2*cos(omegacap)-y2*sin(omegacap) 
    yec=x2*sin(omegacap)+y2*cos(omegacap) 
    zec=z2 
    orb_eccliptic=[xec,yec,zec] 
    return orb_eccliptic 
 
def ecliptictoequitorial(xec, yec, zec, epsilon): 
    xeq=xec 
    yeq=yec*cos(epsilon)-zec*sin(epsilon) 
    zeq=yec*sin(epsilon)+zec*cos(epsilon) 
    orb_equitorial=[xeq, yeq, zeq] 
    return orb_equitorial 
 
def findE(M, e): 
    EGuess=M         
    MGuess=EGuess-e*sin(EGuess) 
    while abs(M-MGuess)>.000000000000000001: 
        MGuess=EGuess-e*sin(EGuess) 
        E=(M-MGuess)/(1-e*cos(EGuess))+EGuess 
        EGuess=E 
    return E 
########################################################################## 
#ORBIT DETERMINATION FUNCTION 
########################################################################## 
def orbits(t1, t2, t3, ra1, ra2, ra3, dec1, dec2, dec3): 
#Calculate L Vectors 
    L1=vector((cos(dec1)*cos(ra1)), cos(dec1)*sin(ra1),sin(dec1)) 
    L2=vector((cos(dec2)*cos(ra2)), cos(dec2)*sin(ra2),sin(dec2)) 
    L3=vector((cos(dec3)*cos(ra3)), cos(dec3)*sin(ra3),sin(dec3)) 
 
#Calculate proper time? 
    tal1=k*(t1-t2) 
    tal2=0. 
    tal3=k*(t3-t2) 
 
#Calculate R Vectors 
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#Earth Orbital Elements 
    a=1.000732110928368E+00 
    e=1.599910197101524E-02 
    i=1.509328650209302E-03*pi/180 
    omegacap=1.242780078662596E+02*pi/180 
    omegasmall=3.392836473925709E+02*pi/180 
    M2=1.784467221663580E+02*pi/180 
    tmid=2453555.50000 
    teph1=t1 
    teph2=t2 
    teph3=t3     
 
    ########################################################################## 
    #GENERATE R VECTORS 
    ########################################################################## 
    n=k*sqrt(mew/a**3) 
    Meph1=n*(teph1-tmid)+M2 
    Meph2=n*(teph2-tmid)+M2 
    Meph3=n*(teph3-tmid)+M2 
 
    E1=findE(Meph1, e) 
    E2=findE(Meph2, e) 
    E3=findE(Meph3, e) 
 
    r_orb1=orbitalvector(a,e,E1) 
    r_orb2=orbitalvector(a,e,E2) 
    r_orb3=orbitalvector(a,e,E3) 
 
    r_ec1=rtoecliptic(r_orb1[0], r_orb1[1], r_orb1[2], omegasmall, i, omegacap) 
    r_ec2=rtoecliptic(r_orb2[0], r_orb2[1], r_orb2[2], omegasmall, i, omegacap) 
    r_ec3=rtoecliptic(r_orb3[0], r_orb3[1], r_orb3[2], omegasmall, i, omegacap) 
 
    R1=ecliptictoequitorial(r_ec1[0], r_ec1[1], r_ec1[2], epsilon) 
    R2=ecliptictoequitorial(r_ec2[0], r_ec2[1], r_ec2[2], epsilon) 
    R3=ecliptictoequitorial(r_ec3[0], r_ec3[1], r_ec3[2], epsilon) 
    R1=(-R1[0],-R1[1],-R1[2]) 
    R2=(-R2[0],-R2[1],-R2[2]) 
    R3=(-R3[0],-R3[1],-R3[2]) 
 
    #R1=(9.350118648932805E-01, -3.009490457932475E-01, -1.304759343912905E-01) 
    #R2=(9.919360806588228E-01, -6.891858264346408E-02, -2.987856846017327E-02) 
    #R3=(9.071410046558456E-01, 3.932587816205667E-01, 1.704880435424688E-01) 
 
    print "R1=", R1 
    print "R2=", R2 
    print "R3=", R3 
     
#Define the D values 
    d0=dot(L3,(cross(L1,L2))) 
    d11=dot(L3,(cross(R1,L2))) 
    d12=dot(L3,(cross(R2,L2))) 
    d13=dot(L3,(cross(R3,L2))) 
    d21=dot(L3,(cross(L1,R1))) 
    d22=dot(L3,(cross(L1,R2))) 
    d23=dot(L3,(cross(L1,R3))) 
    d31=dot(L1,(cross(L2,R1))) 
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    d32=dot(L1,(cross(L2,R2))) 
    d33=dot(L1,(cross(L2,R3))) 
 
#Do calculation stuff 
    dtal=tal3-tal1 
    A1=tal3/dtal 
    A3=-tal1/dtal 
    B1=A1/6*(dtal**2-tal3**2) 
    B3=A3/6*(dtal**2-tal1**2) 
            
#Evaluate A,B,E,F 
    A=-(A1*d21-d22+A3*d23)/d0 
    B=-(B1*d21+B3*d23)/d0 
    E=-2*(dot(L2,R2)) 
    F=dot(R2,R2) 
            
#Evaluate a,b,c coefficents 
    a=-(A**2+A*E+F) 
    b=-mew*(2*A*B+B*E) 
    c=-mew**2*B**2 
 
#Newton's Method Thing 
    guess = 1. 
    answer=newson(a, b, c, guess) 
#If the user actually guesses the zero 
    if equation(a,b,c,guess)==0: 
        print str(firstguess) +"good guess" 
#Continue executing Newton's Method 
    else: 
        while abs((newson(a, b, c, answer)-answer))>=1*10**-8: 
            answer=newson(a,b,c,answer) 
    r2=answer 
 
#Define approx f, g values 
    u2=mew/r2**3 
    f1=1-(u2/2)*tal1**2 
    f3=1-(u2/2)*tal3**2 
    g1=tal1-(u2/6)*(tal1**3) 
    g3=tal3-(u2/6)*(tal3**3) 
            
#Get the coefficents 
    C1=g3/(f1*g3-f3*g1) 
    C3=-g1/(f1*g3-f3*g1) 
    C2=-1 
#Find the P's 
    P1=(C1*d11+C2*d12+C3*d13)/(C1*d0) 
    P2=(C1*d21+C2*d22+C3*d23)/(C2*d0) 
    P3=(C1*d31+C2*d32+C3*d33)/(C3*d0) 
#Finding rvec1, rvec2, rvec3 
    rvec1=P1*L1-R1 
    rvec2=P2*L2-R2 
    rvec3=P3*L3-R3 
#Evaluate d coefficients 
    d1=f3/(f3*g1-f1*g3) 
    d3=-f1/(f3*g1-f1*g3) 
#Find derv of rvec2 
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    dervrvec2=d1*rvec1+d3*rvec3 
#Loop 
    oldP2=P2+10 
    while abs(oldP2-P2)>.00000001: 
#16.1 correction for light time travel 
        oldP2=P2 
        t1c=t1-P1/173.1446 
        t2c=t2-P2/173.1446 
        t3c=t3-P3/173.1446 
        tal1c=k*(t1c-t2c) 
        tal3c=k*(t3c-t2c) 
        dtal=tal3c-tal1c 
    #16.2 define again the f and g 
        zeta2=dot(rvec2,dervrvec2)/2 
        u2=mew/(mag(rvec2)**3) 
        Q2=dot(dervrvec2,dervrvec2)/(mag(rvec2)**2)-u2 
        f1=1-(u2/2)*(tal1c**2)+u2*zeta2/2*(tal1c**3)+(1/24)*(3*u2*Q2-15*u2*zeta2**2+u2**2)*(tal1c)**4 
        f3=1-(u2/2)*(tal3c**2)+u2*zeta2/2*(tal3c**3)+(1/24)*(3*u2*Q2-15*u2*zeta2**2+u2**2)*(tal3c)**4 
        g1=tal1c-(u2/6)*(tal1c**3)+u2*zeta2/4*tal1c**4 
        g3=tal3c-(u2/6)*(tal3c**3)+u2*zeta2/4*tal3c**4 
    #16.3 Redo of all steps 11-15 
        #11 get the coefficents 
        C1=g3/(f1*g3-f3*g1) 
        C3=-g1/(f1*g3-f3*g1) 
        C2=-1 
    #12/16 find the P's 
        P1=(C1*d11+C2*d12+C3*d13)/(C1*d0) 
        P2=(C1*d21+C2*d22+C3*d23)/(C2*d0) 
        P3=(C1*d31+C2*d32+C3*d33)/(C3*d0) 
    #13 Finding rvec1, rvec2, rvec3 
        rvec1=P1*L1-R1 
        rvec2=P2*L2-R2 
        rvec3=P3*L3-R3 
    #14 evaluate d coefficients 
        d1=f3/(f3*g1-f1*g3) 
        d3=-f1/(f3*g1-f1*g3) 
    #15 find derv of rvec2 
        dervrvec2=d1*rvec1+d3*rvec3 
 
#Convert rvec2 and dervrvec2 to ecliptic 
    eclip=23.45*pi/180 
    rvec2ec=vector(rvec2.x,rvec2.y*cos(eclip)+rvec2.z*sin(eclip),-rvec2.y*sin(eclip)+rvec2.z*cos(eclip)) 
    dervrvec2ec=vector(dervrvec2.x,dervrvec2.y*cos(eclip)+dervrvec2.z*sin(eclip),-
dervrvec2.y*sin(eclip)+dervrvec2.z*cos(eclip)) 
#18find h#################################################################################### 
    h=cross(rvec2ec,dervrvec2ec) 
#19 Find 
a########################################################################################## 
    a=((2/mag(rvec2ec)-dot(dervrvec2ec,dervrvec2ec)/mew))**-1 
    print "the value of a is " + str(a) 
#20 the value of 
e############################################################################################
# 
    ecc=sqrt(1-dot(h,h)/(mew*a)) 
    print "the value of e is " + str(ecc) 
#find 
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i#############################################################################################
##############Put ur text here 
    i=acos(h.z/mag(h)) 
    print "the value of i is " + str(r2d(i)) 
#22 finding 
omega########################################################################################
####### 
    cosomegacap=-h.y/(mag(h)*sin(i)) 
    sinomegacap=h.x/(mag(h)*sin(i)) 
    cosangle=cosomegacap 
    sinangle=sinomegacap 
    omegacap=findangle(sinangle,cosangle) 
    print "the value of capital omega is " + str(omegacap) 
#Step 23 finding 
U############################################################################################
########### 
    cosU=(rvec2ec.x*cos(omegacap*pi/180)+rvec2ec.y*sin(omegacap*pi/180))/mag(rvec2ec) 
    sinU=(rvec2ec.z/(mag(rvec2ec)*sin(i))) 
    U=findangle(sinU,cosU) 
#Step 24 finding 
nu###########################################################################################
###################### 
    cosnu=(1/ecc)*(a*(1-ecc**2)/mag(rvec2ec)-1) 
    sinnu=(a*(1-ecc**2)/ecc * dot(dervrvec2ec,rvec2ec)/(mag(h)*mag(rvec2ec))) 
    nu = findangle(sinnu,cosnu) 
#step 25 
omegasmall###################################################################################
################## 
    omegasmall=U-nu 
    if omegasmall<0: 
        omegasmall=omegasmall+360 
    print "the value of small omega " + str(omegasmall) 
#Step 26 Get 
esp##########################################################################################
############## 
    if nu<0: 
        nu=nu+360 
    if nu>180: 
        esp=360-(acos(1/ecc*(1-mag(rvec2ec)/a))*180/pi) 
    if nu<180: 
        esp= acos (1/ecc*(1-mag(rvec2ec)/a))*180/pi 
#Step 27 Get M 
#############################################################################################
############ 
    M=convertd2rad(esp)-ecc*sin(convertd2rad(esp)) 
    Mprint=M*180/pi 
    print "the value of M is " + str(Mprint) 
    orbelements = zeros(6, Float) 
    orbelements[0] = a 
    orbelements[1] = e 
    orbelements[2] = i 
    orbelements[3] = omegacap 
    orbelements[4] = omegasmall 
    orbelements[5] = Mprint 
    return orbelements 
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########################################################################## 
#INPUT FROM FILES 
########################################################################## 
file1=open("C:\Users/tony huang/Desktop/test.txt", "r") 
 
#Set up arrays 
time = zeros(3, Float) 
RAhr = zeros(3, Float) 
RAmin = zeros(3, Float) 
RAsec = zeros(3, Float) 
DECdeg = zeros(3, Float) 
DECmin = zeros(3, Float) 
DECsec = zeros(3, Float) 
decdeg = zeros(3, Float) 
radeg = zeros(3, Float) 
ra = zeros(3, Float) 
dec = zeros(3, Float) 
 
for i in range(0,3): 
    data=file1.readline() 
    asteroid=data.split() 
    time[i]=float(asteroid[0]) 
    RAhr[i]=float(asteroid[1]) 
    RAmin[i]=float(asteroid[2]) 
    RAsec[i]=float(asteroid[3]) 
    DECdeg[i]=float(asteroid[4]) 
    DECmin[i]=float(asteroid[5]) 
    DECsec[i]=float(asteroid[6]) 
file1.close() 
 
########################################################################## 
#CONVERTING EVERYTHING TO RADIANS 
########################################################################## 
for i in range(0,3): 
    decdeg[i]=convertdms2d(DECdeg[i],DECmin[i],DECsec[i]) 
    radeg[i]=converthms2d(RAhr[i],RAmin[i],RAsec[i]) 
    dec[i]=convertd2rad(decdeg[i]) 
    ra[i]=convertd2rad(radeg[i]) 
 
########################################################################## 
#RUNNING EVERY SUBSET OF THREE OBSERVATIONS 
########################################################################## 
elements = orbits(time[0], time[1], time[2], ra[0], ra[1], ra[2], dec[0], dec[1], dec[2]) 
 

12.8 GPU Orbit Determination Guide- C 

The GPU program we used was a completely modified example program that originally 
multiplied matrices. None of the original functionality is still present, but modifying an existing 
program allowed for more of the CUDA compile setup to be present. 

Main.cu contains the main function call, orbitfind, included in angle brackets. This file is 
run on the CPU, allowing it to initialize the GPU. Orbitfind is in the kernel.cu file, which is the 
GPU’s processor initializer. It calls GPU_OD_Calc, included in bracketfunc.cpp. Each processor 
runs this funciton seperately.  Some loops have been put into this function as well as main.cu to 
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test for whether or not the program is pipelining. 
 
12.9 GPU Orbit Determination Code 

12.9.1 Main.cu 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include <Windows.h> 
 
// includes, project 
#include <cutil.h> 
 
// includes, kernels 
#include <kernel.cu> 
 
//////////////////////////////////////////////////////////////////////////////// 
// declaration, forward 
void runTest(int argc, char** argv); 
 
extern "C" void readinfile(double *,double *, double *); 
 
//////////////////////////////////////////////////////////////////////////////// 
// Program main 
//////////////////////////////////////////////////////////////////////////////// 
int 
main(int argc, char** argv) 
{ 
runTest(argc, argv); 
 
CUT_EXIT(argc, argv); 
} 
 
//////////////////////////////////////////////////////////////////////////////// 
//! Run a simple test for CUDA 
//////////////////////////////////////////////////////////////////////////////// 
void 
runTest(int argc, char** argv) 
{ 
CUT_DEVICE_INIT(); 
double times[NUMOBS]; double ras[NUMOBS]; double decs[NUMOBS]; 
 
readinfile(times, ras, decs); 
int maxL=0; 
for(int i=0; i<NUMPROCESSORS; i++){ 
int stride = 1<<i; 
if (stride>=NUMPROCESSORS&& maxL==0){ 
maxL=i; 
} 
} 
// allocate device memory 
static allobs parms; 
// array of data structures 
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for(int i=0; i<NUMOBS; i++){ 
parms.ob[i].JulianDate=times[i]; 
parms.ob[i].RA=ras[i]; 
parms.ob[i].DEC=decs[i]; 
} 
allobs *d_contents; 
 
printf("beginning program\n"); 
LARGE_INTEGER start; 
QueryPerformanceCounter(&start); 
CUDA_SAFE_CALL(cudaMalloc((void**) &d_contents, sizeof(allobs))); 
 
// copy host memory to device 
CUDA_SAFE_CALL(cudaMemcpy((char *)d_contents, (char *)&parms, sizeof(allobs), 
cudaMemcpyHostToDevice) ); 
 
// create and start timer 
unsigned int timer = 0; 
CUT_SAFE_CALL(cutCreateTimer(&timer)); 
CUT_SAFE_CALL(cutStartTimer(timer)); 
 
// setup execution parameters 
dim3 threads2(1, NUMPROCESSORS); 
dim3 grid2(1, (NUMANSWER+7)/8*1000); 
// execute the kernel 
orbitfind<<< grid2, threads2 >>>(d_contents, maxL); 
// check if kernel execution generated and error 
CUT_CHECK_ERROR("Kernel execution failed"); 
 
// copy result from device to host 
allobs answer; 
CUDA_SAFE_CALL(cudaMemcpy((char *)&answer, (char *)d_contents, sizeof(allobs), 
cudaMemcpyDeviceToHost) ); 
LARGE_INTEGER end, freq; 
QueryPerformanceCounter(&end); 
QueryPerformanceFrequency(&freq); 
double deltat = (double)(end.QuadPart - start.QuadPart)/(double)freq.QuadPart; 
printf("\n timer time=%f \n", deltat); 
//printing bracket result 
printf("\n Printing Results GPU \n"); 
for(int i=0; i<NUMANSWER; i++){ 
printf("%f %f %f %f %f %f \n", answer.answers[i].Asemimajor, answer.answers[i].Aecc, 
answer.answers[i].Ainclination, answer.answers[i].Aomegacap, answer.answers[i].Aomegasmall, 
answer.answers[i].AM); 
} 
printf("\n \n"); 
 
// stop and destroy timer 
CUT_SAFE_CALL(cutStopTimer(timer)); 
//printf("Processing time: %f (ms) n", cutGetTimerValue(timer)); 
CUT_SAFE_CALL(cutDeleteTimer(timer)); 
getchar(); 
// clean up memory 
CUDA_SAFE_CALL(cudaFree(d_contents)); 
} 
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12.9.2 Kernal.cu 

#ifndef _MATRIXMUL_KERNEL_H_ 
#define _MATRIXMUL_KERNEL_H_ 
#include <stdio.h> 
#include "matrixMul.h" 
#include "bracketfunc.cpp" 
__global__ void orbitfind(allobs* contents, int maxL) { 
int index= blockIdx.y*NUMPROCESSORS+threadIdx.y; 
GPU_OD_Calc(index, contents); 
} 
#endif 
 
 

12.9.3 Bracketfunc.cpp 

#define ASSERT(c)  
#define pow2(x) ((x)*(x)) 
#define pow3(x) ((x)*(x)*(x)) 
#define pow4(x) ((x)*(x)*(x)*(x)) 
 
class tvec{ 
public:  
float x; 
float y;  
float z; 
 
tvec(float a, float b, float c){ 
x=a; 
y=b; 
z=c; 
} 
tvec() { x = 0.; y = 0.; z=0.; } 
}; 
__device__ float findE(float M, float e){ 
float E=0; 
float EGuess=M;  
float MGuess=EGuess-e*sin(EGuess); 
while (abs(M-MGuess)>.000000000000000001){ 
MGuess=EGuess-e*sin(EGuess); 
E=(M-MGuess)/(1-e*cos(EGuess))+EGuess; 
EGuess=E; 
} 
return E; 
} 
__device__ tvec orbitalvector(float a, float e, float E){ 
float x=a*cos(E)-a*e; 
float y=a*sqrt(1-pow2(e))*sin(E); 
float z=0; 
tvec orb_orbital(x,y,z); 
return orb_orbital; 
} 
 
__device__ tvec rtoecliptic(float x, float y, float z, float omega,float i,float omegacap){ 
float x1=x*cos(omega)-y*sin(omega); 
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float y1=x*sin(omega)+y*cos(omega); 
float z1=z; 
float x2=x1; 
float y2=y1*cos(i)-z1*sin(i); 
float z2=y1*sin(i)+z1*cos(i); 
float xec=x2*cos(omegacap)-y2*sin(omegacap); 
float yec=x2*sin(omegacap)+y2*cos(omegacap); 
float zec=z2; 
tvec orb_eccliptic(xec,yec,zec); 
return orb_eccliptic; 
} 
 
__device__ tvec ecliptictoequitorial(float xec, float yec, float zec, float epsilon){ 
float xeq=xec; 
float yeq=yec*cos(epsilon)-zec*sin(epsilon); 
float zeq=yec*sin(epsilon)+zec*cos(epsilon); 
tvec orb_equitorial(xeq, yeq, zeq); 
return orb_equitorial; 
} 
__device__ float dot(tvec a, tvec b){ 
float answer = a.x*b.x + a.y*b.y + a.z*b.z; 
return answer; 
} 
 
__device__ tvec cross(tvec a, tvec b){ 
tvec answer(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x); 
return answer; 
} 
 
__device__ float mag(tvec a) { 
return sqrtf(a.x*a.x + a.y*a.y + a.z*a.z); 
} 
__device__ float mag2(tvec a) { 
return a.x*a.x + a.y*a.y + a.z*a.z; 
} 
__device__ float mag3(tvec a) { 
float mag2 = a.x*a.x + a.y*a.y + a.z*a.z; 
return mag2*sqrtf(mag2); 
} 
__device__ float equation(float a,float b,float c,float r2){ 
float r2sq = r2*r2; 
float r2fourth = r2sq*r2sq; 
return r2fourth*r2fourth + a*r2fourth*r2sq + b*r2*r2sq + c; 
} 
__device__ float derv (float a,float b,float c,float r2){ 
return 8*pow(r2,7)+6*a*pow(r2,5)+3*b*pow2(r2); 
} 
__device__ float newton (float a,float b,float c,float userguess){ 
float slope=derv (a,b,c,userguess); 
float yintercept=equation(a,b,c,userguess)-(slope)*userguess; 
float xintercept=-1*yintercept/slope; 
return xintercept; 
} 
__device__ float convertd2rad(float deg){ 
return deg*3.14159265358979323846/180; 
} 
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__device__ float mod2pi(double angle){ 
while (angle > (2*3.14159265358979323846)) 
angle = angle - (2*3.14159265358979323846); 
while (angle < 0) 
angle = angle + (2*3.14159265358979323846); 
return angle; 
} 
 
__device__ float r2d (float radian){ 
return (float)(radian*180/3.14159265358979323846); 
} 
 
__device__ float findangle(float sinp, float cosp){ 
float arcsin=r2d(asin(sinp)); 
float arccos=r2d(acos(cosp)); 
////if there the cos and sin input'ed don't match up 
//// if it is in the first quad the arccos and arcsin 
////are positive and between 0 and 90 
if (arcsin>0 && arccos < 90) 
return arcsin; 
//// if arccos is more than 90 and less than 180 and arcsin is 
////between 0 and 90, it is in the 2nd quad 
if (arcsin>0 && arccos > 90) 
return arccos; 
////if arccos is between 0 and 90 and arcsin is in the 4th quad, 
////it is in the 4th quad 
if (arcsin<0 && arccos < 90) 
return arcsin+360; 
////if arccos is in 2nd quad and arcsin is in 4th quad, angle is in 3rd quad 
if (arcsin<0 && arccos > 90) 
return 180+(180-arccos); 
////for the 0, 90, 180, and 270 
////0 
if (arcsin==0 && arccos==0) 
return arcsin; 
////90 
if (arcsin==90 && arccos==180) 
return arccos; 
////180 
if (arcsin==0 && arccos==180) 
return arccos; 
////270 
if (arcsin==-90 && arccos==0) 
return arcsin; 
return 0.; 
} 
__device__ void GPU_OD_Calc(int procnum, allobs *passedmem) { 
while (procnum >= NUMANSWER) procnum -= NUMANSWER; 
#define LOOPER 1 
int looper = LOOPER; 
labelxx: 0; 
int k=0, l=0, m=0, runningindex=0; 
while (1){ 
int gaplength=(NUMOBS-k-1)*(NUMOBS-k-2)/2; 
if(procnum<(runningindex+gaplength)) 
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break; 
k++; 
runningindex+=gaplength; 
} 
int rownumber=(1+(int)(sqrt((float)(1+8*(procnum-runningindex)))))/2; 
l=k+1+procnum-runningindex-rownumber*(rownumber-1)/2; 
m=k+1+rownumber; 
//printf("procnum %d with obs %d, %d, %d\n", procnum, k, l,m); 
float pi=(float)(3.14159265358979323846); 
#if 1 
#define xyz(n) __device__ __shared__ float w##n##x[NUMPROCESSORS]; 
xyz(1); xyz(2); 
__device__ __shared__ float w3x[NUMPROCESSORS], w4x[NUMPROCESSORS], w5x[NUMPROCESSORS], 
w6x[NUMPROCESSORS], w7x[NUMPROCESSORS], w8x[NUMPROCESSORS], w9x[NUMPROCESSORS], 
w10x[NUMPROCESSORS], w11x[NUMPROCESSORS], w12x[NUMPROCESSORS], 
w13x[NUMPROCESSORS], w14x[NUMPROCESSORS], w15x[NUMPROCESSORS], 
w16x[NUMPROCESSORS], w17x[NUMPROCESSORS], w18x[NUMPROCESSORS], 
w19x[NUMPROCESSORS], w20x[NUMPROCESSORS], w21x[NUMPROCESSORS], 
w22x[NUMPROCESSORS], w23x[NUMPROCESSORS], w24x[NUMPROCESSORS], 
w26x[NUMPROCESSORS], w27x[NUMPROCESSORS]; 
#define w1 w1x[procnum] 
#define w2 w2x[procnum] 
#define w3 w3x[procnum] 
#define w4 w4x[procnum] 
#define w5 w5x[procnum] 
#define w6 w6x[procnum] 
#define w7 w7x[procnum] 
#define w8 w8x[procnum] 
#define w9 w9x[procnum] 
#define w10 w10x[procnum] 
#define w11 w11x[procnum] 
#define w12 w12x[procnum] 
#define w13 w13x[procnum] 
#define w14 w14x[procnum] 
#define w15 w15x[procnum] 
#define w16 w16x[procnum] 
#define w17 w17x[procnum] 
#define w18 w18x[procnum] 
#define w19 w19x[procnum] 
#define w20 w20x[procnum] 
#define w21 w21x[procnum] 
#define w22 w22x[procnum] 
#define w23 w23x[procnum] 
#define w24 w24x[procnum] 
#define w26 w26x[procnum] 
#define w27 w27x[procnum] 
#else 
float w4 = 0; 
float w1=0, w2=0, w3=0, /*w4=0,*/ w5=0, w6=0, w7=0, w8=0, w9=0, w10=0, w11=0, w12=0, w13=0, w14=0, 
w15=0, w16=0, w17=0, w18=0, w19=0, w20=0, w21=0, w22=0, w23=0, w24=0, w26=0, w27=0; 
#endif 
tvec v1, v2, v3, v4, v5, v6, v7, v8, v9, v10; 
//STEP #4 - Calculate R Vectors 
////////////////////////// 
//EARTH ORBITAL ELEMENTS... have been incorporated so as not to take up space// 
////////////////////////// 
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//teph1=t1, for 1 througth 3 
 
////////////////////// 
//GENERATE R VECTORS// 
////////////////////// 
#define R1 v1 
#define R2 v2 
#define R3 v3 
#define n w1 
n=(float)((.01720209895)*sqrt(1/pow3(1.000732110928368E+00))); 
#define r_orb1 v1 
#define r_orb2 v2 
#define r_orb3 v3 
r_orb1=orbitalvector((1.000732110928368E+00),(1.599910197101524E-02),findE(n*(passedmem-
>ob[k].JulianDate-(2453555.50000))+(1.784467221663580E+02*pi/180), (1.599910197101524E-02))); 
r_orb2=orbitalvector((1.000732110928368E+00),(1.599910197101524E-02),findE(n*(passedmem-
>ob[l].JulianDate-(2453555.50000))+(1.784467221663580E+02*pi/180), (1.599910197101524E-02))); 
r_orb3=orbitalvector((1.000732110928368E+00),(1.599910197101524E-02),findE(n*(passedmem-
>ob[m].JulianDate-(2453555.50000))+(1.784467221663580E+02*pi/180), (1.599910197101524E-02))); 
#undef n 
#define r_ec1 v4 
#define r_ec2 v5 
#define r_ec3 v6 
r_ec1=rtoecliptic(r_orb1.x, r_orb1.y, r_orb1.z, (3.392836473925709E+02*pi/180), (1.509328650209302E-
03*pi/180), (1.242780078662596E+02*pi/180)); 
r_ec2=rtoecliptic(r_orb2.x, r_orb2.y, r_orb2.z, (3.392836473925709E+02*pi/180), (1.509328650209302E-
03*pi/180), (1.242780078662596E+02*pi/180)); 
r_ec3=rtoecliptic(r_orb3.x, r_orb3.y, r_orb3.z, (3.392836473925709E+02*pi/180), (1.509328650209302E-
03*pi/180), (1.242780078662596E+02*pi/180)); 
#undef r_orb1 
#undef r_orb2 
#undef r_orb3 
R1=ecliptictoequitorial(r_ec1.x, r_ec1.y, r_ec1.z, (23.45/180*pi)); 
R2=ecliptictoequitorial(r_ec2.x, r_ec2.y, r_ec2.z, (23.45/180*pi)); 
R3=ecliptictoequitorial(r_ec3.x, r_ec3.y, r_ec3.z, (23.45/180*pi)); 
#undef r_ec1 
#undef r_ec2 
#undef r_ec3 
R1.x = -R1.x; 
R1.y = -R1.y; 
R1.z = -R1.z; 
R2.x = -R2.x; 
R2.y = -R2.y; 
R2.z = -R2.z; 
R3.x = -R3.x; 
R3.y = -R3.y; 
R3.z = -R3.z; 
//printf("R1=%f,%f,%f", R1.x, R1.y, R1.z); 
//printf("\nR2=%f,%f,%f", R2.x, R2.y, R2.z); 
//printf("\nR3=%f,%f,%f", R3.x, R3.y, R3.z); 
 
//STEP #2 - Calculate L Vectors (moved) 
#define L1 v4 
#define L2 v5 
#define L3 v6 
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L1=tvec((cos(passedmem->ob[k].DEC)*cos(passedmem->ob[k].RA)), cos(passedmem-
>ob[k].DEC)*sin(passedmem->ob[k].RA),sin(passedmem->ob[k].DEC)); 
L2=tvec((cos(passedmem->ob[l].DEC)*cos(passedmem->ob[l].RA)), cos(passedmem-
>ob[l].DEC)*sin(passedmem->ob[l].RA),sin(passedmem->ob[l].DEC)); 
L3=tvec((cos(passedmem->ob[m].DEC)*cos(passedmem->ob[m].RA)), cos(passedmem-
>ob[m].DEC)*sin(passedmem->ob[m].RA),sin(passedmem->ob[m].DEC)); 
 
//STEP #3 - Calculate proper time? 
#define tal1 w1 
#define tal3 w2 
tal1=(.01720209895)*(passedmem->ob[k].JulianDate-passedmem->ob[l].JulianDate); 
tal3=(.01720209895)*(passedmem->ob[m].JulianDate-passedmem->ob[l].JulianDate); 
//STEP #5 - Define the D values 
#define d0 w3 
#define d11 w4 
#define d12 w5 
#define d13 w6 
#define d21 w7 
#define d22 w8 
#define d23 w9 
#define d31 w10 
#define d32 w11 
#define d33 w12 
d0=dot(L3,(cross(L1,L2))); 
d11=dot(L3,(cross(R1,L2))); 
d12=dot(L3,(cross(R2,L2))); 
d13=dot(L3,(cross(R3,L2))); 
d21=dot(L3,(cross(L1,R1))); 
d22=dot(L3,(cross(L1,R2))); 
d23=dot(L3,(cross(L1,R3))); 
d31=dot(L1,(cross(L2,R1))); 
d32=dot(L1,(cross(L2,R2))); 
d33=dot(L1,(cross(L2,R3))); 
 
//STEP #6 - Calculate A1, B1, A2, B2 
#define dtal w13 
dtal=tal3-tal1; 
//STEP #7 - Evaluate A,B,E,F 
#define A w14 
#define B w15 
#define E w16 
A=-((tal3/dtal)*d21-d22+(-tal1/dtal)*d23)/d0; 
B=-(((tal3/dtal)/6*(pow2(dtal)-pow2(tal3)))*d21+((-tal1/dtal)/6*(pow2(dtal)-pow2(tal1)))*d23)/d0; 
E=-2*(dot(L2,R2)); 
 
//STEP #8 - Evaluate a,b,c coefficents 
#define a w17 
#define b w18 
#define c w19 
a=-(pow2(A)+A*E+dot(R2,R2)); 
b=-1*(2*A*B+B*E); 
c=-pow2(B); 
#undef A 
#undef B 
#undef E 
//STEP #9 - Newton's Method Thing 
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#define r2 w14 
#define NEWTONBASE 1.39 
r2=newton(a, b, c, NEWTONBASE); 
//If the user actually guesses the zero 
if (equation(a,b,c,NEWTONBASE)==0) 
;//printf("%f good guess", getchar()); 
//Continue executing Newton's Method 
else { 
int lpc; 
for (lpc = 0; lpc < 15; lpc++) { 
if (abs((newton(a, b, c, r2)-r2))>=0.000001) 
r2=newton(a,b,c,r2); 
else 
break; 
} 
passedmem->answers[procnum].Aomegasmall = lpc; 
} 
 
#undef answer 
#undef a 
#undef b 
#undef c 
 
//STEP #10 - Define approx f, g values 
#define u2 w14 
#define f1 w15 
#define f3 w16 
#define g1 w17 
#define g3 w18 
u2=1/pow3(r2); 
f1=1-(u2/2)*pow2(tal1); 
f3=1-(u2/2)*pow2(tal3); 
g1=tal1-(u2/6)*pow3(tal1); 
g3=tal3-(u2/6)*pow3(tal3); 
#undef tal1 
#undef tal3 
 
//STEP #11 - Get the C-coefficents 
//STEP #12 - Find the P's 
#define P1 w1 
#define P2 w2 
#define P3 w19 
P1=((g3/(f1*g3-f3*g1))*d11+(-1)*d12+(-g1/(f1*g3-f3*g1))*d13)/((g3/(f1*g3-f3*g1))*d0);; 
P2=((g3/(f1*g3-f3*g1))*d21+(-1)*d22+(-g1/(f1*g3-f3*g1))*d23)/((-1)*d0); 
P3=((g3/(f1*g3-f3*g1))*d31+(-1)*d32+(-g1/(f1*g3-f3*g1))*d33)/((-g1/(f1*g3-f3*g1))*d0); 
//STEP #13 - Finding rvec1, rvec2, rvec3 
#define rvec1 v7 
#define rvec2 v8 
#define rvec3 v9 
rvec1.x=P1*L1.x-R1.x; 
rvec1.y=P1*L1.y-R1.y; 
rvec1.z=P1*L1.z-R1.z; 
rvec2.x=P2*L2.x-R2.x; 
rvec2.y=P2*L2.y-R2.y; 
rvec2.z=P2*L2.z-R2.z; 
rvec3.x=P3*L3.x-R3.x; 
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rvec3.y=P3*L3.y-R3.y; 
rvec3.z=P3*L3.z-R3.z; 
//STEP #14 - Evaluate d coefficients 
#define d1 w20 
#define d3 w21 
d1=f3/(f3*g1-f1*g3); 
d3=-f1/(f3*g1-f1*g3); 
//STEP #15 - Find derv of rvec2 
#define dervrvec2 v10 
dervrvec2.x=d1*rvec1.x+d3*rvec3.x; 
dervrvec2.y=d1*rvec1.y+d3*rvec3.y; 
dervrvec2.z=d1*rvec1.z+d3*rvec3.z; 
//STEP #16 - Loop to refine elements 
#define oldP2 w22 
oldP2=P2+10; 
#define tal1c w23 
#define tal3c w24 
//#define dtal w25 
#define zeta2 w26 
#define Q2 w27 
int loopcounter=0; 
while (abs(oldP2-P2)>.00000000000000000001&& loopcounter<500){ 
//16.1 correction for light time travel 
oldP2=P2; 
tal1c=(.01720209895)*((passedmem->ob[k].JulianDate-P1/173.1446)-(passedmem->ob[l].JulianDate-
P2/173.1446)); 
tal3c=(.01720209895)*((passedmem->ob[m].JulianDate-P3/173.1446)-(passedmem->ob[l].JulianDate-
P2/173.1446)); 
dtal=tal3c-tal1c; 
//16.2 define again the f and g 
zeta2=dot(rvec2,dervrvec2)/2; 
u2=1/(mag3(rvec2)); 
Q2=dot(dervrvec2,dervrvec2)/(mag2(rvec2))-u2; 
f1=1-(u2/2)*pow2(tal1c)+u2*zeta2/2*pow3(tal1c)+(1/24)*(3*u2*Q2-15*u2*pow2(zeta2)+pow2(u2)*pow4(tal1c)); 
f3=1-(u2/2)*pow2(tal3c)+u2*zeta2/2*pow3(tal3c)+(1/24)*(3*u2*Q2-15*u2*pow2(zeta2)+pow2(u2)*pow4(tal3c)); 
g1=tal1c-(u2/6)*pow3(tal1c)+u2*zeta2/4*pow4(tal1c); 
g3=tal3c-(u2/6)*pow3(tal3c)+u2*zeta2/4*pow4(tal3c); 
//16.3 Redo of all steps 11-15 
//check out why these need to be re-doubled 
P1=((g3/(f1*g3-f3*g1))*d11+(-1)*d12+(-g1/(f1*g3-f3*g1))*d13)/((g3/(f1*g3-f3*g1))*d0); 
P2=((g3/(f1*g3-f3*g1))*d21+(-1)*d22+(-g1/(f1*g3-f3*g1))*d23)/((-1)*d0); 
P3=((g3/(f1*g3-f3*g1))*d31+(-1)*d32+(-g1/(f1*g3-f3*g1))*d33)/((-g1/(f1*g3-f3*g1))*d0); 
 
rvec1.x=P1*L1.x-R1.x; 
rvec1.y=P1*L1.y-R1.y; 
rvec1.z=P1*L1.z-R1.z; 
rvec2.x=P2*L2.x-R2.x; 
rvec2.y=P2*L2.y-R2.y; 
rvec2.z=P2*L2.z-R2.z; 
rvec3.x=P3*L3.x-R3.x; 
rvec3.y=P3*L3.y-R3.y; 
rvec3.z=P3*L3.z-R3.z; 
 
d1=f3/(f3*g1-f1*g3); 
d3=-f1/(f3*g1-f1*g3); 
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dervrvec2.x=d1*rvec1.x+d3*rvec3.x; 
dervrvec2.y=d1*rvec1.y+d3*rvec3.y; 
dervrvec2.z=d1*rvec1.z+d3*rvec3.z; 
loopcounter++; 
} 
#undef d0 
#undef d11 
#undef d12 
#undef d13 
#undef d21 
#undef d22 
#undef d23 
#undef d31 
#undef d32 
#undef d33 
#undef dtal 
#undef R1 
#undef R2 
#undef R3 
#undef L1 
#undef L2 
#undef L3 
#undef rvec1 
#undef rvec3 
#undef u2 
#undef f1 
#undef f3 
#undef g1 
#undef g3 
#undef P1 
#undef P2 
#undef P3 
#undef d1 
#undef d3 
#undef oldP2 
#undef tal1c 
#undef tal3c 
#undef dtal 
#undef zeta2 
#undef Q2 
 
#define eclip w1 
//STEP #17 - Convert rvec2 and dervrvec2 to ecliptic 
//eclip=23.45*pi/180; 
#define ceclip .917407699 
#define seclip .397948631 
#define rvec2ec v1 
rvec2ec=tvec(rvec2.x,rvec2.y*ceclip+rvec2.z*seclip,-rvec2.y*seclip+rvec2.z*ceclip); 
 
#undef rvec2 
#define dervrvec2ec v2 
dervrvec2ec=tvec(dervrvec2.x,dervrvec2.y*ceclip+dervrvec2.z*seclip,-dervrvec2.y*seclip+dervrvec2.z*ceclip); 
#undef dervrvec2 
//STEP #18 - Calculate h-vector 
#define h v3 
h=cross(rvec2ec,dervrvec2ec); 
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//STEP #19 - Calculate a(semi-major axis) 
#define semimajor w2 
semimajor=1/((2/mag(rvec2ec)-dot(dervrvec2ec,dervrvec2ec)/1)); 
//printf( "\nthe value of a is, %f ", semimajor); 
//STEP #20 - Calculate e(eccentricity) 
#define ecc w3 
ecc=sqrt(1-dot(h,h)/(1*semimajor)); 
//printf( "\nthe value of e is, %f ", ecc); 
//STEP #21 - Calculate procnum(inclination) 
#define inclination w4 
inclination=acos(h.z/mag(h)); 
//printf( "\nthe value of procnum is, %f ", r2d(inclination)); 
//STEP #22 - Calculate omega cap 
#define cosomegacap w5 
#define sinomegacap w6 
#define cosangle w7 
#define sinangle w8 
#define omegacap w9 
cosomegacap=-h.y/(mag(h)*sin(inclination)); 
sinomegacap=h.x/(mag(h)*sin(inclination)); 
cosangle=cosomegacap; 
sinangle=sinomegacap; 
omegacap=findangle(sinangle,cosangle); 
//printf( "\nthe value of capital omega is, %f ", omegacap); 
//STEP #23 - Find U 
#define cosU w10 
#define sinU w11 
#define U w12 
#define cosnu w13 
#define sinnu w14 
cosU=(rvec2ec.x*cos(omegacap*pi/180)+rvec2ec.y*sin(omegacap*pi/180))/mag(rvec2ec); 
sinU=(rvec2ec.z/(mag(rvec2ec)*sin(inclination))); 
U=findangle(sinU,cosU); 
//STEP #24 - Find nu 
cosnu=(1/ecc)*((semimajor*(1-pow2(ecc))/mag(rvec2ec))-1); 
sinnu=(semimajor*(1-pow2(ecc))/ecc * dot(dervrvec2ec,rvec2ec)/(mag(h)*mag(rvec2ec))); 
#undef dervrvec2ec 
#undef h 
#define nu w15 
#define omegasmall w16 
#define esp w17 
nu = findangle(sinnu,cosnu); 
//STEP #25 - Calculate omega small 
omegasmall=U-nu; 
esp=0; 
if (omegasmall<0) 
omegasmall=omegasmall+360; 
//printf( "\nthe value of small omega, %f ", omegasmall); 
//STEP #26 - Find esp 
if (nu<0) 
nu=nu+360; 
if (nu>180) 
esp=360-(acos(1/ecc*(1-mag(rvec2ec)/semimajor))*180/pi); 
if (nu<180) 
esp= acos (1/ecc*(1-mag(rvec2ec)/semimajor))*180/pi; 
#undef rvec2ec 
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//STEP #27 - Calculate M(mean anomaly) 
#define M w18 
M=convertd2rad(esp)-ecc*sin(convertd2rad(esp)); 
passedmem->answers[procnum].Asemimajor = semimajor; 
passedmem->answers[procnum].Aecc = ecc; 
passedmem->answers[procnum].Ainclination = inclination; 
passedmem->answers[procnum].Aomegacap = omegacap; 
passedmem->answers[procnum].Aomegasmall = omegasmall; 
passedmem->answers[procnum].Aomegasmall = procnum; 
passedmem->answers[procnum].AM = M; 
} 
 


